

Nebraska	Introduction
Predicate Logic and Quantifiers	Consider the following statements: x > 3, x = y + 3, x + y = z
CSE235	x > 3, $x = y + 3$, $x + y - zThe truth value of these statements has no meaning without specifying the values of x, y, z.$
	However, we <i>can</i> make propositions out of such statements.
	A <i>predicate</i> is a property that is affirmed or denied about the <i>subject</i> (in logic, we say "variable" or "argument") of a <i>statement</i> .
	$\underbrace{x}_{\text{subject}} \underbrace{\text{is greater than 3"}}_{\text{predicate}}$
2/1	Terminology: affirmed = holds = is true; denied = does not hold = is not true.

Nebraska Propositional Functions

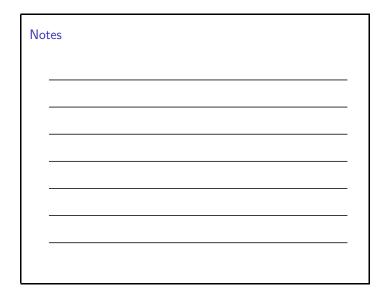
Predicate Logic and Quantifiers

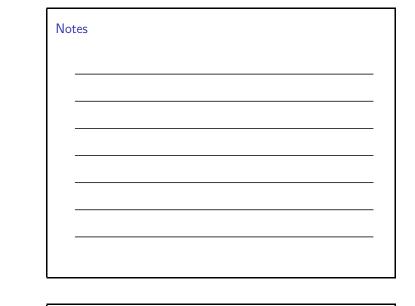
To write in predicate logic:

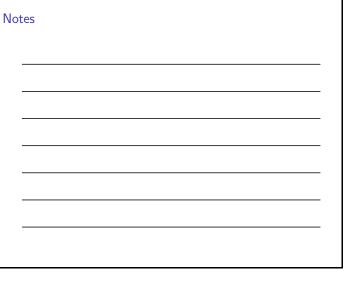
"
$$\underbrace{x}_{\text{subject}}$$
 is greater than 3" predicate

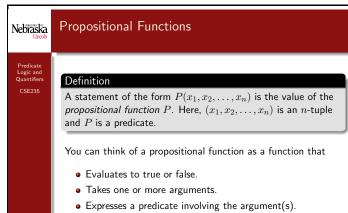
We introduce a (functional) symbol for the predicate, and put the subject as an argument (to the functional symbol): P(x) Examples:

- Father(x): unary predicate
- Brother(*x*,*y*): binary predicate
- Sum(x,y,z): ternary predicate
- P(x,y,z,t): n-ary predicate





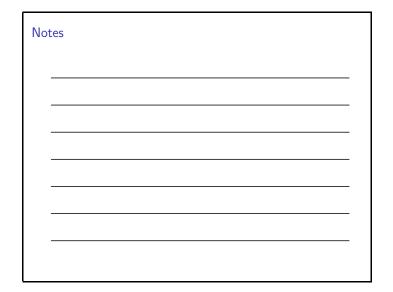


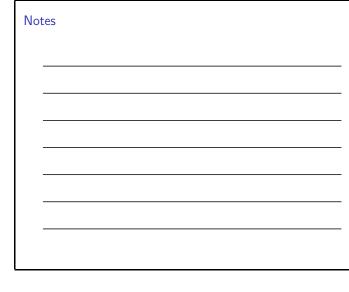


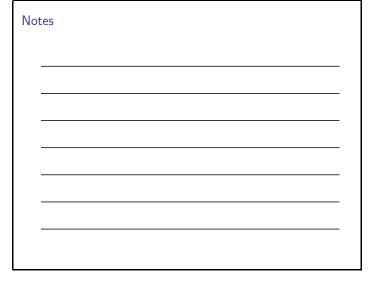
• Becomes a proposition when values are assigned to the arguments.

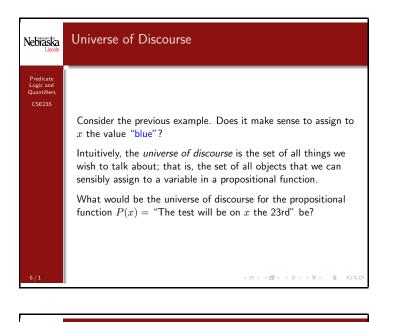
Nebraska Lincoln	Propositional Functions _{Example}
Predicate Logic and Quantifiers CSE235	Example Let $Q(x, y, z)$ denote the statement " $x^2 + y^2 = z^{2"}$. What is the truth value of $Q(3, 4, 5)$? What is the truth value of $Q(2, 2, 3)$? How many values of (x, y, z) make the predicate true?
5/1	くロッ (思) (言) (言) (日)

Nebřaska Lincoln	Propositional Functions _{Example}
Predicate Logic and Quantifiers CSE235	Example Let $Q(x, y, z)$ denote the statement " $x^2 + y^2 = z^{2"}$. What is the truth value of $Q(3, 4, 5)$? What is the truth value of $Q(2, 2, 3)$? How many values of (x, y, z) make the predicate true? Since $3^2 + 4^2 = 25 = 5^2$, $Q(3, 4, 5)$ is true. Since $2^2 + 2^2 = 8 \neq 3^2 = 9$, $Q(2, 2, 3)$ is false. There are infinitely many values for (x, y, z) that make this propositional function true—how many right triangles are there?
5/1	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日





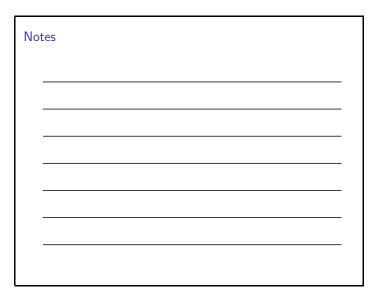




Nebraska	Universe of Discourse Multivariate Functions
Predicate Logic and Quantifiers CSE235	
	Moreover, each variable in an n -tuple may have a different universe of discourse.
	Let $P(r, g, b, c) =$ "The rgb-value of the color c is (r, g, b) ".
	For example, $P(255, 0, 0, red)$ is true, while $P(0, 0, 255, green)$ is false.
	What are the universes of discourse for (r, g, b, c) ?
7/1	(日) (日) (注) (注) を のへの

A predicate becomes a proposition when we assign it fixed values. However, another way to make a predicate into a proposition is to *quantify* it. That is, the predicate is true (or false) for *all* possible values in the universe of discourse or for *some* value(s) in the universe of discourse.

Such *quantification* can be done with two *quantifiers*: the *universal* quantifier and the *existential* quantifier.



Notes

Predicate Logic and Quantifiers

Nebraska	Universal Quantifier Definition
Predicate Logic and Quantifiers CSE235	Definition The <i>universal quantification</i> of a predicate $P(x)$ is the proposition " $P(x)$ is true for all values of x in the universe of discourse" We use the notation
	$orall x P(x)$ which can be read "for all x " If the universe of discourse is finite, say $\{n_1, n_2, \dots, n_k\}$, then
	the universal quantifier is simply the conjunction of all elements: $\forall x P(x) \iff P(n_1) \land P(n_2) \land \dots \land P(n_k)$
9/1	・(型)・(型)・(型)・(型)・(型)・(型)・(型)・(型)・(型)・(型)

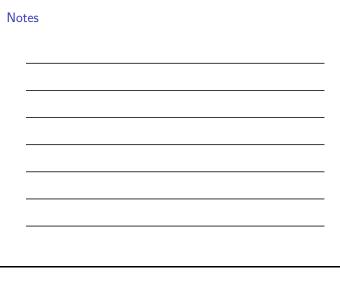
Nebraska	Universal Quantifier Example I
Predicate Logic and Quantifiers CSE235	 Let P(x) be the predicate "x must take a discrete mathematics course" and let Q(x) be the predicate "x is a computer science student". The universe of discourse for both P(x) and Q(x) is all UNL students. Express the statement "Every computer science student must take a discrete mathematics course".
10/1	• Express the statement "Everybody must take a discrete mathematics course or be a computer science student".

- Let P(x) be the predicate "x must take a discrete mathematics course" and let Q(x) be the predicate "x is a computer science student".
 - \bullet The universe of discourse for both P(x) and Q(x) is all UNL students.
 - Express the statement "Every computer science student must take a discrete mathematics course".

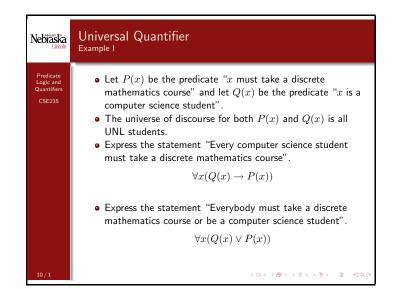
 $\forall x (Q(x) \to P(x))$

• Express the statement "Everybody must take a discrete mathematics course or be a computer science student".

Notes

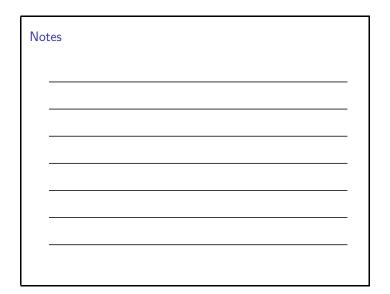


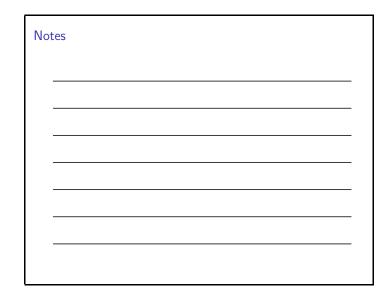
Predicate Logic and Quantifiers

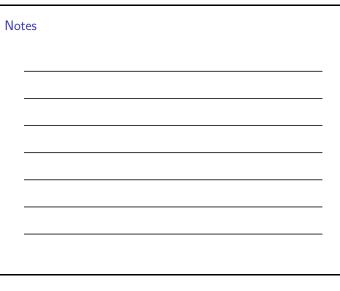


Nebraska	Universal Quantifier _{Example 1}
Predicate Logic and Quantifiers CSE235	 Let P(x) be the predicate "x must take a discrete mathematics course" and let Q(x) be the predicate "x is a computer science student". The universe of discourse for both P(x) and Q(x) is all UNL students. Express the statement "Every computer science student must take a discrete mathematics course". ∀x(Q(x) → P(x))
	• Express the statement "Everybody must take a discrete mathematics course or be a computer science student". $\forall x (Q(x) \lor P(x))$
10/1	• Are hetse statements true or false? , , , , , , , , , , , , , , , , , , ,

Nebřaška Lincoln	Universal Quantifier _{Example II}
Predicate Logic and Quantifiers CSE235	Express the statement "for every x and for every $y, \; x+y > 10$ "
11/1	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日



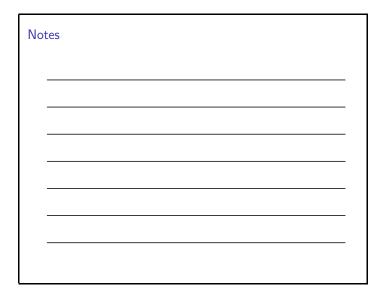


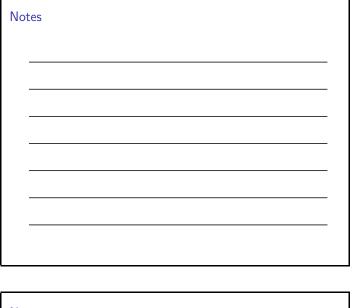


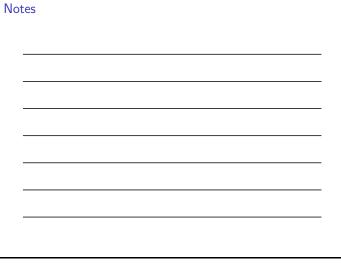
Nebraska Lincoln	Universal Quantifier _{Example II}
Predicate Logic and Quantifiers CSE235	Express the statement "for every x and for every y , $x + y > 10$ " Let $P(x, y)$ be the statement $x + y > 10$ where the universe of discourse for x, y is the set of integers.
11/1	(ロ) (月) (注) (注) 注 の((

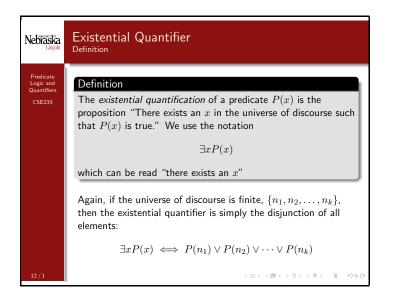
Nebraska	Universal Quantifier Example II
Predicate Logic and Quantifiers CSE235	Express the statement "for every x and for every y , $x + y > 10$ " Let $P(x, y)$ be the statement $x + y > 10$ where the universe of discourse for x, y is the set of integers. Answer: $\forall x \forall y P(x, y)$
11/1	・ ()・ ()· ()

Nebřaska Lincoln	Universal Quantifier _{Example II}
Predicate Logic and Quantifiers CSE235	Express the statement "for every x and for every $y,x+y>10"$
	Let $P(x,y)$ be the statement $x+y>10$ where the universe of discourse for x,y is the set of integers.
	Answer: $\forall x \forall y P(x,y)$
	Note that we can also use the shorthand
	orall x, y P(x,y)
11/1	1日:1日・1日・1日・1日・1日・1日・1日・1日・1日・1日・1日・1日・1日・1



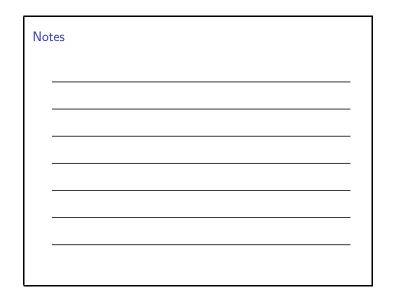


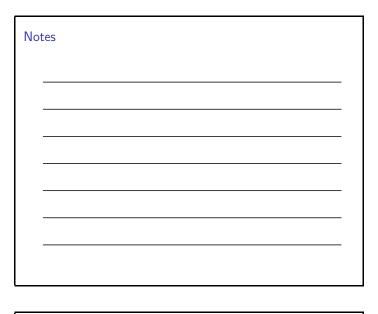


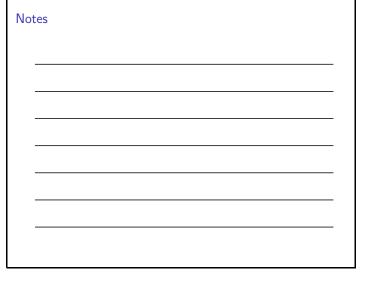


Nebraska	Existential Quantifier _{Example I}
Predicate Logic and Quantifiers CSE235	
	Let $P(x,y)$ denote the statement, " $x + y = 5$ ".
	What does the expression,
	$\exists x \exists y P(x,y)$
	mean?
	What universe(s) of discourse make it true?
13 / 1	- ロ・ - (雪・ - ミ・ - ミ・ つくの

Nebraska	Existential Quantifier _{Example II}
Predicate Logic and Quantifiers CSE235	Express the statement "there exists a real solution to $ax^2 + bx - c = 0$ "
14/1	<ロ> <合> <ミ> <ミ> ミシ くの



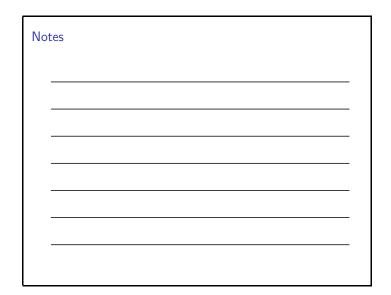


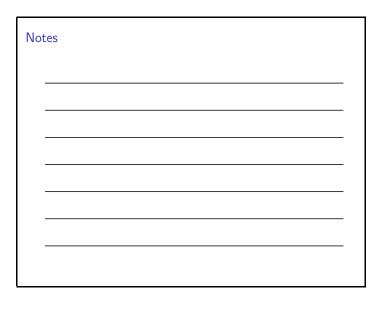


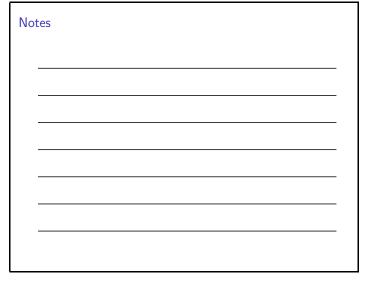
Nebraska	Existential Quantifier _{Example II}
Predicate Logic and Quantifiers CSE235	Express the statement "there exists a real solution to $ax^2 + bx - c = 0$ " Let $P(x)$ be the statement $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ where the universe of discourse for x is the set of reals. Note here that a, b, c are all fixed constants.
14/1	(ロ) (日) (き) (き) き めく()

Nebraska	Existential Quantifier Example II	
Predicate Logic and Quantifiers		
CSE235	Express the statement "there exists a real solution to $ax^2 + bx - c = 0$ "	
	Let $P(x)$ be the statement $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ where the universe of discourse for x is the set of reals. Note here that a, b, c are all fixed constants.	
	The statement can thus be expressed as	
	$\exists x P(x)$	
14/1	(ロ) (数) (2) (2) (2) (3) (3)	

Nebraska Lincoln	Existential Quantifier Example II Continued
Predicate Logic and Quantifiers CSE235	Question: what is the truth value of $\exists x P(x)$?
15 / 1	(ロ) (日) (古) (古) (古) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日



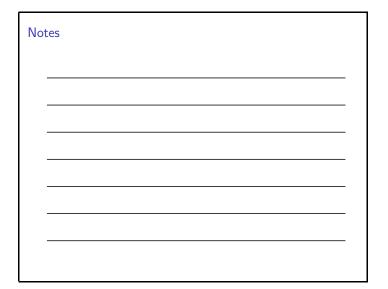




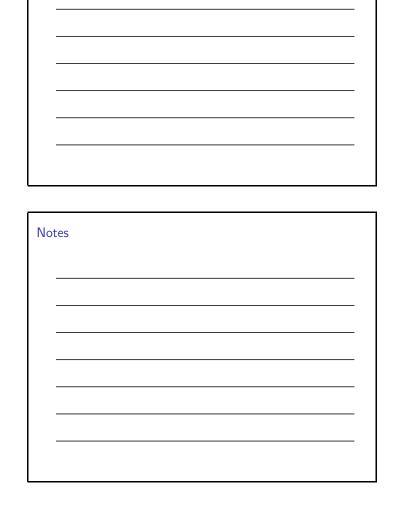
Nebraska Lincoln	Existential Quantifier Example II Continued
Predicate Logic and Quantifiers CSE235	
	Question: what is the truth value of $\exists x P(x)$?
	Answer: it is false. For any real numbers such that $b^2 < 4ac$, there will only be complex solutions, for these cases no such <i>real</i> number x can satisfy the predicate.
	How can we make it so that it <i>is</i> true?
15 / 1	< ロ > (型 > (注 > (注 >) を)の代

Nebraska	Existential Quantifier Example II Continued	
Predicate Logic and Quantifiers CSE235		
	Question: what is the truth value of $\exists x P(x)$?	
	Answer: it is false. For any real numbers such that $b^2 < 4ac$, there will only be complex solutions, for these cases no such <i>real</i> number x can satisfy the predicate.	
	How can we make it so that it <i>is</i> true?	
	Answer: change the universe of discourse to the complex numbers, $\mathbb{C}.$	
15 / 1	(日) (男) (言) (言) (言) (の)	

Nebraska	Quantifiers Truth Values		
Predicate Logic and Quantifiers CSE235	In general, whe	en are quantified stateme	nts true/false?
	Statement	True When	False When
	$\forall x P(x)$	$\begin{array}{ c c } P(x) \text{ is true for every} \\ x. \end{array}$	There is an x for which $P(x)$ is false.
	$\exists x P(x)$	There is an x for which $P(x)$ is true.	P(x) is false for every x .
		Table: Truth Values of Q	uantifiers
16/1		4	ㅁ > < 웹 > < 홈 > < 홈 > 홈 - 카이



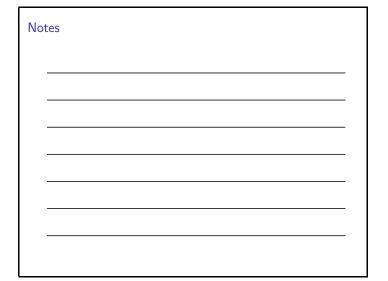
Notes

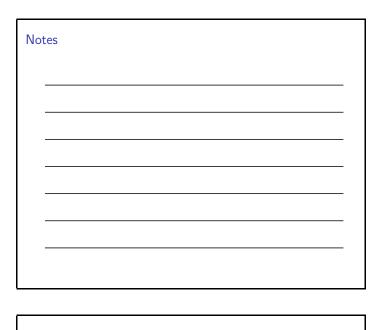


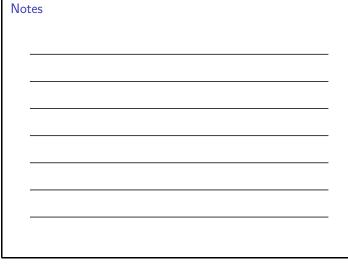
Nebraska Lincoln	Mixing Quantifiers I
Predicate Logic and Quantifiers CSE235	
	Existential and universal quantifiers can be used together to quantify a predicate statement; for example,
	$\forall x \exists y P(x,y)$
	is perfectly valid. However, you must be careful—it must be read left to right.
	For example, $\forall x \exists y P(x, y)$ is not equivalent to $\exists y \forall x P(x, y)$. Thus, ordering is important.
17 / 1	<ロ> (問) (言) (言) (言) (言) (言)

Nebraska	Mixing Quantifiers II
Predicate Logic and Quantifiers CSE235	For example: • $\forall x \exists y Loves(x, y)$: everybody loves somebody • $\exists y \forall x Loves(x, y)$: There is someone loved by everyone Those expressions do not mean the same thing! Note that $\exists y \forall x P(x, y) \rightarrow \forall x \exists y P(x, y)$, but the converse does not hold However, you <i>can</i> commute <i>similar</i> quantifiers; $\exists x \exists y P(x, y)$ is equivalent to $\exists y \exists x P(x, y)$ (which is why our shorthand was valid).
18/1	<ロ> (月) (言) (言) 言 の(C

Nebřaska Lincoln	Mixing Quan	tifiers	
Predicate	Statement	True When	False When
Logic and Quantifiers	$\forall x \forall y P(x,y)$	(/0/	There is at least one
CSE235		ery pair x, y .	pair, x, y for which $P(x, y)$ is false.
	$\forall x \exists y P(x,y)$	For every x , there is a	There is an x for
		y for which $P(x, y)$ is true.	which $P(x, y)$ is false for every y .
	$\exists x \forall y P(x,y)$	There is an x for which $P(x, y)$ is true	For every x , there is a y for which $P(x, y)$ is
		for every y .	false.
	$\exists x \exists y P(x,y)$		P(x,y) is false for ev-
		pair x, y for which $P(x, y)$ is true.	ery pair x, y .
	Tab	le: Truth Values of 2-varia	te Quantifiers
19/1		4	ロ > (母 > ・ 言 > ・ 言 > ・ う へ @ > ・ (日) > () < (()) > (()) > ((()) > ((()) > (()) > ((()) > ((()) > (()) > ((())) > ((()) > ((())) > ((()) > ((())) > ((())) > ((()) > ((())) > ((())) > ((()) > (((



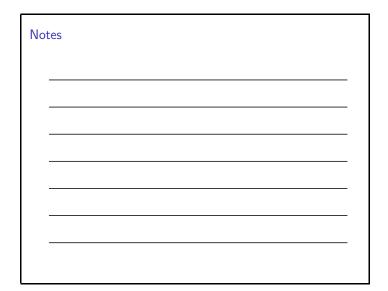




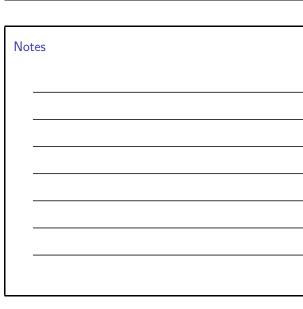
Nebraska Lincoln	Mixing Quantifiers _{Example 1}
Predicate Logic and Quantifiers CSE235	Express, in predicate logic, the statement that there are an infinite number of integers.
20 / 1	うしょう かん かく かく ちょう

Nebřaska	Mixing Quantifiers Example 1
Predicate Logic and Quantifiers CSE235	Express, in predicate logic, the statement that there are an infinite number of integers. Let $P(x, y)$ be the statement that $x < y$. Let the universe of discourse be the integers, \mathbb{Z} .
20 / 1	(日) (間) (注) (注) 足 うへつ

Nebraska	Mixing Quantifiers Example I
Predicate Logic and Quantifiers CSE235	
	Express, in predicate logic, the statement that there are an infinite number of integers.
	Let $P(x,y)$ be the statement that $x < y$. Let the universe of discourse be the integers, \mathbb{Z} .
	Then the statement can be expressed by the following.
	$\forall x \exists y P(x,y)$
20 / 1	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日



Notes



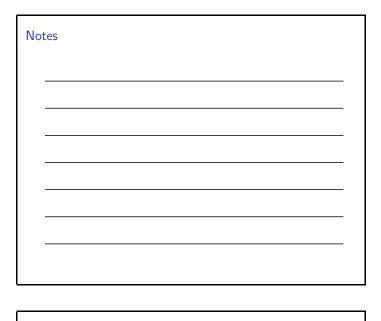
_

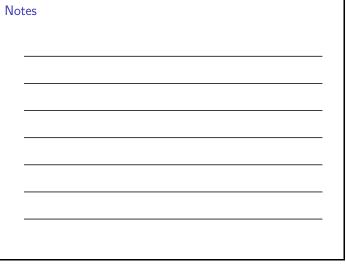
Nebraska	Mixing Quantifiers Example II: More Mathematical Statements
Predicate Logic and Quantifiers CSE235	Express the <i>commutative law of addition</i> for \mathbb{R} .
21/1	1日:1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、1

Notes			
			_
			_
			 _
			_

Nebraska	Mixing Quantifiers Example II: More Mathematical Statements
Predicate Logic and Quantifiers	
CSE235	Express the <i>commutative law of addition</i> for \mathbb{R} .
	We want to express that for every pair of reals, x, y the following identity holds:
	x + y = y + x
21 / 1	- 日 - (四) - (三) - (三) - () - () - () - () - () -

Nebřaska	Mixing Quantifiers Example II: More Mathematical Statements
Predicate Logic and Quantifiers	
CSE235	Express the <i>commutative law of addition</i> for \mathbb{R} .
	We want to express that for every pair of reals, x, y the following identity holds:
	x + y = y + x
	Then we have the following:
	$\forall x \forall y (x + y = y + x)$
21 / 1	(日) (日) (日) (日) (日)

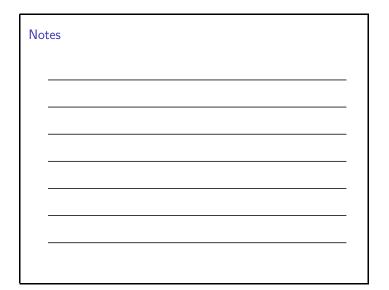


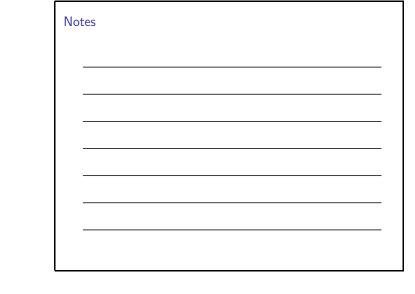


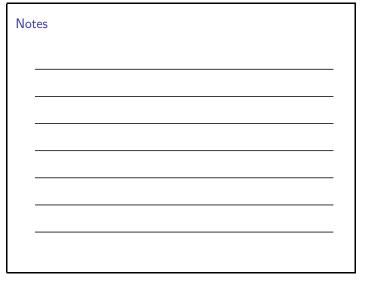
Nebraska Lincoln	Mixing Quantifiers Example II: More Mathematical Statements Continued
Predicate Logic and Quantifiers CSE235	Express the <i>multiplicative inverse law</i> for (nonzero) rationals $\mathbb{Q} \setminus \{0\}$.
22 / 1	・ロ・・(型・・/ ボ・・ボ・ かくの)

Nebraska	Mixing Quantifiers Example II: More Mathematical Statements Continued
Predicate Logic and Quantifiers CSE235	Express the multiplicative inverse law for (nonzero) rationals $\mathbb{Q} \setminus \{0\}$. We want to express that for every real number x , there exists a real number y such that $xy = 1$.
22 / 1	<ロ> <台> <さ> <さ> <さ> <さ> <さ> <さ

Nebraska	Mixing Quantifiers Example II: More Mathematical Statements Continued
Predicate Logic and Quantifiers	
CSE235	Express the multiplicative inverse law for (nonzero) rationals $\mathbb{Q} \setminus \{0\}.$
	We want to express that for every real number x , there exists a real number y such that $xy = 1$.
	Then we have the following:
	$\forall x \exists y (xy = 1)$
22 / 1	<ロ> (日)



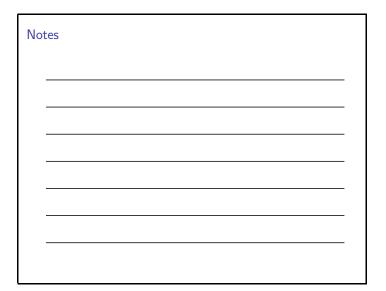


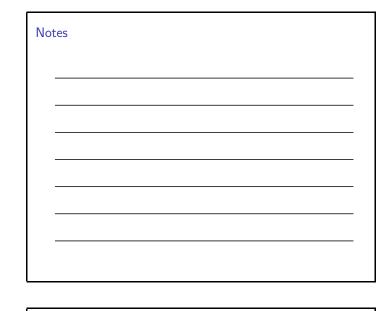


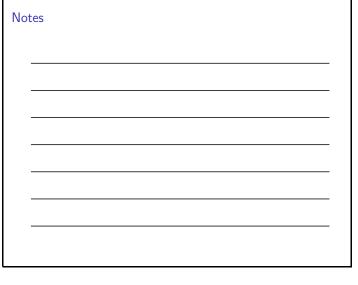
Nebraska Lincoln	Mixing Quantifiers Example II: False Mathematical Statements
Predicate Logic and Quantifiers CSE235	Is commutativity for subtraction valid over the reals?
23/1	<□><₫><≥><≥><≥>

Nebraska	Mixing Quantifiers Example II: False Mathematical Statements
Predicate Logic and Quantifiers CSE235	
	Is commutativity for subtraction valid over the reals?
	That is, for all pairs of real numbers x, y does the identity $x - y = y - x$ hold? Express this using quantifiers.
23 / 1	(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三

Nebraska	Mixing Quantifiers Example II: False Mathematical Statements
Predicate Logic and Quantifiers CSE235	
	Is commutativity for subtraction valid over the reals?
	That is, for all pairs of real numbers x, y does the identity $x - y = y - x$ hold? Express this using quantifiers.
	The expression is
	$\forall x \forall y (x - y = y - x)$
23 / 1	<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日> <日



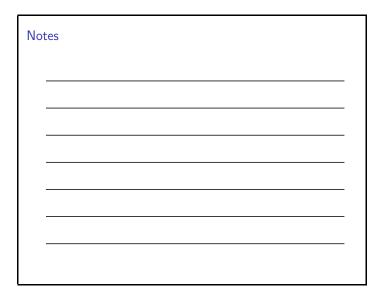


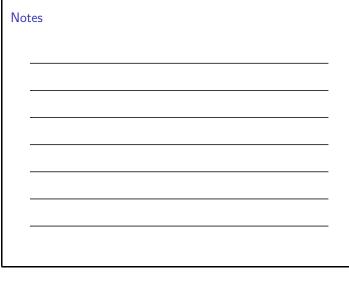


Nebraska	Mixing Quantifiers Example II: False Mathematical Statements Continued
Predicate Logic and Quantifiers CSE235	Is there a multiplicative inverse law over the nonzero integers?
24 / 1	・ロト (雪)・(芝)・(芝) 芝 うのの

Nebraska	Mixing Quantifiers Example II: False Mathematical Statements Continued
Predicate Logic and Quantifiers CSE235	
	Is there a multiplicative inverse law over the nonzero integers?
	That is, for every integer x does there exists a y such that $xy=1?$

Nebraska Lincoln	Mixing Quantifiers Example II: False Mathematical Statements Continued
Predicate Logic and Quantifiers CSE235	
	Is there a multiplicative inverse law over the nonzero integers?
	That is, for every integer x does there exists a y such that $xy = 1$?
	This is false, since we can find a <i>counter example</i> . Take any integer, say 5 and multiply it with another integer, y . If the statement held, then $5 = 1/y$, but for any (nonzero) integer y , $ 1/y \le 1$.
24/1	·ロ・・(D)・・ミ・・ミ・ ミーク(()

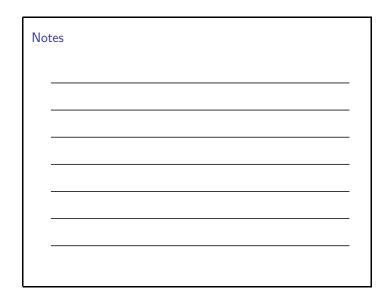


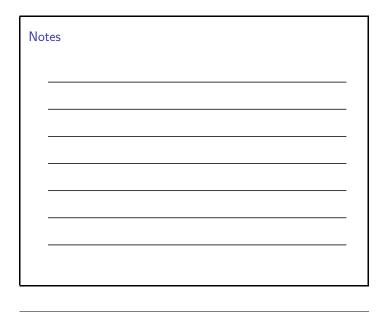


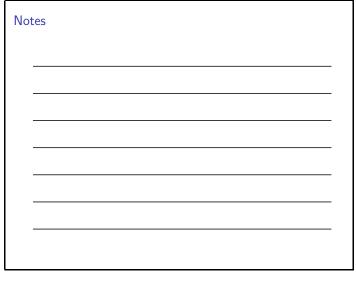
Nebřaška _{Lincoln}	Mixing Quantifiers Exercise
Predicate Logic and Quantifiers CSE235	Express the statement "there is a number x such that when it is added to any number, the result is that number, and if it is multiplied by any number, the result is x" as a logical expression. Solution:
25 / 1	・ロン・(型)・(ミン・(差)、 多 うく(で

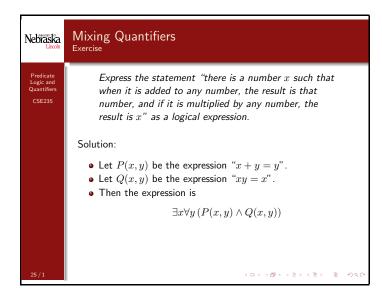
Nebraska	Mixing Quantifiers Exercise
Predicate Logic and Quantifiers CSE235	Express the statement "there is a number x such that when it is added to any number, the result is that number, and if it is multiplied by any number, the result is x " as a logical expression.
	Solution: • Let $P(x,y)$ be the expression " $x + y = y$ ".
25 / 1	(ロ) (月) (注) (注) え、うへの

Nebraska	Mixing Quantifiers Exercise
Predicate Logic and Quantifiers CSE235	Express the statement "there is a number x such that when it is added to any number, the result is that number, and if it is multiplied by any number, the result is x'' as a logical expression.
	Solution: • Let $P(x, y)$ be the expression " $x + y = y$ ". • Let $Q(x, y)$ be the expression " $xy = x$ ".
25 / 1	- ロト - (日ト - (言) - (言) - 言) - うく(で









Nebraska	Mixing Quantifiers Exercise
Predicate Logic and Quantifiers CSE235	Express the statement "there is a number x such that when it is added to any number, the result is that number, and if it is multiplied by any number, the result is x^n as a logical expression.
	Solution:
	 Let P(x, y) be the expression "x + y = y". Let Q(x, y) be the expression "xy = x". Then the expression is
	$\exists x \forall y \left(P(x,y) \land Q(x,y) \right)$
	 Over what universe(s) of discourse does this statement hold?
25 / 1	<ロ> <合>、(2)、(2)、(2)、(2)、(2)、(2)、(2)、(2)、(2)、(2)

Nebraska Lixon Mixing Quantifiers

Express the statement "there is a number x such that when it is added to any number, the result is that number, and if it is multiplied by any number, the result is x" as a logical expression.

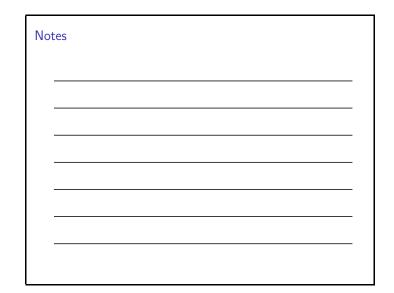
Solution:

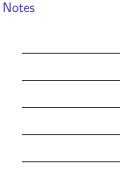
Predicate Logic and Quantifiers

- Let P(x,y) be the expression "x + y = y".
- Let Q(x,y) be the expression "xy = x".
- Then the expression is

 $\exists x \forall y \left(P(x,y) \land Q(x,y) \right)$

- $\bullet\,$ Over what universe(s) of discourse does this statement hold?
- This is the *additive identity law* and holds for $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}$ but does not hold for \mathbb{Z}^+ .

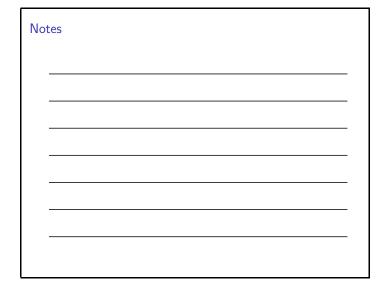


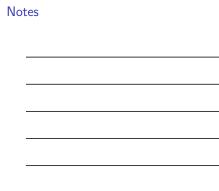


Nebraska Lincoln	Binding Variables I
Predicate Logic and Quantifiers CSE235	When a quantifier is used on a variable x , we say that x is <i>bound</i> . If no quantifier is used on a variable in a predicate statement, it is called <i>free</i> .
	Example In the expression $\exists x \forall y P(x, y)$ both x and y are bound. In the expression $\forall x P(x, y), x$ is bound, but y is free.
	A statement is called a <i>well-formed formula</i> , when all variables are properly quantified.
26 / 1	(日) (月) (注) (注) 注) (2) (2)

Nebraska	Binding Variables II
Predicate Logic and Quantifiers CSE235	
C3E235	The set of all variables bound by a common quantifier is the <i>scope</i> of that quantifier.
	Example In the expression $\exists x, y \forall z P(x, y, z, c)$ the scope of the existential quantifier is $\{x, y\}$, the scope of the universal quantifier is just z and c has no scope since it is free.
27 / 1	<ロ> <巻> <き> <き> <き) <き) <き) <き) <

Nebraska	Negation
Predicate Logic and Quantifiers CSE235	Just as we can use negation with propositions, we can use them with quantified expressions. Lemma
	Let $P(x)$ be a predicate. Then the following hold.
	$\neg \forall x P(x) \equiv \exists x \neg P(x)$
	$\neg \exists x P(x) \equiv \forall x \neg P(x)$
	This is essentially a quantified version of De Morgan's Law (in fact if the universe of discourse is finite, it is <i>exactly</i> De Morgan's law).
28 / 1	ふしん きょくきょくぎょくしょ





Nebraska Lincoln	Negation Truth Values
Predicate Logic and Quantifiers CSE235	
	Statement True When False When
	$ \begin{array}{ c c c c c } \hline \neg \exists x P(x) \equiv & \mbox{For every } x, \ P(x) \ \mbox{is} & \mbox{There is an } x \ \mbox{for} \\ \forall x \neg P(x) & \mbox{false.} & \mbox{which } P(x) \ \mbox{is true.} \end{array} $
	$ \begin{array}{c c} \neg \forall x P(x) \equiv & \text{There is an } x \text{ for } P(x) \text{ is true for every} \\ \exists x \neg P(x) & \text{which } P(x) \text{ is false.} & x. \end{array} $
	Table: Truth Values of Negated Quantifiers
29 / 1	(ロ) (問) (注) (注) 差 の(の

Nebraska	Prolog
Predicate Logic and Quantifiers CSE235	Prolog (Programming in Logic) is a programming language based on (a restricted form of) Predicate Calculus. It was developped by the logicians of the artificial intelligence community for symbolic reasoning.
30/1	 Prolog allows the user to express facts and rules Facts are proposational functions: student(juana), enrolled(juana,cse235), instructor(patel,cse235), etc. Rules are implications with conjunctions: teaches(X,Y) :- instructor(X,Z), enrolled(Y,Z) Prolog answers queries such as: ?enrolled(juana,cse478) ?enrolled(X,cse478) ?teaches(X,juana) by binding variables and doing theorem proving (i.e., applying inference rules) as we will see in Section 1.5.

Nebraska English into Logic

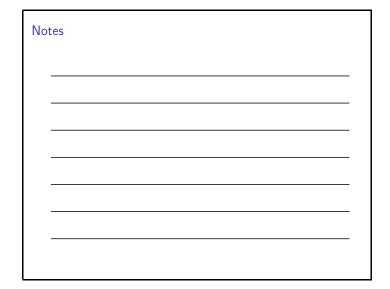
Predicate Logic and Quantifiers

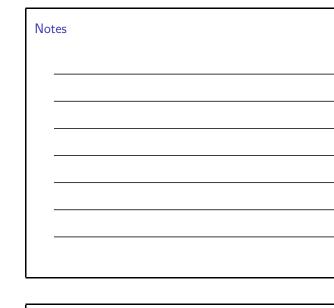
Logic is more precise than English.

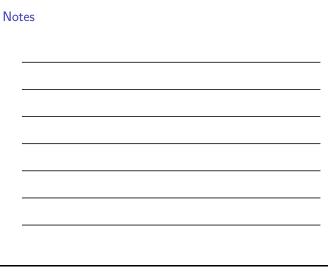
Transcribing English to Logic and vice versa can be tricky.

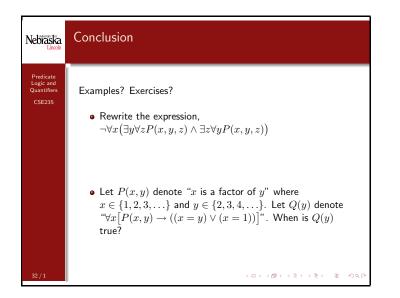
When writing statements with quantifiers, *usually* the correct meaning is conveyed with the following combinations:

- Use \forall with \Rightarrow Example: $\forall xLion(x) \Rightarrow Fierce(x)$ $\forall xLion(x) \land Fierce(x)$ means "everyone is a lion and everyone is fierce"
- Use \exists with \land Example: $\exists xLion(x) \land Drinks(x, coffee)$: holds when you have at least one lion that drinks coffee $\exists xLion(x) \Rightarrow Drinks(x, coffee)$ holds when you have people even though no lion drinks coffee.









Nebraska	Conclusion
Predicate Logic and Quantifiers CSE235	Examples? Exercises? • Rewrite the expression, $\neg \forall x (\exists y \forall z P(x, y, z) \land \exists z \forall y P(x, y, z))$ • Answer: Use the negated quantifiers and De Morgan's law. $\exists x (\forall y \exists z \neg P(x, y, z) \lor \forall z \exists y \neg P(x, y, z))$ • Let $P(x, y)$ denote "x is a factor of y" where $x \in \{1, 2, 3,\}$ and $y \in \{2, 3, 4,\}$. Let $Q(y)$ denote " $\forall x [P(x, y) \rightarrow ((x = y) \lor (x = 1))]$ ". When is $Q(y)$ true?
32 / 1	(日)

