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Introduction I

When talking about division over the integers, we mean
division with no remainder.

Definition

Let a, b ∈ Z, a 6= 0, we say that a divides b if there exists c ∈ Z
such that b = ac. We denote this, a | b and a - b when a does
not divide b. When a | b, we say a is a factor of b.

Theorem

Let a, b, c ∈ Z then

1 If a | b and a | c then a | (b + c).
2 If a | b, then a | bc for all c ∈ Z.

3 If a | b and b | c, then a | c.
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Introduction II

Corollary

If a, b, c ∈ Z such that a | b and a | c then a | mb + nc for
n, m ∈ Z.

3 / 30



Number
Theory

CSE235

Division

Primes

Division

Modular
Arithmetic

Division Algorithm I

Let a be an integer and d be a positive integer. Then there are
unique integers q and r, with:

0 ≤ r ≤ d

such that a = dq + r

Not really an algorithm (traditional name). Further:

a is called the divident

d is called the divisor

q is called the quotient

r is called the remainder, and is positive.
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Primes I

Definition

A positive integer p > 1 is called prime if its only positive
factors are 1 and p.
If a positive integer is not prime, it is called composite.
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Primes II

Theorem (Fundamental Theorem of Arithmetic, FTA)

Every positive integer n > 1 can be written uniquely as a prime
or as the product of the powers of two or more primes written
in nondecreasing size.

That is, for every n ∈ Z, n > 1, can be written as

n = p1
k1p2

k2 · · · pl
kl

where each pi is a prime and each ki ≥ 1 is a positive integer.
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Sieve of Eratosthenes
Preliminaries

Given a positive integer, n > 1, how can we determine if n is
prime or not?

For hundreds of years, people have developed various tests and
algorithms for primality testing. We’ll look at the oldest (and
most inefficient) of these.

Lemma

If n is a composite integer, then n has a prime divisor x ≤
√

n.
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Sieve of Eratosthenes
Preliminaries

Proof.

Let n be a composite integer.

By definition, n has a prime divisor a with 1 < a < n, thus
n = ab.

Its easy to see that either a ≤
√

n or b ≤
√

n. Otherwise,
if on the contrary, a >

√
n and b >

√
n, then

ab >
√

n
√

n = n

Finally, either a or b is prime divisor or has a factor that is
a prime divisor by the Fundamental Theorem of
Arithmetic, thus n has a prime divisor x ≤

√
n.
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Sieve of Eratosthenes
Algorithm

This result gives us an obvious algorithm. To determine if a
number n is prime, we simple must test every prime number p
with 2 ≤ p ≤

√
n.

Sieve

Input : A positive integer n ≥ 4.

Output : true if n is prime.

foreach prime number p, 2 ≤ p ≤
√

n do1
if p | n then2

output false3

end4

end5

output true6

Can be improved by reducing the upper bound to
√

n
p at each

iteration.9 / 30
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Sieve of Eratosthenes
Efficiency?

This procedure, called the Sieve of Eratosthenes, is quite old,
but works.

In addition, it is very inefficient. At first glance, this may seem
counter intuitive.

The outer for-loop runs for every prime p ≤
√

n.

Assume that we get such a list for free. The loop still
executes about √

n

ln
√

n

times (see distribution of primes: next topic, also Theorem
4, page 213).

Assume also that division is our elementary operation.

Then the algorithm is O(
√

n).
However, what is the actual input size?
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Sieve of Eratosthenes
Efficiency?

Recall that it is log (n). Thus, the algorithm runs in
exponential time with respect to the input size.

To see this, let k = log (n)
Then 2k = n and so

√
n =

√
2k = 2k/2

Thus the Sieve is exponential in the input size k.

The Sieve also gives an algorithm for determining the prime
factorization of an integer. To date, no one has been able to
produce an algorithm that runs in sub-exponential time. The
hardness of this problem is the basis of public-key cryptography.
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Sieve of Eratosthenes I
Primality Testing

Numerous algorithms for primality testing have been developed
over the last 50 years.

In 2002, three Indian computer scientists developed the first
deterministic polynomial-time algorithm for primality testing,
running in time O(log12 (n)).

M. Agrawal and N. Kayal and N. Saxena. Primes is in P.
Annals of Mathematics, 160(2):781-793, 2004.

Available at http://projecteuclid.org/Dienst/UI/1.0/
Summarize/euclid.annm/1111770735
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How Many Primes?

How many primes are there?

Theorem

There are infinitely many prime numbers.

The proof is a simple proof by contradiction.
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How Many Primes?
Proof

Proof.

Assume to the contrary that there are a finite number of
primes, p1, p2, . . . , pn.

Let
Q = p1p2 · · · pn + 1

By the FTA, Q is either prime (in which case we are done)
or Q can be written as the product of two or more primes.

Thus, one of the primes pj (1 ≤ j ≤ n) must divide Q,
but then if pj | Q, it must be the case that

pj | Q− p1p2 · · · pn = 1

Since this is not possible, we’ve reached a
contradiction—there are not finitely many primes.
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Distribution of Prime Numbers

Theorem

The ratio of the number of prime numbers not exceeding n and
n

ln n approaches 1 as n →∞.

In other words, for a fixed natural number, n, the number of
primes not greater than n is about

n

lnn
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Mersenne Primes I

A Mersenne prime is a prime number of the form

2k − 1

where k is a positive integer. They are related to perfect
numbers (if Mn is a Mersenne prime, Mn(Mn+1)

2 is perfect).

Perfect numbers are numbers that are equal to the sum of their
proper factors, for example 6 = 1 · 2 · 3 = 1 + 2 + 3 is perfect.

16 / 30



Number
Theory

CSE235

Division

Primes

Sieve

Distribution

Interesting Items

Division

Modular
Arithmetic

Mersenne Primes II

It is an open question as to whether or not there exist odd
perfect numbers. It is also an open question whether or not
there exist an infinite number of Mersenne primes.

Such primes are useful in testing suites (i.e., benchmarks) for
large super computers.

To date, 42 Mersenne primes have been found. The last was
found on February 18th, 2005 and contains 7,816,230 digits.
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Division

Theorem (The Division “Algorithm”)

Let a ∈ Z and d ∈ Z+ then there exists unique integers q, r
with 0 ≤ r < d such that

a = dq + r

Some terminology:

d is called the divisor.
a is called the dividend.
q is called the quotient.
r is called the remainder.

We use the following notation:

q = a div d
r = a mod d
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Greatest Common Divisor I

Definition

Let a and b be integers not both zero. The largest integer d
such that d | a and d | b is called the greatest common divisor
of a and b. It is denoted

gcd(a, b)

The gcd is always guaranteed to exist since the set of common
divisors is finite. Recall that 1 is a divisor of any integer. Also,
gcd(a, a) = a, thus

1 ≤ gcd(a, b) ≤ min{a, b}
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Greatest Common Divisor II

Definition

Two integers a, b are called relatively prime if

gcd(a, b) = 1

Sometimes, such integers are called coprime.

There is natural generalization to a set of integers.

Definition

Integers a1, a2, . . . , an are pairwise relatively prime if
gcd(ai, aj) = 1 for i 6= j.

20 / 30



Number
Theory

CSE235

Division

Primes

Division

gcd,lcm

Modular
Arithmetic

Greatest Common Divisor
Computing

The gcd can “easily”1 be found by finding the prime
factorization of two numbers.

Let

a = p1
a1p2

a2 · · · pn
an

b = p1
b1p2

b2 · · · pn
bn

Where each power is a nonnegative integer (if a prime is not a
divisor, then the power is 0).

Then the gcd is simply

gcd(a, b) = p
min{a1,b1}
1 p

min{a2,b2}
2 · · · pmin{an,bn}

n

1Easy conceptually, not computationally21 / 30
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Greatest Common Divisor
Examples

Example

What is the gcd(6600, 12740)?
The prime decompositions are

6600 = 23315270111130

12740 = 22305172110131

So we have

gcd(6600, 12740) = 2min{2,3}3min{0,1}5min{1,2}7min{0,2}

11min{0,1}13min{0,1}

= 22305170110130

= 20

22 / 30



Number
Theory

CSE235

Division

Primes

Division

gcd,lcm

Modular
Arithmetic

Least Common Multiple

Definition

The least common multiple of positive integers a, b is the
smallest positive integer that is divisible by both a and b. It is
denoted

lcm(a, b)

Again, the lcm has an “easy” method to compute. We still use
the prime decomposition, but use the max rather than the min
of powers.

lcm(a, b) = p
max{a1,b1}
1 p

max{a2,b2}
2 · · · pmax{an,bn}

n

23 / 30
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Least Common Multiple
Example

Example

What is the lcm(6600, 12740)?
Again, the prime decompositions are

6600 = 23315270111130

12740 = 22305172110131

So we have

lcm(6600, 12740) = 2max{2,3}3max{0,1}5max{1,2}7max{0,2}

11max{0,1}13max{0,1}

= 23315272111131

= 4, 204, 200
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Intimate Connection

There is a very close connection between the gcd and lcm.

Theorem

Let a, b ∈ Z+, then

ab = gcd(a, b) · lcm(a, b)

Proof?
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Properties

Inverses

Congruences
Definition

Often, rather than the quotient, we are only interested in the
remainder of a division operation. We introduced the notation
before, but we formally define it here.

Definition

Let a, b ∈ Z and m ∈ Z+. Then a is congruent to b modulo m
if m divides a− b. We use the notation

a ≡ b(mod m)

If the congruence does not hold, we write a 6≡ b(mod m)

26 / 30
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An equivalent characterization can be given as follows.

Theorem

Let m ∈ Z+. Then a ≡ b(mod m) if and only if there exists
q ∈ Z such that

a = qm + b

i.e. a quotient q.

Alert: a, b ∈ Z, i.e. can be negative or positive.
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Theorem

Let a, b ∈ Z,m ∈ Z+. Then,

a ≡ b(mod m) ⇐⇒ a mod m = b mod m

Theorem

Let m ∈ Z+. If a ≡ b(mod m) and c ≡ d(mod m) then

a + c ≡ b + d(mod m)

and
ac ≡ bd(mod m)
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Example

36 ≡ 1(mod 5) since the remainder of 36
5 is 1.

Similarly, −17 ≡ −1(mod 2), −17 ≡ 1(mod 2),
−17 ≡ 3(mod 2), etc.

However, we prefer to express congruences with
0 ≤ b < m.

64 ≡ 0(mod 2), 64 ≡ 1(mod 3), 64 ≡ 4(mod 5),
64 ≡ 4(mod 6), 64 ≡ 1(mod 7), etc.
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Inverses I

Definition

An inverse of an element x modulo m is an integer x−1 such
that

xx−1 ≡ 1(mod m)

Inverses do not always exist, take x = 5,m = 10 for example.

The following is a necessary and sufficient condition for an
inverse to exist.

Theorem

Let a and m be integers, m > 1. A (unique) inverse of a
modulo m exists if and only if a and m are relatively prime.
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