
Introduction to Logic

Slides by Christopher M. Bourke
Instructor: Berthe Y. Choueiry

Fall 2007

Computer Science & Engineering 235
Introduction to Discrete Mathematics

Sections 1.1-1.2 of Rosen
cse235@cse.unl.edu

Notes

Introduction I

Propositional calculus (or logic) is the study of the logical
relationship between objects called propositions and forms the
basis of all mathematical reasoning and all automated reasoning.

Definition

A proposition is a statement that is either true or false, but not
both (we usually denote a proposition by letters; p, q, r, s, . . .).

Notes

Introduction II

Definition

The value of a proposition is called its truth value; denoted by T or
1 if it is true and F or 0 if it is false.

Opinions, interrogative and imperative sentences are not
propositions.

Truth table:

p

0

1

Notes



Examples I

Example (Propositions)

I Today is Monday.

I The derivative of sinx is cos x.

I Every even number has at least two factors.

Example (Not Propositions)

I C++ is the best language.

I When is the pretest?

I Do your homework.

Notes

Examples II

Example (Propositions?)

I 2 + 2 = 5
I Every integer is divisible by 12.

I Microsoft is an excellent company.

Notes

Logical Connectives

Connectives are used to create a compound proposition from two
or more other propositions.

I Negation (denoted ¬ or !)

I And (denoted ∧) or Logical Conjunction

I Or (denoted ∨) or Logical Disjunction

I Exclusive Or (XOR, denoted ⊕)

I Implication (denoted →)

I Biconditional; “if and only if” (denoted ↔)

Notes



Negation

A proposition can be negated. This is also a proposition. We
usually denote the negation of a proposition p by ¬p.

Example (Negated Propositions)

I Today is not Monday.

I It is not the case that today is Monday.

I It is not the case that the derivative of sinx is cos x.

Truth table:

p ¬p

0 1

1 0

Notes

Logical And
The logical connective And is true only if both of the propositions
are true. It is also referred to as a conjunction.

Example (Logical Connective: And)

I It is raining and it is warm.

I (2 + 3 = 5) ∧ (
√

2 < 2)
I Schrödinger’s cat is dead and Schrödinger’s cat is not dead.

Truth table:

p q p ∧ q

0 0 0
0 1 0
1 0 0
1 1 1

Notes

Logical Or
The logical disjunction (or logical or) is true if one or both of the
propositions are true.

Example (Logical Connective: Or)

I It is raining or it is the second day of lecture.

I (2 + 2 = 5) ∨ (
√

2 < 2)
I You may have cake or ice cream.1

Truth table: p q p ∧ q p ∨ q

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

1Can I have both?

Notes



Exclusive Or
The exclusive or of two propositions is true when exactly one of its
propositions is true and the other one is false.

Example (Logical Connective: Exclusive Or)

I The circuit is either is on or off.

I Let ab < 0, then either a < 0 or b < 0 but not both.

I You may have cake or ice cream, but not both.

Truth table:

p q p⊕ q

0 0 0
0 1 1
1 0 1
1 1 0

Notes

Implications I

Definition

Let p and q be propositions. The implication

p→ q

is the proposition that is false when p is true and q is false and
true otherwise.

Here, p is called the “hypothesis” (or “antecedent” or “premise”)
and q is called the “conclusion” or “consequence”.

Truth table: p q p→ q

0 0 1
0 1 1
1 0 0
1 1 1

Notes

Implications II

The implication p→ q can be equivalently read as

I if p then q

I p implies q

I if p, q

I p only if q

I q if p

I q when p

I q whenever p

I p is a sufficient condition for q (p is sufficient for q)

I q is a necessary condition for p (q is necessary for p)

I q follows from p

Notes



Examples

Example

I If you buy your air ticket in advance, it is cheaper.

I If x is a real number, then x2 ≥ 0.

I If it rains, the grass gets wet.

I If the sprinklers operate, the grass gets wet.

I If 2 + 2 = 5 then all unicorns are pink.

Notes

Exercise

Which of the following implications is true?

I If −1 is a positive number, then 2 + 2 = 5.
true: the hypothesis is obviously false, thus no matter what
the conclusion, the implication holds.

I If −1 is a positive number, then 2 + 2 = 4.
true: for the same reason as above

I If sinx = 0 then x = 0.
false: x can be any multiple of π; i.e. if we let x = 2π then
clearly sinx = 0, but x 6= 0. The implication “if sinx = 0
then x = kπ for some integer k” is true.

Notes

Biconditional

Definition

The biconditional
p↔ q

is the proposition that is true when p and q have the same truth
values. It is false otherwise.

Note that it is equivalent to (p→ q) ∧ (q → p)

Truth table:

p q p→ q q → p p↔ q

0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 1 1 1

Notes



Examples

p↔ q can be equivalently read as

I p if and only if q

I p is necessary and sufficient for q

I if p then q, and conversely

I p iff q (Note typo in textbook, page 9, line 3.)

Example

I x > 0 if and only if x2 is positive.

I The alarm goes off iff a burglar breaks in.

I You may have pudding if and only if you eat your meat.

Notes

Exercise

Which of the following biconditionals is true?

I x2 + y2 = 0 if and only if x = 0 and y = 0
true: both implications hold.

I 2 + 2 = 4 if and only if
√

2 < 2
true: for the same reason above.

I x2 ≥ 0 if and only if x ≥ 0.
false: The converse holds. That is, “if x ≥ 0 then x2 ≥ 0”.
However, the implication is false; consider x = −1. Then the
hypothesis is true, (−1)2 = 12 ≥ 0 but the conclusion fails.

Notes

Converse, Contrapositive, Inverse

Consider the proposition p→ q:

I Its converse is the proposistion q → p.

I Its inverse is the proposistion ¬p→ ¬q.

I Its contrapositive is the proposistion ¬q → ¬p.

Notes



Truth Tables I

Truth Tables are used to show the relationship between the truth
values of individual propositions and the compound propositions
based on them.

p q p ∧ q p ∨ q p ⊕ q p→ q p↔ q

0 0 0 0 0 1 1
0 1 0 1 1 1 0
1 0 0 1 1 0 0
1 1 1 1 0 1 1

Table: Truth Table for Logical Conjunction, Disjunction, Exclusive Or,
and Implication

Notes

Constructing Truth Tables

Construct the Truth Table for the following compound proposition.

((p ∧ q) ∨ ¬q)

p q p ∧ q ¬q ((p ∧ q) ∨ ¬q)
0 0 0 1 1

0 1 0 0 0

1 0 0 1 1

1 1 1 0 1

Notes

Precedence of Logical Operators

Just as in arithmetic, an ordering must be imposed on the use of
logical operators in compound propositions.

Of course, parentheses can be used to make operators
disambiguous:

¬p ∨ q ∧ ¬r ≡ (¬p) ∨
(
q ∧ (¬r)

)
But to avoid using unnecessary parentheses, we define the
following precedences:

1. (¬) Negation

2. (∧) Conjunction

3. (∨) Disjunction

4. (→) Implication

5. (↔) Biconditional

Notes



Usefulness of Logic

Logic is more precise than natural language:

I You may have cake or ice cream.
Can I have both?

I If you buy your air ticket in advance, it is cheaper.
Are there or not cheap last-minute tickets?

For this reason, logic is used for hardware and software
specification.

Given a set of logic statements, one can decide whether or not they
are satisfiable (i.e., consistent), although this is a costly process...

Notes

Bitwise Operations
Computers represent information as bits (binary digits).

A bit string is a sequence of bits, the length of the string is the
number of bits in the string.

Logical connectives can be applied to bit strings (of equal length).
To do this, we simply apply the connective rules to each bit of the
string:

Example

0110 1010 1101
0101 0010 1111

0111 1010 1111 bitwise Or
0100 0010 1101 bitwise And
0011 1000 0010 bitwise Xor

A Boolean variable is a variable that can have value 0 or 1.

Notes

Logic in Theorerical Computer Science
SAT

What is SAT? SAT is the problem of determining whether or not
a sentence in propositional logic (PL) is satisfiable. Characterizing
SAT as an NP-complete problem is at the foundation of
Theoretical Computer Science.

Defining SAT

I Given: a PL sentence.

I Question: Determine whether it is satisfiable or not.

What is a PL sentence? What does satisfiable mean?

Notes



Logic in Theorerical Computer Science
A sentence in PL

I A sentence in PL is a conjunction of clauses

I A clause is a disjunction of literals

I A literal is a term or its negation

I A term is a (Boolean) variable (or proposition)

Example: (a ∨ b ∨ ¬c ∨ ¬d) ∧ (¬b ∨ c) ∧ (¬a ∨ c ∨ d)

A sentence in PL is a satisfiable iff we can assign truth value to the
Boolean variables such that the sentence evaluates to true (i.e.,
holds).

Notes

Logic in Programming
Programming Example I

Say you need to define a conditional statement as follows:
“Increment x if all of the following conditions hold: x > 0, x < 10
and x = 10.”

You may try:

if(0<x<10 OR x=10) x++;

But is not valid in C++ or Java. How can you modify this
statement by using a logical equivalence?

Answer:

if(x>0 AND x<=10) x++;

Notes

Logic In Programming
Programming Example II

Say we have the following loop:

while
((i<size AND A[i]>10) OR
(i<size AND A[i]<0) OR
(i<size AND (NOT (A[i]!= 0 AND NOT (A[i]>= 10)))))

Is this good code? Keep in mind:

I Readability.

I Extraneous code is inefficient and poor style.

I Complicated code is more prone to errors and difficult to
debug.

Solution?

Notes



Propositional Equivalences
Introduction

To manipulate a set of statements (here, logical propositions) for
the sake mathematical argumentation, an important step is to
replace one statement with another equivalent statement (i.e.,
with the same truth value).

Below, we discuss:

I Terminology

I Establising logical equivalences using truth tables

I Establising logical equivalences using known laws (of logical
equivalences)

Notes

Terminology
Tautologies, Contradictions, Contingencies

Definition

I A compound proposition that is always true, no matter what
the truth values of the propositions that occur in it is called a
tautology.

I A compound proposition that is always false is called a
contradiction.

I Finally, a proposition that is neither a tautology nor a
contradiction is called a contingency.

Example

A simple tautology is p ∨ ¬p

A simple contradiction is p ∧ ¬p

Notes

Logical Equivalences
Definition

Definition

Propositions p and q are logically equivalent if p↔ q is a tautology.

Informally, p and q are logically equivalent if whenever p is true, q
is true, and vice versa.

Notation p ≡ q (“p is equivalent to q”), p ⇐⇒ q, p⇔ q, p↔ q.

Alort: ≡ is not a logical connective.

Notes



Example

Are and p→ q and ¬p ∨ q logically equivalent?

To find out, we construct the truth tables for each:

p q p→ q ¬p ¬p ∨ q

0 0 1 1 1

0 1 1 1 1

1 0 0 0 0

1 1 1 0 1

The two columns in the truth table are identical, thus we conclude
that

p→ q ≡ ¬p ∨ q

Notes

Another Example

(Exercise 25 from Rosen): Show that

(p→ r) ∨ (q → r) ≡ (p ∧ q)→ r

p q r p→ r (q → r) (p→ r) ∨ (q → r)
0 0 0 1 1 1

0 0 1 1 1 1

0 1 0 1 0 1

0 1 1 1 1 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 0 0

1 1 1 1 1 1

Notes

Another Example
Continued

Now let’s do it for (p ∧ q)→ r:

p q r p ∧ q (p ∧ q)→ r

0 0 0 0 1

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 1

1 0 1 0 1

1 1 0 1 0

1 1 1 1 1

The truth values are identical, so we conclude that the logical
equivalence holds.

Notes



Logical Equivalences
Cheat Sheet

Tables of logical equivalences can be found in Rosen (page 24).

These and other can be found in a handout on the course web
page http://www.cse.unl.edu/~cse235/files/
LogicalEquivalences.pdf

Let’s take a quick look at this Cheat Sheet

Notes

Using Logical Equivalences
Example 1

Logical equivalences can be used to construct additional logical
equivalences.

Example: Show that (p ∧ q)→ q is a tautology

((p ∧ q)→ q) ⇐⇒ ¬(p ∧ q) ∨ q Implication Law
⇐⇒ (¬p ∨ ¬q) ∨ q De Morgan’s Law (1st)
⇐⇒ ¬p ∨ (¬q ∨ q) Associative Law
⇐⇒ ¬p ∨ 1 Negation Law
⇐⇒ 1 Domination Law

Notes

Using Logical Equivalences
Example 2

Example (Exercise 17)1: Show that

¬(p↔ q) ⇐⇒ (p↔ ¬q)

Sometimes it helps to start out with the second proposition.
(p↔ ¬q)

⇐⇒ (p→ ¬q) ∧ (¬q → p) Equivalence Law
⇐⇒ (¬p ∨ ¬q) ∧ (q ∨ p) Implication Law
⇐⇒ ¬ (¬ ((¬p ∨ ¬q) ∧ (q ∨ p))) Double Negation
⇐⇒ ¬ (¬(¬p ∨ ¬q) ∨ ¬(q ∨ p)) De Morgan’s Law
⇐⇒ ¬ ((p ∧ q) ∨ (¬q ∧ ¬p)) De Morgan’s Law
⇐⇒ ¬ ((p ∧ q) ∨ (¬p ∧ ¬q)) Commutative Law
⇐⇒ ¬(p↔ q) Equivalence Law

(See Table 8, p25)

1See Table 8 (p25), but you are not allowed to use the table for the proof.

Notes



Using Logical Equivalences
Example 3

Show that
¬(q → p) ∨ (p ∧ q) ⇐⇒ q

¬(q → p) ∨ (p ∧ q)

⇐⇒ (¬(¬q ∨ p)) ∨ (p ∧ q) Implication Law
⇐⇒ (q ∧ ¬p) ∨ (p ∧ q) De Morgan’s & Double Negation
⇐⇒ (q ∧ ¬p) ∨ (q ∧ p) Commutative Law
⇐⇒ q ∧ (¬p ∨ p) Distributive Law
⇐⇒ q ∧ 1 Identity Law
⇐⇒ q Identity Law

Notes

Logic In Programming
Programming Example II Revisited

Recall the loop:

while((i<size AND A[i]>10) OR
(i<size AND A[i]<0) OR
(i<size AND (NOT (A[i]!= 0 AND NOT (A[i]>= 10)))))

Now, using logical equivalences, simplify it.

Notes

Logic In Programming
Programming Example II Revisited

Answer: Use De Morgan’s Law and Distributivity.

while((i<size) AND
((A[i]>10 OR A[i]<0) OR
(A[i]==0 OR A[i]>=10)))

Notice the ranges of all four conditions on A[i]; they can be
merged and we can further simplify it to:

while((i<size) AND
(A[i]>=10 OR A[i]<=0))

Notes



Programming Pitfall Note

In C, C++ and Java, applying the commutative law is not such a
good idea. These languages (compiler dependent) sometimes use
“short-circuiting” for efficiency (at the machine level). For
example, consider accessing an integer array A of size n.

if(i<n && A[i]==0) i++;

is not equivalent to

if(A[i]==0 && i<n) i++;

Notes


