

| l |
|---|
| l |
| l |
|   |
| l |
|   |
| l |
|   |
|   |
| L |
|   |
|   |
|   |
|   |

## Induction

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry

Fall 2007

Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 4.1 & 4.2 of Rosen





## Introduction

#### Induction

CSE235

#### Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples How can we prove the following quantified statement?

 $\forall s \in SP(x)$ 

• For a *finite* set  $S = \{s_1, s_2, \ldots, s_n\}$ , we can prove that P(x) holds for *each* element because of the equivalence,

 $P(s_1) \wedge P(s_2) \wedge \cdots \wedge P(s_n)$ 



## Introduction

#### Induction

CSE235

#### Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

## How can we prove the following quantified statement?

 $\forall s \in SP(x)$ 

• For a *finite* set  $S = \{s_1, s_2, \ldots, s_n\}$ , we can prove that P(x) holds for *each* element because of the equivalence,

$$P(s_1) \wedge P(s_2) \wedge \cdots \wedge P(s_n)$$

• We can use *universal generalization* for infinite sets.



## Introduction

#### Induction

CSE235

#### Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

## How can we prove the following quantified statement?

 $\forall s \in SP(x)$ 

• For a *finite* set  $S = \{s_1, s_2, \ldots, s_n\}$ , we can prove that P(x) holds for *each* element because of the equivalence,

$$P(s_1) \wedge P(s_2) \wedge \cdots \wedge P(s_n)$$

- We can use *universal generalization* for infinite sets.
- Another, more sophisticated way is to use Induction.



Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples • If a statement  $P(n_0)$  is true for some nonnegative integer; say  $n_0 = 1$ .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへで



#### Induction

CSE235

#### Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

- If a statement  $P(n_0)$  is true for some nonnegative integer; say  $n_0 = 1$ .
- Also suppose that we are able to prove that if P(k) is true for k ≥ n<sub>0</sub>, then P(k + 1) is also true;

$$P(k) \rightarrow P(k+1)$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()



Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

- If a statement  $P(n_0)$  is true for some nonnegative integer; say  $n_0 = 1$ .
- Also suppose that we are able to prove that if P(k) is true for k ≥ n<sub>0</sub>, then P(k + 1) is also true;

$$P(k) \rightarrow P(k+1)$$

• It follows from these two statements that P(n) is true for all  $n \ge n_0$ . I.e.

$$\forall n \ge n_0 P(n)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○



Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

- If a statement  $P(n_0)$  is true for some nonnegative integer; say  $n_0 = 1$ .
- Also suppose that we are able to prove that if P(k) is true for  $k \ge n_0$ , then P(k+1) is also true;

$$P(k) \rightarrow P(k+1)$$

• It follows from these two statements that P(n) is true for all  $n \ge n_0$ . I.e.

$$\forall n \ge n_0 P(n)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

This is the basis of the most widely used proof technique: *Induction.* 



# The Well Ordering Principle I

Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Why is induction a legitimate proof technique?

At its heart is the Well Ordering Principle.

## Theorem (Principle of Well Ordering)

Every nonempty set of nonnegative integers has a least element.

Since every such set has a least element, we can form a *base case*.

We can then proceed to establish that the set of integers  $n \ge n_0$  such that P(n) is *false* is actually *empty*.

Thus, induction (both "weak" and "strong" forms) are logical equivalences of the well-ordering principle.



## Another View I

#### Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples To look at it another way, assume that the statements

$$P(n_0)$$
 (1)

$$P(k) \rightarrow P(k+1)$$
 (2)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

are true. We can now use a form of *universal generalization* as follows.

Say we choose an element from the universe of discourse c. We wish to establish that P(c) is true. If  $c = n_0$  then we are done.



## Another View II

Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Otherwise, we apply (2) above to get

$$P(n_0) \Rightarrow P(n_0 + 1)$$
  

$$\Rightarrow P(n_0 + 2)$$
  

$$\Rightarrow P(n_0 + 3)$$
  

$$\cdots$$
  

$$\Rightarrow P(c - 1)$$
  

$$\Rightarrow P(c)$$

Via a finite number of steps  $(c - n_0)$ , we get that P(c) is true. Since c was arbitrary, the universal generalization is established.

$$\forall n \ge n_0 P(n)$$



### Induction I Formal Definition

#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

## Theorem (Principle of Mathematical Induction)

Given a statement P concerning the integer n, suppose

- P is true for some particular integer  $n_0$ ;  $P(n_0) = 1$ .
- If P is true for some particular integer k ≥ n<sub>0</sub> then it is true for k + 1.

Then P is true for all integers  $n \ge n_0$ , that is

$$\forall n \ge n_0 P(n)$$

is true.



## Induction II Formal Definition

#### Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

- Showing that  $P(n_0)$  holds for some initial integer  $n_0$  is called the *Basis Step*.
- Showing the implication  $P(k) \rightarrow P(k+1)$  for every  $k \ge n_0$  is called the *Induction Step*.
- The assumption  $P(n_k)$  itself is called the *inductive hypothesis*.
- Together, induction can be expressed as an inference rule.

$$(P(n_0) \land \forall k \ge n_0 P(k) \to P(k+1)) \to \forall n \ge n_0 P(n)$$



| Nebraska<br>Lincoln                  | Example I                                                     |
|--------------------------------------|---------------------------------------------------------------|
| Induction<br>CSE235                  |                                                               |
| Introduction<br>Preliminaries        | Example                                                       |
| Preliminaries<br>Formal<br>Statement | Prove that $n^2 \leq 2^n$ for all $n \geq 5$ using induction. |
| Examples<br>Strong<br>Induction      | We formalize the statement as $P(n) = (n^2 \le 2^n)$ .        |
| More<br>Examples                     |                                                               |
|                                      |                                                               |
|                                      |                                                               |

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 - のへで

| Nebraska<br>Lincoln                                                                                                                | Example I                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Induction<br>CSE235<br>Introduction<br>Preliminaries<br>Formal<br>Statement<br>Examples<br>Strong<br>Induction<br>More<br>Examples | Example<br>Prove that $n^2 \le 2^n$ for all $n \ge 5$ using induction.<br>We formalize the statement as $P(n) = (n^2 \le 2^n)$ .<br>Our base case here is for $n = 5$ . We directly verify that<br>$25 = 5^2 < 2^5 = 32$ |
|                                                                                                                                    | and so $P(5)$ is true and thus the basic step holds.                                                                                                                                                                     |

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We now perform the induction step and assume that P(k) (the inductive hypothesis) is true. Thus,

 $k^2 \le 2^k$ 



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We now perform the induction step and assume that P(k) (the inductive hypothesis) is true. Thus,

 $k^2 \le 2^k$ 

Multiplying by 2 we get

 $2k^2 \le 2^{k+1}$ 

(日)、(型)、(E)、(E)、(E)、(O)(()



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We now perform the induction step and assume that P(k) (the inductive hypothesis) is true. Thus,

 $k^2 \le 2^k$ 

Multiplying by 2 we get

 $2k^2 \le 2^{k+1}$ 

By a separate proof, we can show that for all  $k \ge 5$ ,

$$2k^2 \ge k^2 + 5k > k^2 + 2k + 1 = (k+1)^2$$



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We now perform the induction step and assume that P(k) (the inductive hypothesis) is true. Thus,

 $k^2 \le 2^k$ 

Multiplying by 2 we get

$$2k^2 \le 2^{k+1}$$

By a separate proof, we can show that for all  $k \geq 5$ ,

$$2k^2 \geq k^2 + 5k > k^2 + 2k + 1 = (k+1)^2$$

Using transitivity, we get that

$$(k+1)^2 < 2k^2 \le 2^{k+1}$$

(日) (圖) (目) (目)

-

Thus, P(k+1) holds

10/38



Example

### Induction

### CSE235

#### Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Prove that for any  $n \ge 1$ ,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ



Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

# Example

Prove that for any  $n \ge 1$ ,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

The base case is easily verified;

$$1 = 1^2 = \frac{(1+1)(2+1)}{6} = 1$$



Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

# Example

Prove that for any  $n \ge 1$ ,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

The base case is easily verified;

$$1 = 1^2 = \frac{(1+1)(2+1)}{6} = 1$$

Now assume that P(k) holds for some  $k \ge 1$ , so

$$\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$$



#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We want to show that P(k+1) is true; that is, we want to show that

$$\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$



#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We want to show that P(k+1) is true; that is, we want to show that

$$\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

However, observe that this sum can be written

$$\sum_{i=1}^{k+1} i^2 = 1^2 + 2^2 + \dots + k^2 + (k+1)^2 = \sum_{i=1}^k i^2 + (k+1)^2$$



Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples  $\sum_{i=1}^{k+1} i^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \quad (*)$ 



#### Induction

#### CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

$$\sum_{i=1}^{k+1} i^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \quad (*)$$
$$= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6}$$



#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples  $\sum_{i=1}^{k+1} i^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \quad (*)$  $= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6}$  $= \frac{(k+1)\left[k(2k+1) + 6(k+1)\right]}{6}$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○



Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples 
$$\begin{split} \sum_{i=1}^{k+1} i^2 &=& \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \quad (*) \\ &=& \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6} \\ &=& \frac{(k+1)\left[k(2k+1) + 6(k+1)\right]}{6} \\ &=& \frac{(k+1)\left[2k^2 + 7k + 6\right]}{6} \end{split}$$



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples  $\sum_{i=1}^{k+1} i^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \quad (*)$  $= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6}$  $= \frac{(k+1)\left[k(2k+1) + 6(k+1)\right]}{6}$  $= \frac{(k+1)\left[2k^2 + 7k + 6\right]}{6}$  $= \frac{(k+1)(k+2)(2k+3)}{6}$ 



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Thus we have that

$$\sum_{i=1}^{k+1} = \frac{(k+1)(k+2)(2k+3)}{6}$$

so we've established that  $P(k) \rightarrow P(k+1).$ 

Thus, by the principle of mathematical induction,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●



#### Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

## Example

Prove that for any integer  $n \ge 1$ ,  $2^{2n} - 1$  is divisible by 3.



#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

## Example

Prove that for any integer  $n \ge 1$ ,  $2^{2n} - 1$  is divisible by 3.

Define P(n) to be the statement that  $3 \mid (2^{2n} - 1)$ .



### Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

### Example

Prove that for any integer  $n \ge 1$ ,  $2^{2n} - 1$  is divisible by 3.

Define P(n) to be the statement that  $3 \mid (2^{2n} - 1)$ .

Again, we note that the base case is n = 1, so we have that

$$2^{2 \cdot 1} - 1 = 3$$

which is certainly divisible by 3.



### Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

### Example

Prove that for any integer  $n \ge 1$ ,  $2^{2n} - 1$  is divisible by 3.

Define P(n) to be the statement that  $3 \mid (2^{2n} - 1)$ .

Again, we note that the base case is n = 1, so we have that

$$2^{2 \cdot 1} - 1 = 3$$

which is certainly divisible by 3.

We next assume that P(k) holds. That is, we assume that there exists an integer  $\ell$  such that

$$2^{2k} - 1 = 3\ell$$



#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

### Note that

$$2^{2(k+1)} - 1 = 4 \cdot 2^{2k} - 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ



Induction

CSE23

Note that

$$2^{2(k+1)} - 1 = 4 \cdot 2^{2k} - 1$$

Introduction Preliminaries

Formal Statement

Examples

Strong Induction

More Examples By the inductive hypothesis,  $2^{2k}=3\ell+1,$  applying this we get that

$$2^{2(k+1)} - 1 = 4(3\ell + 1) - 1$$
  
=  $12\ell + 4 - 1$   
=  $12\ell + 3$   
=  $3(4\ell + 1)$ 

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

#### Note that

$$2^{2(k+1)} - 1 = 4 \cdot 2^{2k} - 1$$

By the inductive hypothesis,  $2^{2k} = 3\ell + 1$ , applying this we get that

$$2^{2(k+1)} - 1 = 4(3\ell + 1) - 1$$
  
=  $12\ell + 4 - 1$   
=  $12\ell + 3$   
=  $3(4\ell + 1)$ 

And we are done, since 3 divides the RHS, it must divide the LHS. Thus, by the principle of mathematical induction,  $2^{2n} - 1$  is divisible by 3 for all  $n \ge 1$ .





# $\mathsf{Example}\ \mathsf{IV}$

Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

### Example

Prove that  $n! > 2^n$  for all  $n \ge 4$ 

The base case holds since  $24 = 4! > 2^4 = 16$ .

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ



# Example IV

Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

#### Example

Prove that  $n! > 2^n$  for all  $n \ge 4$ 

The base case holds since  $24 = 4! > 2^4 = 16$ .

We now make our inductive hypothesis and assume that

$$k! > 2^k$$

for some integer  $k \ge 4$ 



# Example IV

Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Example

Prove that  $n! > 2^n$  for all  $n \ge 4$ 

The base case holds since  $24 = 4! > 2^4 = 16$ .

We now make our inductive hypothesis and assume that

$$k! > 2^k$$

for some integer  $k \ge 4$ 

Since  $k \ge 4$ , it certainly is the case that k+1 > 2. Therefore, we have that

$$(k+1)! = (k+1)k! > 2 \cdot 2^k = 2^{k+1}$$

na a

So by the principle of mathematical induction, we have our desired result.

| Nebraska<br>Lincoln                                                                                                                | Example V                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Induction<br>CSE235<br>Introduction<br>Preliminaries<br>Formal<br>Statement<br>Examples<br>Strong<br>Induction<br>More<br>Examples | Example<br>Let $m \in \mathbb{Z}$ and suppose that $x \equiv y \pmod{m}$ . Then for all $n \ge 1$ ,<br>$x^n \equiv y^n \pmod{m}$ |
| 18 / 38                                                                                                                            | ▲日> ▲間> ▲国> ▲国> ■ ろくの                                                                                                            |

| Nebraska<br>Lincoln                                                                                                                | Example V                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Induction<br>CSE235<br>Introduction<br>Preliminaries<br>Formal<br>Statement<br>Examples<br>Strong<br>Induction<br>More<br>Examples | Example<br>Let $m \in \mathbb{Z}$ and suppose that $x \equiv y \pmod{m}$ . Then for all $n \ge 1$ ,<br>$x^n \equiv y^n \pmod{m}$<br>The base case here is trivial as it is encompassed by the assumption. |
| Formal<br>Statement<br>Examples<br>Strong<br>Induction<br>More                                                                     | $n \ge 1$ ,<br>$x^n \equiv y^n \pmod{m}$<br>The base case here is trivial as it is encompassed by the                                                                                                     |

| Nebraska<br>Lincoln | Example V                                                                    |
|---------------------|------------------------------------------------------------------------------|
| Induction           |                                                                              |
| CSE235              | Example                                                                      |
| Introduction        | Let $m \in \mathbb{Z}$ and suppose that $x \equiv y \pmod{m}$ . Then for all |
| Preliminaries       | $n \ge 1$ ,                                                                  |
| Formal<br>Statement | $x^n \equiv y^n \pmod{m}$                                                    |
| Examples            |                                                                              |
| Strong<br>Induction | The base case here is trivial as it is encompassed by the                    |
| More<br>Examples    | assumption.                                                                  |
|                     | Now assume that it is true for some $k \ge 1$ ;                              |
|                     | $x^k \equiv y^k \pmod{m}$                                                    |
|                     |                                                                              |

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶



# $\underset{\text{Continued}}{\text{Example V}}$

#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Since multiplication of corresponding sides of a congruence is still a congruence, we have

$$x \cdot x^k \equiv y \cdot y^k \pmod{m}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ



# $\underset{\text{Continued}}{\text{Example V}}$

#### Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Since multiplication of corresponding sides of a congruence is still a congruence, we have

$$x \cdot x^k \equiv y \cdot y^k \pmod{m}$$

And so

 $x^{k+1} \equiv y^{k+1} \pmod{m}$ 

| Nebraska<br>Lincoln                                  | Example VI                                                                                                                 |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Induction<br>CSE235                                  | Example<br>Show that                                                                                                       |
| Introduction<br>Preliminaries<br>Formal<br>Statement | $\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2$                                                                     |
| Examples                                             | for all $n \ge 1$ .                                                                                                        |
| Strong<br>Induction                                  |                                                                                                                            |
| More<br>Examples                                     | The base case is trivial since $1^3 = (1)^2$ .                                                                             |
|                                                      | The inductive hypothesis will assume that it holds for some $k\geq 1$ : $\sum_{i=1}^k i^3 = \left(\sum_{i=1}^k i\right)^2$ |

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶



Fact

#### Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples By another standard induction proof (see the text) the summation of natural numbers up to n is

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

We now consider the summation for (k + 1):

$$\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^k i^3 + (k+1)^3$$



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples  $\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3$ 

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples  $\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3$  $= \frac{(k^2(k+1)^2) + 4(k+1)^3}{2^2}$ 



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples  $\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3$  $= \frac{(k^2(k+1)^2) + 4(k+1)^3}{2^2}$  $= \frac{(k+1)^2 \left[k^2 + 4k + 4\right]}{2^2}$ 

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples  $\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3$  $= \frac{(k^2(k+1)^2) + 4(k+1)^3}{2^2}$  $= \frac{(k+1)^2 \left[k^2 + 4k + 4\right]}{2^2}$  $= \frac{(k+1)^2(k+2)^2}{2^2}$ 

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ



| CSE235        |
|---------------|
| Introduction  |
| Preliminaries |

Induction

Formal Statement

Examples

Strong Induction

More Examples  $\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3$  $= \frac{(k^2(k+1)^2) + 4(k+1)^3}{2^2}$  $= \frac{(k+1)^2 \left[k^2 + 4k + 4\right]}{2^2}$  $= \frac{(k+1)^2(k+2)^2}{2^2}$  $= \left(\frac{(k+1)(k+2)}{2}\right)^2$ 





$$i^{3} = \left(\frac{k(k+1)}{2}\right)^{2} + (k+1)^{3}$$

$$= \frac{(k^{2}(k+1)^{2}) + 4(k+1)^{3}}{2^{2}}$$

$$= \frac{(k+1)^{2} [k^{2} + 4k + 4]}{2^{2}}$$

$$= \frac{(k+1)^{2} (k+2)^{2}}{2^{2}}$$

$$= \left(\frac{(k+1)(k+2)}{2}\right)^{2}$$

イロト イロト イヨト イヨト

æ

So by the PMI, the equality holds.



#### Example VII The Bad Example

#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Consider this "proof" that all of you will receive the same grade.

#### Proof.

Let P(n) be the statement that every set of n students receives the same grade. Clearly P(1) is true, so the base case is satisfied.

Now assume that P(k-1) is true. Given a group of k students, apply P(k-1) to the subset  $\{s_1, s_2, \ldots, s_{k-1}\}$ . Now, separately apply the inductive hypothesis to the subset  $\{s_2, s_3, \ldots, s_k\}$ . Combining these two facts tells us that P(k) is true. Thus, P(n) is true for all students.



### Example VII The Bad Example - Continued

## Induction

- Introduction
- Preliminaries
- Formal Statement
- Examples
- Strong Induction
- More Examples

- The mistake is not the base case, P(1) is true.
- Also, it is the case that, say  $P(73) \rightarrow P(74)$ , so this cannot be the mistake.



### Example VII The *Bad* Example - Continued

### Induction

- Introduction
- Preliminaries
- Formal Statement

Examples

Strong Induction

More Examples

- The mistake is not the base case, P(1) is true.
- Also, it is the case that, say  $P(73) \to P(74),$  so this cannot be the mistake.

The error is in  $P(1) \rightarrow P(2)$  which is certainly not true; we cannot combine the two inductive hypotheses to get P(2).



# Strong Induction I

#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Another form of induction is called the "strong form". Despite the name, it is *not* a *stronger* proof technique. In fact, we have the following.

#### Lemma

The following are equivalent.

- The Well Ordering Principle
- The Principle of Mathematical Induction
- The Principle of Mathematical Induction, Strong Form



# Strong Induction II

#### Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

# Theorem (Principle of Mathematical Induction (Strong Form))

Given a statement P concerning the integer  $n, \ {\rm suppose}$ 

- P is true for some particular integer  $n_0$ ;  $P(n_0) = 1$ .
- **2** If  $k > n_0$  is any integer and P is true for all integers l in the range  $n_0 \le l < k$ , then it is true also for k.

Then P is true for all integers  $n \ge n_0$ ; i.e.

$$\forall (n \ge n_0) P(n)$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

is true.



#### Example Derivatives

#### Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

### Example

Show that for all 
$$n \ge 1$$
 and  $f(x) = x^n$ 

$$f'(x) = nx^{n-1}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ



#### Example Derivatives

#### Induction

#### CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

### Example

Show that for all 
$$n \ge 1$$
 and  $f(x) = x^n$ ,

$$f'(x) = nx^{n-1}$$

Verifying the base case for n = 1 is straightforward;

$$f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0 + h) - x_0}{h} = 1 = 1x^0$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ



Induction

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Now assume that the inductive hypothesis holds for some k; i.e. for  $f(x)=x^k, \label{eq:f} f'(x)=kx^{k-1}$ 



Induction CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Now assume that the inductive hypothesis holds for some k; i.e. for  $f(x)=x^k, \label{eq:f} f'(x)=kx^{k-1}$ 

Now consider  $f_2(x) = x^{k+1} = x^k \cdot x$ . Using the product rule we observe that

$$f'_2(x) = (x^k)' \cdot x + x^k \cdot (x')$$



Induction CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Now assume that the inductive hypothesis holds for some k; i.e. for  $f(x)=x^k, \label{eq:f} f'(x)=kx^{k-1}$ 

Now consider  $f_2(x) = x^{k+1} = x^k \cdot x$ . Using the product rule we observe that

$$f'_2(x) = (x^k)' \cdot x + x^k \cdot (x')$$

From the inductive hypothesis, the first derivative is  $kx^{k-1}$ and the base case gives us the second derivative.



Induction

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples

Now assume that the inductive hypothesis holds for some k; i.e. for  $f(x) = x^k$ ,  $f'(x) = kx^{k-1}$ 

Now consider  $f_2(x) = x^{k+1} = x^k \cdot x$ . Using the product rule we observe that

$$f'_2(x) = (x^k)' \cdot x + x^k \cdot (x')$$

From the inductive hypothesis, the first derivative is  $kx^{k-1}$ and the base case gives us the second derivative. Thus,

$$\begin{aligned} f'_2(x) &= kx^{k-1} \cdot x + x^k \cdot 1 \\ &= kx^k + x^k \\ &= (k+1)x^k \end{aligned}$$



### Strong Form Example Fundamental Theorem of Arithmetic

#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Recall that the Fundamental Theorem of Arithmetic states that any integer  $n \ge 2$  can be written as a unique product of primes.

We'll use the strong form of induction to prove this.



### Strong Form Example Fundamental Theorem of Arithmetic

## Induction

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Recall that the Fundamental Theorem of Arithmetic states that any integer  $n \ge 2$  can be written as a unique product of primes.

We'll use the strong form of induction to prove this.

Let P(n) be the statement "n can be written as a product of primes."

Clearly,  $P(2) \mbox{ is true since } 2 \mbox{ is a prime itself. Thus the base case holds.}$ 



# Strong Form Example

Fundamental Theorem of Arithmetic - Continued

Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We make our inductive hypothesis. Here we assume that the predicate P holds for *all* integers less than some integer  $k \ge 2$ ; i.e. we assume that

$$P(2) \wedge P(3) \wedge \cdots \wedge P(k)$$

is true.



# Strong Form Example

Fundamental Theorem of Arithmetic - Continued

Induction

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We make our inductive hypothesis. Here we assume that the predicate P holds for *all* integers less than some integer  $k \ge 2$ ; i.e. we assume that

$$P(2) \wedge P(3) \wedge \cdots \wedge P(k)$$

is true.

We want to show that this implies P(k+1) holds. We consider two cases.

If k + 1 is prime, then P(k + 1) holds and we are done.



# Strong Form Example

Fundamental Theorem of Arithmetic - Continued

Induction CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We make our inductive hypothesis. Here we assume that the predicate P holds for *all* integers less than some integer  $k \ge 2$ ; i.e. we assume that

$$P(2) \wedge P(3) \wedge \dots \wedge P(k)$$

is true.

We want to show that this implies P(k+1) holds. We consider two cases.

If k + 1 is prime, then P(k + 1) holds and we are done.

Else, k+1 is a composite and so it has factors u,v such that  $2 \leq u,v < k+1$  such that

$$u \cdot v = k + 1$$



#### Strong Form Example Fundamental Theorem of Arithmetic - Continued

#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We now apply the inductive hypothesis; both u and v are less than k + 1 so they can both be written as a unique product of primes;

$$u = \prod_{i} p_i, \quad v = \prod_{j} p_j$$



#### Strong Form Example Fundamental Theorem of Arithmetic - Continued

#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We now apply the inductive hypothesis; both u and v are less than k + 1 so they can both be written as a unique product of primes;

$$u = \prod_{i} p_i, \quad v = \prod_{j} p_j$$

Therefore,

$$k+1 = \left(\prod_{i} p_{i}\right) \left(\prod_{j} p_{j}\right)$$

and so by the strong form of the PMI,  ${\cal P}(k+1)$  holds.



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Recall the following.

#### Lemma

If  $a,b\in\mathbb{N}$  are such that  $\gcd(a,b)=1$  then there are integers s,t such that

$$gcd(a,b) = 1 = sa + tb$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We will prove this using the strong form of induction.



#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Let P(n) be the statement

 $a, b \in \mathbb{N} \land \gcd(a, b) = 1 \land a + b = n \Rightarrow \exists s, t \in \mathbb{Z}, as + tb = 1$ 

Our base case here is when n = 2 since a = b = 1.

For s = 1, t = 0, the statement P(2) is satisfied since

$$sa + bt = 1 \cdot 1 + 1 \cdot 0 = 1$$



#### Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples We now form the inductive hypothesis. Suppose  $n \in \mathbb{N}, n \ge 2$ and assume that P(k) is true for all k with  $2 \le k \le n$ .

Now suppose that for  $a, b \in \mathbb{N}$ ,

$$gcd(a,b) = 1 \land a + b = n + 1$$

We consider three cases.



Induction

CSE235

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Case 1 a = b

In this case

| gcd(a, b) | = | gcd(a, a) | by definition |
|-----------|---|-----------|---------------|
|           | = | a         | by definition |
|           | = | 1         | by assumption |

Therefore, since the gcd is one, it must be the case that a = b = 1 and so we simply have the base case, P(2).



< □ > < □ > < Ξ > < Ξ > < Ξ > ○ < ⊙

Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples **Case 2** *a* < *b* 



#### Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples **Case 2** *a* < *b* 

Since b > a, it follows that b - a > 0 and so

$$gcd(a,b) = gcd(a,b-a) = 1$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

(Why?)



Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples **Case 2** *a* < *b* 

Since b > a, it follows that b - a > 0 and so

 $\gcd(a,b) = \gcd(a,b-a) = 1$ 

(Why?)

Furthermore,

$$2 \le a + (b - a) = n + 1 - a \le n$$

### Nebraska GCD Strong Form Example

Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Since  $a + (b - a) \le n$ , we can apply the inductive hypothesis and conclude that P(n + 1 - a) = P(a + (b - a)) is true.

This implies that there exist integers  $s_0, t_0$  such that

$$as_0 + (b-a)t_0 = 1$$

### Nebraska GCD Strong Form Example

Induction

CSE23

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Since  $a + (b - a) \le n$ , we can apply the inductive hypothesis and conclude that P(n + 1 - a) = P(a + (b - a)) is true.

This implies that there exist integers  $s_0, t_0$  such that

$$as_0 + (b-a)t_0 = 1$$

and so

$$a(s_0 - t_0) + bt_0 = 1$$

### Nebraska GCD Strong Form Example

Induction

Introduction

Preliminaries

Formal Statement

Examples

Strong Induction

More Examples Since  $a + (b - a) \le n$ , we can apply the inductive hypothesis and conclude that P(n + 1 - a) = P(a + (b - a)) is true.

This implies that there exist integers  $s_0, t_0$  such that

$$as_0 + (b-a)t_0 = 1$$

and so

$$a(s_0 - t_0) + bt_0 = 1$$

So for  $s = s_0 - t_0$  and  $t = t_0$  we get

$$as + bt = 1$$

Thus, P(n+1) is established for this case.



## Induction

- CSE235
- Introduction
- Preliminaries
- Formal Statement
- Examples
- Strong Induction
- More Examples

**Case 3** a > b This is completely symmetric to case 2; we use a - b instead of b - a.

Since all three cases handle every possibility, we've established that P(n+1) is true and so by the strong PMI, the lemma holds.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ