Master Theorem

Slides by Christopher M. Bourke
Instructor: Berthe Y. Choueiry

Fall 2007

Computer Science & Engineering 235
Introduction to Discrete Mathematics
Section 7.3 of Rosen

cse235@cse.unl.edu
When analyzing algorithms, recall that we only care about the \textit{asymptotic behavior}.

Recursive algorithms are no different. Rather than \textit{solve} exactly the recurrence relation associated with the cost of an algorithm, it is enough to give an asymptotic characterization.

The main tool for doing this is the \textit{master theorem}.

Master Theorem

CSE235

Introduction

Pitfalls

Examples

4th Condition
Theorem (Master Theorem)

Let \(T(n) \) be a monotonically increasing function that satisfies

\[
T(n) = aT\left(\frac{n}{b}\right) + f(n)
\]

\[T(1) = c \]

where \(a \geq 1, b \geq 2, c > 0 \). If \(f(n) \in \Theta(n^d) \) where \(d \geq 0 \), then

\[
T(n) = \begin{cases}
\Theta(n^d) & \text{if } a < b^d \\
\Theta(n^d \log n) & \text{if } a = b^d \\
\Theta(n^{\log_b a}) & \text{if } a > b^d
\end{cases}
\]
You *cannot* use the Master Theorem if

- $T(n)$ is not monotone, ex: $T(n) = \sin n$
- $f(n)$ is not a polynomial, ex: $T(n) = 2T(\frac{n}{2}) + 2^n$
- b cannot be expressed as a constant, ex: $T(n) = T(\sqrt{n})$

Note here, that the Master Theorem does *not* solve a recurrence relation.

Does the base case remain a concern?
Master Theorem
Example 1

Let $T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$. What are the parameters?

$$a =$$

$$b =$$

$$d =$$

Therefore which condition?
Master Theorem

Example 1

Let $T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$. What are the parameters?

- $a = 1$
- $b = $
- $d = $

Therefore which condition?
Let \(T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n \). What are the parameters?

\[
\begin{align*}
 a &= 1 \\
 b &= 2 \\
 d &= \\
\end{align*}
\]

Therefore which condition?
Master Theorem

Example 1

Let \(T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n \). What are the parameters?

\[
\begin{align*}
 a &= 1 \\
 b &= 2 \\
 d &= 2
\end{align*}
\]

Therefore which condition?
Let $T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$. What are the parameters?

$$
\begin{align*}
 a &= 1 \\
 b &= 2 \\
 d &= 2
\end{align*}
$$

Therefore which condition?

Since $1 < 2^2$, case 1 applies.
Master Theorem
Example 1

Let \(T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n \). What are the parameters?

\[
\begin{align*}
 a &= 1 \\
 b &= 2 \\
 d &= 2
\end{align*}
\]

Therefore which condition?

Since \(1 < 2^2 \), case 1 applies.

Thus we conclude that

\[T(n) \in \Theta(n^d) = \Theta(n^2) \]
Master Theorem
Example 2

Let \(T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42 \). What are the parameters?

\[
\begin{align*}
 a &= \\
 b &= \\
 d &= \\
\end{align*}
\]

Therefore which condition?
Master Theorem

Example 2

Let \(T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42 \). What are the parameters?

\[
\begin{align*}
a &= 2 \\
b &= \\
d &=
\end{align*}
\]

Therefore which condition?
Master Theorem
Example 2

Let $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42$. What are the parameters?

\[a = 2 \]
\[b = 4 \]
\[d = \]

Therefore which condition?
Let $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42$. What are the parameters?

$a = 2$

$b = 4$

$d = \frac{1}{2}$

Therefore which condition?
Let $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42$. What are the parameters?

\[
\begin{align*}
 a &= 2 \\
 b &= 4 \\
 d &= \frac{1}{2}
\end{align*}
\]

Therefore which condition?

Since $2 = 4^{\frac{1}{2}}$, case 2 applies.
Let $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 42$. What are the parameters?

- $a = 2$
- $b = 4$
- $d = \frac{1}{2}$

Therefore which condition?

Since $2 = 4^{\frac{1}{2}}$, case 2 applies.

Thus we conclude that

$$T(n) \in \Theta(n^d \log n) = \Theta(\sqrt{n} \log n)$$
Master Theorem
Example 3

Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

\[a = \quad b = \quad d = \]

Therefore which condition?

Note that $\log_{2}3 \approx 1.5849$. Can we say that $T(n) \in \Theta(n^{1.5849})$?
Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

- $a = 3$
- $b = $
- $d = $

Therefore which condition?
Master Theorem
Example 3

Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

$a = 3$

$b = 2$

$d =$

Therefore which condition?
Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

\begin{align*}
a &= 3 \\
b &= 2 \\
d &= 1
\end{align*}

Therefore which condition?
Master Theorem
Example 3

Let \(T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1 \). What are the parameters?

\[
\begin{align*}
 a &= 3 \\
 b &= 2 \\
 d &= 1
\end{align*}
\]

Therefore which condition?

Since \(3 > 2^1 \), case 3 applies.
Let \(T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1 \). What are the parameters?

\[
\begin{align*}
 a &= 3 \\
 b &= 2 \\
 d &= 1
\end{align*}
\]

Therefore which condition?

Since \(3 > 2^1 \), case 3 applies. Thus we conclude that

\[
T(n) \in \Theta(n^{\log_b a}) = \Theta(n^{\log_2 3})
\]
Let $T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$. What are the parameters?

$$a = 3$$
$$b = 2$$
$$d = 1$$

Therefore which condition?

Since $3 > 2^1$, case 3 applies. Thus we conclude that

$$T(n) \in \Theta(n^{\log_b a}) = \Theta(n^{\log_2 3})$$

Note that $\log_2 3 \approx 1.5849$ Can we say that $T(n) \in \Theta(n^{1.5849})$?
Recall that we cannot use the Master Theorem if $f(n)$ (the non-recursive cost) is not polynomial.

There is a limited 4-th condition of the Master Theorem that allows us to consider polylogarithmic functions.

Corollary

If $f(n) \in \Theta(n^{\log_b a \log^k n})$ for some $k \geq 0$ then

$$T(n) \in \Theta(n^{\log_b a \log^{k+1} n})$$

This final condition is fairly limited and we present it merely for completeness.
“Fourth” Condition
Example

Say that we have the following recurrence relation:

\[T(n) = 2T\left(\frac{n}{2}\right) + n \log n \]

Clearly, \(a = 2 \), \(b = 2 \) but \(f(n) \) is not a polynomial. However, \(f(n) \in \Theta(n \log n) \) for \(k = 1 \), therefore, by the 4-th case of the Master Theorem we can say that

\[T(n) \in \Theta(n \log^2 n) \]