Number Theory

Slides by Christopher M. Bourke
Instructor: Berthe Y. Choueiry

Computer Science & Engineering 235
Introduction to Discrete Mathematics
Sections 3.4–3.6 of Rosen
cse235@cse.unl.edu

Introduction I

When talking about division over the integers, we mean division with no remainder.

Definition

Let $a, b, c \in \mathbb{Z}$ then

1. If $a \mid b$ and $a \mid c$ then $a \mid (b + c)$.
2. If $a \mid b$, then $a \mid bc$ for all $c \in \mathbb{Z}$.
3. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Corollary

If $a, b, c \in \mathbb{Z}$ such that $a \mid b$ and $a \mid c$ then $a \mid mb + nc$ for $n, m \in \mathbb{Z}$.

Introduction II

Let $a, b, c \in \mathbb{Z}$ then

1. If $a \mid b$ and $a \mid c$ then $a \mid (b + c)$.
2. If $a \mid b$, then $a \mid bc$ for all $c \in \mathbb{Z}$.
3. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Division Algorithm I

Let a be an integer and d be a positive integer. Then there are unique integers q and r, with:

- $0 \leq r < d$
- such that $a = dq + r$

Not really an algorithm (traditional name). Further:

- a is called the dividend
- d is called the divisor
- q is called the quotient
- r is called the remainder, and is positive.

Primes I

Definition

A positive integer $p > 1$ is called prime if its only positive factors are 1 and p.

If a positive integer is not prime, it is called composite.

Primes II

Theorem (Fundamental Theorem of Arithmetic, FTA)

Every positive integer $n > 1$ can be written uniquely as a prime or as the product of the powers of two or more primes written in nondecreasing size.

That is, for every $n \in \mathbb{Z}$, $n > 1$, can be written as

$$n = p_1^{k_1}p_2^{k_2} \cdots p_l^{k_l}$$

where each p_i is a prime and each $k_i \geq 1$ is a positive integer.
Sieve of Eratosthenes

Preliminaries

Given a positive integer, $n > 1$, how can we determine if n is prime or not?

For hundreds of years, people have developed various tests and algorithms for primality testing. We’ll look at the oldest (and most inefficient) of these.

Lemma

If n is a composite integer, then n has a prime divisor $x \leq \sqrt{n}$.

Proof.

Let n be a composite integer.

By definition, n has a prime divisor a with $1 < a < n$, thus $n = ab$.

It’s easy to see that either $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$. Otherwise, if on the contrary, $a > \sqrt{n}$ and $b > \sqrt{n}$, then $ab > \sqrt{n}\sqrt{n} = n$.

Finally, either a or b is prime divisor or has a factor that is a prime divisor by the Fundamental Theorem of Arithmetic, thus n has a prime divisor $x \leq \sqrt{n}$.

Sieve of Eratosthenes

Algorithm

This result gives us an obvious algorithm. To determine if a number n is prime, we simple must test every prime number p with $2 \leq p \leq \sqrt{n}$.

Input: A positive integer $n \geq 4$.
Output: true if n is prime.

1. foreach prime number p, $2 \leq p \leq \sqrt{n}$ do
2. if $p | n$ then
3. output false
4. end
5. end
6. output true

Can be improved by reducing the upper bound to $\sqrt{\frac{n}{\ln n}}$ at each iteration.

Sieve of Eratosthenes

Efficiency?

Recall that it is $\log(n)$. Thus, the algorithm runs in exponential time with respect to the input size.

To see this, let $k = \log(n)$

Then $2^k = n$ and so $\sqrt{n} = \sqrt{2^k} = 2^{k/2}$

Thus the Sieve is exponential in the input size k.

The Sieve also gives an algorithm for determining the prime factorization of an integer. To date, no one has been able to produce an algorithm that runs in sub-exponential time. The hardness of this problem is the basis of public-key cryptography.

Primality Testing

Numerous algorithms for primality testing have been developed over the last 50 years.

In 2002, three Indian computer scientists developed the first deterministic polynomial-time algorithm for primality testing, running in time $O(\log^{12}(n))$.

Available at http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.annm/1111770735

Sieve of Eratosthenes

Efficiency?

▶ The outer for-loop runs for every prime $p \leq \sqrt{n}$.
▶ Assume that we get such a list for free. The loop still executes about $\frac{\sqrt{n}}{\ln \sqrt{n}}$ times (see distribution of primes: next topic, also Theorem 4, page 213).
▶ Assume also that division is our elementary operation.
▶ Then the algorithm is $O(\sqrt{n})$.
▶ However, what is the actual input size?
How Many Primes?

How many primes are there?

Theorem

There are infinitely many prime numbers.

The proof is a simple proof by contradiction.

Distribution of Prime Numbers

Theorem

The ratio of the number of prime numbers not exceeding \(n \) and \(\frac{n}{\ln n} \) approaches 1 as \(n \to \infty \).

In other words, for a fixed natural number, \(n \), the number of primes not greater than \(n \) is about \(\frac{n}{\ln n} \).

Mersenne Primes I

A Mersenne prime is a prime number of the form

\[2^k - 1 \]

where \(k \) is a positive integer. They are related to perfect numbers (if \(M_k \) is a Mersenne prime, \(\frac{M_k(M_k + 1)}{2} \) is perfect).

Perfect numbers are numbers that are equal to the sum of their proper factors, for example 6 = 1 · 2 · 3 = 1 + 2 + 3 is perfect.

Mersenne Primes II

It is an open question as to whether or not there exist odd perfect numbers. It is also an open question whether or not there exist an infinite number of Mersenne primes.

Such primes are useful in testing suites (i.e., benchmarks) for large super computers.

To date, 42 Mersenne primes have been found. The last was found on February 18th, 2005 and contains 7,816,230 digits.

Division

Theorem (The Division "Algorithm")

Let \(a \in \mathbb{Z} \) and \(d \in \mathbb{Z}^+ \) then there exists unique integers \(q, r \) with \(0 \leq r < d \) such that

\[a = dq + r \]

Some terminology:

\(d \) is called the divisor.
\(a \) is called the dividend.
\(q \) is called the quotient.
\(r \) is called the remainder.

We use the following notation:

\[q = a \div d \]
\[r = a \mod d \]
Greatest Common Divisor

Definition

Let \(a \) and \(b \) be integers not both zero. The largest integer \(d \) such that \(d | a \) and \(d | b \) is called the greatest common divisor of \(a \) and \(b \). It is denoted \(\gcd(a, b) \).

The \(\gcd \) is always guaranteed to exist since the set of common divisors is finite. Recall that 1 is a divisor of any integer. Also, \(\gcd(a, a) = a \), thus \[1 \leq \gcd(a, b) \leq \min\{a, b\} \]

Computing

The \(\gcd \) can “easily” be found by finding the prime factorization of two numbers.

Let
\[
\begin{align*}
a &= p_1^{a_1}p_2^{a_2} \cdots p_n^{a_n} \\
b &= p_1^{b_1}p_2^{b_2} \cdots p_n^{b_n}
\end{align*}
\]

Where each power is a nonnegative integer (if a prime is not a divisor, then the power is 0).

Then the \(\gcd \) is simply
\[
\gcd(a, b) = p_1^{a_1 \wedge b_1}p_2^{a_2 \wedge b_2} \cdots p_n^{a_n \wedge b_n}
\]

1Easy conceptually, not computationally

Examples

Example

What is the \(\gcd(6600, 12740) \)?

The prime decompositions are
\[
\begin{align*}
6600 &= 2^33^15^27^111^13^0 \\
12740 &= 2^23^05^17^211^113^1
\end{align*}
\]

So we have
\[
\gcd(6600, 12740) = 2^{\min\{2,3\}}3^{\min\{0,1\}}5^{\min\{1,2\}}7^{\min\{0,2\}}11^{\min\{0,1\}}13^{\min\{0,0\}} = 20
\]

Least Common Multiple

Definition

The least common multiple of positive integers \(a, b \) is the smallest positive integer that is divisible by both \(a \) and \(b \). It is denoted \(\text{lcm}(a, b) \).

Again, the \(\text{lcm} \) has an “easy” method to compute. We still use the prime decomposition, but use the \(\max \) rather than the \(\min \) of powers.
\[
\text{lcm}(a, b) = p_1^{a_1 \wedge b_1}p_2^{a_2 \wedge b_2} \cdots p_n^{a_n \wedge b_n}
\]

Examples

Example

What is the \(\text{lcm}(6600, 12740) \)?

Again, the prime decompositions are
\[
\begin{align*}
6600 &= 2^33^15^27^111^13^0 \\
12740 &= 2^23^05^17^211^113^1
\end{align*}
\]

So we have
\[
\text{lcm}(6600, 12740) = 2^{\max\{2,3\}}3^{\max\{0,1\}}5^{\max\{1,2\}}7^{\max\{0,2\}}11^{\max\{0,1\}}13^{\max\{0,0\}} = 4,204,200
\]
Intimate Connection

There is a very close connection between the gcd and lcm.

Theorem

Let \(a, b \in \mathbb{Z}^+ \), then

\[
ab = \gcd(a, b) \cdot \lcm(a, b)
\]

Proof?

Congruences

Definition

Often, rather than the quotient, we are only interested in the remainder of a division operation. We introduced the notation before, but we formally define it here.

Definition

Let \(a, b \in \mathbb{Z} \) and \(m \in \mathbb{Z}^+ \). Then \(a \) is congruent to \(b \) modulo \(m \) if \(m \) divides \(a - b \). We use the notation

\[
a \equiv b \pmod{m}
\]

If the congruence does not hold, we write \(a \not\equiv b \pmod{m} \)

Congruences

Another Characterization

An equivalent characterization can be given as follows.

Theorem

Let \(m \in \mathbb{Z}^+ \). Then \(a \equiv b \pmod{m} \) if and only if there exists \(q \in \mathbb{Z} \) such that

\[
a = qm + b
\]

i.e. a quotient \(q \).

Alert: \(a, b \in \mathbb{Z} \), i.e. can be negative or positive.

Modular Arithmetic

Example

Example

- \(36 \equiv 1 \pmod{5} \) since the remainder of \(\frac{36}{5} \) is 1.
- Similarly, \(-17 \equiv -1 \pmod{2} \), \(-17 \equiv 1 \pmod{2} \), \(-17 \equiv 3 \pmod{2} \), etc.
- However, we prefer to express congruences with \(0 \leq b < m \).
- \(64 \equiv 0 \pmod{2} \), \(64 \equiv 1 \pmod{3} \), \(64 \equiv 4 \pmod{5} \), \(64 \equiv 4 \pmod{6} \), \(64 \equiv 1 \pmod{7} \), etc.

Inverses I

Definition

An inverse of an element \(x \) modulo \(m \) is an integer \(x^{-1} \) such that

\[
x x^{-1} \equiv 1 \pmod{m}
\]

Inverses do not always exist, take \(x = 5, m = 10 \) for example.

The following is a necessary and sufficient condition for an inverse to exist.

Theorem

Let \(a \) and \(m \) be integers, \(m > 1 \). A (unique) inverse of \(a \) modulo \(m \) exists if and only if \(a \) and \(m \) are relatively prime.