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Recursive Algorithms

A recursive algorithm is one in which objects are defined in
terms of other objects of the same type.

Advantages:

@ Simplicity of code

@ Easy to understand
Disadvantages:

e Memory
@ Speed
@ Possibly redundant work

Tail recursion offers a solution to the memory problem, but
really, do we need recursion?
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Recursive Algorithms
Analysis

We've already seen how to analyze the running time of
algorithms. However, to analyze recursive algorithms, we
require more sophisticated techniques.

Specifically, we study how to define & solve recurrence
relations.



el Motivating Example

EEN  Factorial

Recursion Recall the factorial function.

CSE235 | 1 ifn=1
Tl nn-1) ifn>1

Introduction

Recurrence
Relations . . . . .
Lo Consider the following (recursive) algorithm for computing n!:
1
Homogeneous N
Recurrences Algorithm (FACTORIAL)
Non-
Loloesens INPUT ‘n€eN
Other 5 gl
P o OuTpPUT :n!
1 IF n =1 THEN
2 return 1
3 END
4 ELSE
5 return FACTORIAL(n — 1) X n
6 END
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How many multiplications M (n) does FACTORIAL perform?

Motivating Example

Factorial - Analysis?

@ When n =1 we don’t perform any.
@ Otherwise we perform 1.

@ Plus how ever many multiplications we perform in the
recursive call, FACTORIAL(n — 1).

@ This can be expressed as a formula (similar to the
definition of n!.
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Bl Factorial - Analysis?
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CSE235 How many multiplications M (n) does FACTORIAL perform?

Introduction

When n = 1 we don't perform any.

Recurrence
Relations

Otherwise we perform 1.

Linear
Homogeneous

S e @ Plus how ever many multiplications we perform in the
e recursive call, FACTORIAL(n — 1).

homogenous

otner This can be expressed as a formula (similar to the
Methods definition of n!.

M©O) = 0
M(n) = 14+M(n—-1)

@ This is known as a recurrence relation.
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Definition

Recurrence

e A recurrence relation for a sequence {a,} is an equation that

pneer expresses a,, in terms of one or more of the previous terms in

geneous

Recurrences the Sequence

Non-

homogenous ag, a1,y ...,aAn—1

other for all integers n > ng where ng is a nonnegative integer.
A sequence is called a solution of a recurrence relation if its
terms satisfy the recurrence relation.
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I Consider the recurrence relation: a, = 2a,-1 — Gp—2.
It has the following sequences a,, as solutions:

Recurrence
Relations

Linear
Homogeneous e Ay = 3n,
Recurrences
e Q@ a,=n+1, and
homogenous

Q a, =5.

Other
Methods

Initial conditions 4 recurrence relation uniquely determine the
sequence.
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Introduction

Recurrence
Relations

F(n) = Fn—-1)+F(n-2)

Linear F(l) = ]_
Homogeneous
Recurrences F(O) = 1

Non-
homogenous

The solution to the Fibonacci recurrence is
Other

Methods f_i 1+\/g n_L 1_\/5 n
"5 2 V5 2

(your book derives this solution).
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Introduction More generally, recurrences can have the form

Recurrence
Relations

Linear T(n) =aT(n— )+ f(n), T(5)=c

Homogeneous
Recurrences or

e T(n) = oT (g) T+ i), T() =c
Other

Methods

Note that it may be necessary to define several T'(9), initial
conditions.
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The initial conditions specify the value of the first few
necessary terms in the sequence. In the Fibonacci numbers we
Introduction needed two initial conditions, F'(0) = F'(1) = 1 since F(n) was
Recurrence defined by the two previous terms in the sequence.

Relations

CSE235

Linear

Homogeneous Initial conditions are also known as boundary conditions (as
Recurrences opposed to the general conditions).

Non-

hi . . .
CTosEnons From now on, we will use the subscript notation, so the
Other . .
Methods Fibonacci numbers are
fn = fn—1+fn—2
i =1

fo =1
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non-recursive terms.

Introduction

Recurrence
Relations

Linear T(n) == 2T(n — 2) + n2 — 10
Homogeneous N———— SN——

Recurrences recursive non-recrusive

Non-
homogenous . . .
Recursive terms come from when an algorithm calls itself.
Other
Methods . .
Non-recursive terms correspond to the “non-recursive” cost of

the algorithm—work the algorithm performs within a function.

We'll see some examples later. First, we need to know how to
solve recurrences.
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Recurrence There are several methods for solving recurrences.

Relations

Linear
Homogeneous
Recurrences
2nd Order
General

Characteristic Equations
Forward Substitution

Backward Substitution

Non-
homogenous

Recurrence Trees
Other

Methods

Maple!
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Linear Homogeneous Recurrences

Definition
A linear homogeneous recurrence relation of degree k with
constant coefficients is a recurrence relation of the form

Gp = C1Gp—1 + C2ap—2 + -+ + CxQn—k

with ¢1,...,c; € R, ¢ # 0.

@ Linear: RHS is a sum of multiples of previous terms of the
sequence (linear combination of previous terms). The
coefficients are all constants (not functions depending on

@ Homogeneous: no terms occur that are not multiples of
the a;'s.

@ Degree k: a, is expressed in terms of k terms of the
sequence.
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Linear Homogeneous Recurrences

Examples

Examples

The Fibonacci sequence is a linear homogeneous recurrence
relation. As are the following.

ap = 4ap_1 + 5an—2 + Tap_3

ap = 2ap_2 + 4a,_4 + 8ay_3

How many initial conditions do we need to specify for these?

So, how do we solve linear homogeneous recurrences?
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Linear Homogeneous Recurrences

Examples

Examples

The Fibonacci sequence is a linear homogeneous recurrence
relation. As are the following.

ap = 4ap_1 + 5an—2 + Tap_3

ap = 2ap_2 + 4a,_4 + 8ay_3

How many initial conditions do we need to specify for these?
As many as the degree, k = 3, 8 respectively.

So, how do we solve linear homogeneous recurrences?
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We want a solution of the form a,, = r" where r is some (real)

Introduction constant.

Recurrence

Relations We observe that a,, = r" is a solution to a linear homogeneous
neer recurrence if and only if

Homogeneous
Recurrences
2nd Order

General 7,.’” = Cl’rn—l + 02/)"”_2 + o o + Ck?ﬂn_

Non-
homogenous

Other We can now divide both sides by #"~*, collect terms, and we
get a k-degree polynomial.

k

rk— clrk_l — czrk_Q — o —cp_qr—c =0
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k—2

Recurrence T,k _ Clrk_l — cor

Relations

— i —=cp—1r —cp =0

Linear
Homogeneous
Recurrences

This is called the characteristic equation of the recurrence
relation.

2nd Order

General

Non- The roots of this polynomial are called the characteristic roots
h . . .
omoseions of the recurrence relation. They can be used to find solutions
Other . . . . .

Methods (if they exist) to the recurrence relation. We will consider

several cases.



iz Second Order Linear Homogeneous Recurrences

Lincoln

Recursion A second order linear homogeneous recurrence is a recurrence
CSE235 of the form

Introduction an = C1an—1 + C20n—2

Recurrence
Relations

Linear

Theorem (Theorem 1, p462)
Homogeneous

Recurrences Let 617 Cc2 S R and Suppose that T2 —Car —C2 = 0 iS the
2 Ol characteristic polynomial of a 2nd order linear homogeneous

General

Non- recurrence which has two distinct® roots, ri,T3.
h . . . .
omossnons Then {ay} is a solution if and only if

Other
Methods

ap = a1r] + aory

forn=0,1,2,... where a1, o are constants dependent upon
the initial conditions.

“we discuss how to handle this situation later.

17 /47
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Introduction
Recurrence ap = 5a’n—1 - 6an72
Relations
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Homogeneous
Recurrences
2nd Order
General

@ The characteristic polynomial is

Non-
homogenous

Other T2 - 5T + 6

Methods
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Introduction
Recurrence ap = 5a’n—1 - 6an72
Relations

Linear with initial conditions ag = 1,a1 =4
Homogeneous
Recurrences
2nd Order
General

@ The characteristic polynomial is

Non-
homogenous

Other T2 - 5T + 6

Methods
@ Using the quadratic formula (or common sense), the root
can be found:;

2 —5r+6=(r—2)(r—3)

SO’F1:2,’I“2:3
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Introduction

n n
an = a1(2 «a
Recurrence " 1( ) + 2(3 )
Relations

Linear
Homogeneous
Recurrences
2nd Order
General

Non-
homogenous

Other
Methods
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Introduction

an = a1(2") + as(3"
Recurrence " 1( )+ 2(3 )
Relations

Linear @ Now we can plug in the two initial conditions to get a
Homogeneous . .

Recurrences system of linear equations.

2nd Order
General

Nom apg = 1 (2)0 -+ 042(3)0
homogenous a; = o (2)1 + OéQ(?))l
:\)/Ite'::i;ds
a1 + ag (1)

4 = 201+ 302 (2)



Roe] Second Order Linear Homogeneous Recurrences

B Example Continued

Recursion
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CSE235

Introduction 4 = 20{1 —'— 30[2

R — _

S 4= 21 —az)+ 30z
Linear 4 = 2 B 20[2 + 30[2
Homogeneous 2 = 9

Recurrences
2nd Order
General

Non-
homogenous

Other
Methods
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R — _
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Recurrences 2 a2
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Non-
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Methods
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second.

CSE235

Introduction 4 = 20{1 —'— 30[2
R — _
S 4= 21 —az)+ 30z
Linear 4 2 o 20[2 + 30[2
Homogeneous
Recurrences 2 a2
2nd Order . . .
General @ Substituting back into (1), we get
Non-
homogenous
o] = -1

Other
Methods

@ Putting it all back together, we have

an = a1(2")+aa(3")
= —1.2"42.3"
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Linear an = _2an—1 + 15an_2
Homogeneous
Recurrences

2nd Order with initial conditions ag = 0, a1 = 1.
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Non-
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Solve the recurrence

Recurrence
Relations

Linear Ap = —2an_1 aF 15an_2
Homogeneous
Recurrences

2nd Order with initial conditions ag = 0, a1 = 1.

General

Non-
:;:ogenous If we did it right, we have
Met:rods 1 1
an = 5B)" = £(=5)

How can we check ourselves?
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Recall that we can only apply the first theorem if the roots are
=S distinct, i.e. r1 # 1.

Introduction

. If the roots are not distinct (r; = r2), we say that one
Relations characteristic root has multiplicity two. In this case we have to
Linear apply a different theorem.

Homogeneous

Recurrences

20d Crier Theorem (Theorem 2, p464)

I’:l;)r::)genous Let C1,C2 € R with Co # 0. Suppose that 7’2 =Gr=e= 0 has
ot only one distinct root, ro. Then {a,} is a solution to

Methods ap = C1ap_1 + C2ay_o if and only if

an = oqry + aanry

forn=0,1,2,... where a1, ay are constants depending upon
the initial conditions.
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Gz What is the solution to the recurrence relation

Introduction
Recurrence an = 80/77,—1 - 16an_2
Relations

Linear with initial conditions ag = 1,a1 = 77
Homogeneous
Recurrences
2nd Order
General

Mo @ The characteristic polynomial is

homogenous

Other r? —8r +16

Methods

@ Factoring gives us
r? —8r 16 = (r — 4)(r — 4)

sorg=4
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Recurrences
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General
a1 =7 4o + daz

Non-
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Other
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Introduction n n
ap = 14" + agnd
Recurrence

Relations

@ Using the initial conditions, we get a system of equations;

Linear
Homogeneous
Recurrences

2nd Order aO — 1 — al
General
a1 =7 4o + daz

Non-
homogenous

Other @ Solving the second, we get that ap = 2
ethods
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an = a14™ + asnd”

Recurrence

Relations
Linear @ Using the initial conditions, we get a system of equations;
Homogeneous
Recurrences
2nd Order ag = 1 = a1
General
a1 =7 = 4doq+4as
Non-
homogenous
Other @ Solving the second, we get that ap = 2

Methods

@ And so the solution is

3
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S By Theorem 2, we have that the solution is of the form

Introduction

an = a14™ + asnd”

Recurrence
Relations
i @ Using the initial conditions, we get a system of equations;
Homogeneous
Recurrences
2nd Order ap = 1 = aq
General
a1 =7 = 4doq+4as

Non-
homogenous
Other @ Solving the second, we get that ag = %
Methods

@ And so the solution is

3
an = 4" + 1n4”

@ We should check ourselves. ..
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Introduction There is a straightforward generalization of these cases to
REGHIE3 higher order linear homogeneous recurrences.

Relations

Linear
Homogeneous
Recurrences

2 @ity The roots of these polynomials lead to a general solution.

General

Essentially, we simply define higher degree polynomials.

Non-

homogenous The general solution contains coefficients that depend only on
Other the initial conditions.

Methods

In the general case, however, the coefficients form a system of
linear equalities.
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Let ci,...,c, € R. Suppose that the characteristic equation
Introduction
R« —
Relations rk — Cﬂ'k R Cp—1r—cr =0
Linear
H .. .
Mol has k distinct roots, r1,...,7,. Then a sequence {ay} is a
SIS solution of the recurrence relation
Non-
homogenous Ap = C10p—1 + Coly—9 + . e + CkQn—FL

Other

Methods

if and only if
ap, = 1] + aary + - -+ agry

formn=0,1,2,..., where ay, o, ...,q are constants.
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Recurrence

Relations Theorem (Theorem 4, p466)

Li o a5 o
- Let ci,...,c € R. Suppose that the characteristic equation
Recurrences

2nd Order

General 'r‘k — C]_'r‘k_l — -t — CL_1T — Cp = O

Non-

homogenous

other has t distinct roots, r1,...,rs with multiplicities mq, ..., my.

Methods
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Then a sequence {a,} is a solution of the recurrence relation

Introduction

Recurrence

Relations an ES Clan_l + 02(1”_2 + oo + Ckanfk

Linear

Homogeneous . o
Recurrences If and On/y /f
2nd Order

General
n

_ -1
Non ap, = (ap+apin+---+am—1n™ )ri+

homogenous (@2’0 + Qg 1M + ..+ a27m2_1nm271)7'51+
Other o

Methods

(oo +ogin+---+ aumt_lnmt_l)rf’%—

forn =0,1,2,..., where o; ; are constants for 1 < i <t and
0<j<m;—1
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Intreduction For recursive algorithms, cost functions are often not
Recurrence homogenous because there is usually a non-recursive cost

Relations

Uiz depending on the input size.
Homogeneous
Recurrences

Such a recurrence relation is called a linear nonhomogeneous
Non- .
oS recurrence relation.

Other .
Methods Such functions are of the form

Qp = C10p—1 + C20p—2 + -+ + CkAp_f + f(n)



Bvete] Linear Nonhomogeneous Recurrences

Lincoln

Recursion

CSE235
Introduction . .
. Here, f(n) represents a non-recursive cost. If we chop it off,

ecurrence .
Relations we are left with

Linear
Homogeneous

Recurrences ap = C1ap—1 + C20n—2 + e + Ck‘a”n—k

Non-
homogenous

which is the associated homogenous recurrence relation.
Other

Methods Every solution of a linear nonhomogeneous recurrence relation

is the sum of a particular solution and a solution to the
associated linear homogeneous recurrence relation.
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Linear Nonhomogeneous Recurrences

Theorem (Theorem 5, p468)

If {a,%’ )} is a particular solution of the nonhomogeneous linear
recurrence relation with constant coefficients

ap = C1ap—1 + C2ap—2 + - - + ckan_g + f(n)

then every solution is of the form {a%p ) 4 a%h)}, where {agh)} is
a solution of the associated homogenous recurrence relation

Gp = C1Gp—1 + C2ap—2 + -+ + CrAn—k
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Recurrence
Relations

y There is no general method for solving such relations.
inear .
Homogeneous However, we can solve them for special cases.

Recurrences

In particular, if f(n) is a polynomial or exponential function (or
ther more precisely, when f(n) is the product of a polynomial and
Methods exponential function), then there is a general solution.

Non-
homogenous
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Linear Nonhomogeneous Recurrences

Theorem (Theorem 6, p469)

Suppose that {ay,} satisfies the linear nonhomogeneous
recurrence relation

Un = C10p-1 + C2an—2 + - - + Ckan_k + f(n)
where c1,...,c; € R and
f(n) = (byn' + be_nt L+ -+ bin + by) - s"

where by, ..., b, s € R.




Ne‘BWERSWV]or

Lincoln

Recursion

CSE235

Introduction

Recurrence
Relations

Linear
Homogeneous
Recurrences

Non-
homogenous

Other
Methods

34 /47

Linear Nonhomogeneous Recurrences

Theorem (Continued)

When s is not a root of the characteristic equation of the
associated linear homogeneous recurrence relation, there is a
particular solution of the form

(pent 4+ pi_1n' L+ -+ pin+pg) - "

When s is a root of this characteristic equation and its
multiplicity is m, there is a particular solution of the form

n™(pnt + p_an' ™t + -+ pin + po) - 8"
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Introduction

Recurrence The examples in the text are quite good (see pp467-470) and
illustrate how to solve simple nonhomogeneous relations.

Linear
Homogeneous

Recurrences We may go over more examples if you wish.
Non-
homogenous

Also read up on generating functions in section 7.4 (though we
Methods may return to this subject).

However, there are alternate, more intuitive methods.
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Back
Substitution
Recurrence Trees
Maple

Other Methods

When analyzing algorithms, linear homogenous recurrences of
order greater than 2 hardly ever arise in practice.

We briefly describe two “unfolding” methods that work for a
lot of cases.

Backward substitution — this works exactly as its name
implies: starting from the equation itself, work backwards,
substituting values of the function for previous ones.

Recurrence Trees — just as powerful but perhaps more
intuitive, this method involves mapping out the recurrence tree
for an equation. Starting from the equation, you unfold each
recursive call to the function and calculate the non-recursive
cost at each level of the tree. You then find a general formula
for each level and take a summation over all such levels.



NeBWERSWV]or

Lincoln

Recursion

CSE235

Introduction

Recurrence
Relations

Linear
Homogeneous
Recurrences

Non-
homogenous

Other
Methods

Back
Substitution

Recurrence Trees

Maple

Backward Substitution

Example

Give a solution to

T(n)=T(n—1)+2n

where T'(1) = 5.
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Back
Substitution

Recurrence Trees

Maple

Backward Substitution

Example

Give a solution to

T(n)=T(n—1)+2n

where T'(1) = 5.

We begin by unfolding the recursion by a simple substitution of
the function values.
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Example

Give a solution to

T(n)=T(n—1)+2n

where T'(1) = 5.

We begin by unfolding the recursion by a simple substitution of
the function values.

Observe that

Tn—1)=T((n—-1)-1)+2(n—-1)=T(n—-2)+2(n—1)
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Backward Substitution

Example

Give a solution to

T(n)=T(n—1)+2n

where T'(1) = 5.

We begin by unfolding the recursion by a simple substitution of
the function values.

Observe that
Tn—1)=T((n—-1)-1)+2(n—-1)=T(n—-2)+2(n—1)

Substituting this into the original equation gives us

T(n)=T(n—-2)+2(n—-1)+2n
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Example — Continued

If we continue to do this, we get the following.
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Example — Continued

If we continue to do this, we get the following.

Tn—2)+2(n—1)+2n
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If we continue to do this, we get the following.

T(n)

Backward Substitution

Example — Continued

Tn—2)+2(n—1)+2n
Tn—3)+2(n—2)+2(n—1)+2n
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T(n)

If we continue to do this, we get the following.

Backward Substitution

Example — Continued

Tn—2)+2(n—1)+2n
Tn—3)+2(n—2)+2(n—1)+2n
T(n—4)+2(n—3)+2(n—2)+2(n—1) +2n
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T(n)

If we continue to do this, we get the following.

Backward Substitution

Example — Continued

Tn—2)+2(n—1)+2n
Tn—3)+2(n—2)+2(n—1)+2n
T(n—4)+2(n—3)+2(n—2)+2(n—1) +2n



NeBWERSWV ] OF

Lincoln

Recursion

CSE235

Introduction

Recurrence
Relations

Linear
Homogeneous
Recurrences

Non-
homogenous

Other

Methods

Back
Substitution
Recurrence Trees
Maple

T(n)

If we continue to do this, we get the following.

Backward Substitution

Example — Continued

Tn—2)+2(n—1)+2n
Tn—3)+2(n—2)+2(n—1)+2n
T(n—4)+2(n—3)+2(n—2)+2(n—1) +2n

T(n—i)+ 3i—62(n — )
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Example — Continued

If we continue to do this, we get the following.

T(n) = T(n—2)+2(n—1)+2n
Tn—3)+2(n—2)+2(n—1)+2n
= T(n—4)+2(n—3)+2(n—2)+2n—1)+2n

; T(n—1)+ 22;52(” = J)

l.e. this is the function’s value at the i-th iteration. Solving the
sum, we get

T(n):T(n—i>—|—2n(i—1)_Q(i_l)(i—l-i-l)

5 + 2n
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Example — Continued

We want to get rid of the recursive term. To do this, we need
to know at what iteration we reach our base case; i.e. for what
value of i can we use the initial condition, T'(1) = 57
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Example — Continued

We want to get rid of the recursive term. To do this, we need
to know at what iteration we reach our base case; i.e. for what
value of i can we use the initial condition, T'(1) = 57

We can easily see that when ¢ = n — 1, we get the base case.
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Example — Continued

We want to get rid of the recursive term. To do this, we need
to know at what iteration we reach our base case; i.e. for what
value of i can we use the initial condition, T'(1) = 57

We can easily see that when ¢ = n — 1, we get the base case.

Substituting this into the equation above, we get
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Example — Continued

We want to get rid of the recursive term. To do this, we need
to know at what iteration we reach our base case; i.e. for what
value of i can we use the initial condition, T'(1) = 57

We can easily see that when ¢ = n — 1, we get the base case.

Substituting this into the equation above, we get

Tn) = Tn—i)+2n(i—1)—i>+i+2n
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Example — Continued

We want to get rid of the recursive term. To do this, we need
to know at what iteration we reach our base case; i.e. for what
value of i can we use the initial condition, T'(1) = 57

We can easily see that when ¢ = n — 1, we get the base case.
Substituting this into the equation above, we get

Tn) = Tn—i)+2n(i—1)—i>+i+2n
T +2nn—1-1)—(n—-1)2+(n—-1)+2n
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Example — Continued

We want to get rid of the recursive term. To do this, we need

to know at what iteration we reach our base case; i.e. for what
value of i can we use the initial condition, T'(1) = 57

We can easily see that when ¢ = n — 1, we get the base case.

Substituting this into the equation above, we get

T(n)

T(n—i)+2n(i—1)—i®+i+2n
T +2nn—1-1)—(n—-1)2+(n—-1)+2n
54+2n(n—2)—n?-2n+1)+(n—1)+2n
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We want to get rid of the recursive term. To do this, we need
Introduction . . .
Rt ’ to know at what iteration we reach our base case; i.e. for what
Relations value of i can we use the initial condition, T'(1) = 57

Linear
Homogeneous

H We can easily see that when ¢ = n — 1, we get the base case.
ecurrences

Non-

o genous Substituting this into the equation above, we get
Other

Methods Tn) = Tn—i)+2n(i—1)—i>+i+2n

Back

Substitution

T +2nn—1-1)—(n—-12+(n—-1)+2n
Recurrence Trees

Maple

54+2n(n—2)—n?-2n+1)+(n—1)+2n
= n’+n+3
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Recurrence Trees

When using recurrence trees, we graphically represent the
recursion.

Each node in the tree is an instance of the function. As we
progress downward, the size of the input decreases.

The contribution of each level to the function is equivalent to
the number of nodes at that level times the non-recursive cost
on the size of the input at that level.

The tree ends at the depth at which we reach the base case.

As an example, we consider a recursive function of the form

T(n) = aT (g) + f(n), T(6)=c
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el The total value of the function is the summation over all levels

Recurrence Of the tree:
Relations logﬁ n

. ; n
Linear _ 7
Homogeneous T(n) - E a - f (,BZ)
Recurrences i=0

Non-
homogenous

We consider the following concrete example.
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Example — Continued

Iteration

0 n
! 5+ 5
2 [T/(”<l [T/("<l [T(n/9)] [T(n/9)] 4.(2)

[T/8)][T(/8) ] [T/8) | [Tn/8) | [Tn/8) | [T (/8| [T (/&) ] [T(n/8)] 8- (%)

g i (mn
| ()

logo n Jloga n | )
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Recurrence The value of the function then, is the summation of the value
Lincar of all levels. We treat the last level as a special case since its
E non-recursive cost is different.

Recurrences

Non-
homogenous
(loggn)—1
2
Other

Methods T(n) =4n+ Z n(logn) + 4n
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In the previous example we make the following assumption:
that n was a power of two; n = 2¥. This was necessary to get
Tl o nice depth of logn and a full tree.

Recurrence
Relations

Recurrences

Non- We can restrict consideration to certain powers because of the
h . . . . .

STOBEnoEE smoothness rule, which is not studied in this course. For more
Other . .

Methods information about the smoothness rule, please consult pages

Saeetitution 481-483 in the textbook “The Design & Analysis of
Algorthims” by Anany Levitin.

Recurrence Trees
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ltodicucs Maple and other math tools are great resources. However, they
Recurrence are not substitutes for knowing how to solve recurrences
yourself.

Linear
Homogeneous
Recurrences

As such, you should only use Maple to check your answers.
Non- . .
homogenous Recurrence relations can be solved using the rsolve command

Other and giving Maple the proper parameters.
Methods
Back

Substitution The arguments are essentially a comma-delimited list of
Recurrence Trees . -
equations: general and boundary conditions, followed by the

“name” and variable of the function.
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> rsolve({T(n) = T(n-1) + 2*n, T(1) = 5}, T(n));

Introduction

ecurrence 1
Eelations ]_ + 2(” + 1) <2n + 1) - 21’L

Linear
Homogeneous
Recurrences

Non- You can clean up Maple's answer a bit by encapsulating it in

homogenous . .

the simplify command:
Other
Methods

Back > simplify(rsolve({T(n) = T(n-1) + 2%n, T(1) =

Substitution

Recurrence Trees 5} N T (n) ) ) ;

3+n’+n
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