Induction

Slides by Christopher M. Bourke
Instructor: Berthe Y. Choueiry

Fall 2007

Computer Science & Engineering 235
Introduction to Discrete Mathematics
Sections 4.1 & 4.2 of Rosen
cse235@cse.unl.edu
How can we prove the following quantified statement?

$$\forall s \in SP(x)$$
How can we prove the following quantified statement?

\[\forall s \in SP(x) \]

- For a *finite* set \(S = \{s_1, s_2, \ldots, s_n\} \), we can prove that \(P(x) \) holds for *each* element because of the equivalence,

\[P(s_1) \land P(s_2) \land \cdots \land P(s_n) \]
How can we prove the following quantified statement?

\[\forall s \in SP(x) \]

- For a finite set \(S = \{s_1, s_2, \ldots, s_n\} \), we can prove that \(P(x) \) holds for each element because of the equivalence,

\[P(s_1) \land P(s_2) \land \cdots \land P(s_n) \]

- We can use universal generalization for infinite sets.
How can we prove the following quantified statement?

$$\forall s \in SP(x)$$

- For a finite set $S = \{s_1, s_2, \ldots, s_n\}$, we can prove that $P(x)$ holds for each element because of the equivalence,

 $$P(s_1) \land P(s_2) \land \cdots \land P(s_n)$$

- We can use universal generalization for infinite sets.
- Another, more sophisticated way is to use Induction.
What is Induction?

- If a statement $P(n_0)$ is true for some nonnegative integer; say $n_0 = 1$.
What is Induction?

- If a statement $P(n_0)$ is true for some nonnegative integer; say $n_0 = 1$.

- Also suppose that we are able to prove that if $P(k)$ is true for $k \geq n_0$, then $P(k + 1)$ is also true;

$$P(k) \rightarrow P(k + 1)$$
What is Induction?

- If a statement $P(n_0)$ is true for some nonnegative integer; say $n_0 = 1$.
- Also suppose that we are able to prove that if $P(k)$ is true for $k \geq n_0$, then $P(k + 1)$ is also true;
 \[P(k) \rightarrow P(k + 1) \]
- It follows from these two statements that $P(n)$ is true for all $n \geq n_0$. I.e.
 \[\forall n \geq n_0 P(n) \]
What is Induction?

- If a statement \(P(n_0) \) is true for some nonnegative integer; say \(n_0 = 1 \).
- Also suppose that we are able to prove that if \(P(k) \) is true for \(k \geq n_0 \), then \(P(k + 1) \) is also true;

\[
P(k) \rightarrow P(k + 1)
\]

- It follows from these two statements that \(P(n) \) is true for all \(n \geq n_0 \). I.e.

\[
\forall n \geq n_0 P(n)
\]

This is the basis of the most widely used proof technique: *Induction*.
Why is induction a legitimate proof technique?

At its heart is the *Well Ordering Principle*.

Theorem (Principle of Well Ordering)

Every nonempty set of nonnegative integers has a least element.

Since every such set has a least element, we can form a *base case*.

We can then proceed to establish that the set of integers $n \geq n_0$ such that $P(n)$ is *false* is actually *empty*.

Thus, induction (both “weak” and “strong” forms) are logical equivalences of the well-ordering principle.
To look at it another way, assume that the statements

\[P(n_0) \] \quad (1)
\[P(k) \rightarrow P(k + 1) \] \quad (2)

are true. We can now use a form of *universal generalization* as follows.

Say we choose an element from the universe of discourse \(c \). We wish to establish that \(P(c) \) is true. If \(c = n_0 \) then we are done.
Otherwise, we apply (2) above to get

\[P(n_0) \Rightarrow P(n_0 + 1) \]
\[\Rightarrow P(n_0 + 2) \]
\[\Rightarrow P(n_0 + 3) \]
\[\cdots \]
\[\Rightarrow P(c - 1) \]
\[\Rightarrow P(c) \]

Via a finite number of steps \((c - n_0)\), we get that \(P(c)\) is true. Since \(c\) was arbitrary, the universal generalization is established.

\[\forall n \geq n_0 P(n) \]
Theorem (Principle of Mathematical Induction)

Given a statement P concerning the integer n, suppose

1. P is true for some particular integer n_0; $P(n_0) = 1$.
2. If P is true for some particular integer $k \geq n_0$ then it is true for $k + 1$.

Then P is true for all integers $n \geq n_0$, that is

$$\forall n \geq n_0 P(n)$$

is true.
Showing that $P(n_0)$ holds for some initial integer n_0 is called the **Basis Step**.

Showing the implication $P(k) \rightarrow P(k + 1)$ for every $k \geq n_0$ is called the **Induction Step**.

The assumption $P(n_k)$ itself is called the **inductive hypothesis**.

Together, induction can be expressed as an inference rule.

$$(P(n_0) \land \forall k \geq n_0 P(k) \rightarrow P(k + 1)) \rightarrow \forall n \geq n_0 P(n)$$
Example 1

Example

Prove that \(n^2 \leq 2^n \) for all \(n \geq 5 \) using induction.
Example 1

Example

Prove that \(n^2 \leq 2^n \) for all \(n \geq 5 \) using induction.

We formalize the statement as \(P(n) = (n^2 \leq 2^n) \).
Example 1

Prove that $n^2 \leq 2^n$ for all $n \geq 5$ using induction.

We formalize the statement as $P(n) = (n^2 \leq 2^n)$.

Our base case here is for $n = 5$. We directly verify that

$$25 = 5^2 \leq 2^5 = 32$$

and so $P(5)$ is true and thus the basic step holds.
We now perform the induction step and assume that $P(k)$ (the inductive hypothesis) is true. Thus,

$$k^2 \leq 2^k$$
We now perform the induction step and assume that $P(k)$ (the inductive hypothesis) is true. Thus,

$$k^2 \leq 2^k$$

Multiplying by 2 we get

$$2k^2 \leq 2^{k+1}$$
We now perform the induction step and assume that $P(k)$ (the inductive hypothesis) is true. Thus,

$$k^2 \leq 2^k$$

Multiplying by 2 we get

$$2k^2 \leq 2^{k+1}$$

By a separate proof, we can show that for all $k \geq 5$,

$$2k^2 \geq k^2 + 5k > k^2 + 2k + 1 = (k + 1)^2$$
We now perform the induction step and assume that $P(k)$ (the inductive hypothesis) is true. Thus,

$$k^2 \leq 2^k$$

Multiplying by 2 we get

$$2k^2 \leq 2^{k+1}$$

By a separate proof, we can show that for all $k \geq 5$,

$$2k^2 \geq k^2 + 5k > k^2 + 2k + 1 = (k + 1)^2$$

Using transitivity, we get that

$$(k + 1)^2 < 2k^2 \leq 2^{k+1}$$

Thus, $P(k + 1)$ holds
Example II

Example

Prove that for any \(n \geq 1 \),

\[
\sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6}
\]

The base case is easily verified; \(1 = \frac{1(1 + 1)(2 + 1)}{6} = 1 \).

Now assume that \(P(k) \) holds for some \(k \geq 1 \), so

\[
\sum_{i=1}^{k} i^2 = \frac{k(k + 1)(2k + 1)}{6}
\]

and prove that \(P(k+1) \) follows.

\[
\sum_{i=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2 = \frac{k(k + 1)(2k + 1)}{6} + (k+1)^2
\]

This simplifies to:

\[
\frac{k(k + 1)(2k + 1)}{6} + (k+1)^2 = \frac{(k+1)(k+2)(2k+3)}{6}
\]

Thus, by the principle of strong induction, the statement holds for all \(n \geq 1 \).
Example II

Example

Prove that for any \(n \geq 1 \),

\[
\sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6}
\]

The base case is easily verified;

\[
1 = 1^2 = \frac{(1 + 1)(2 + 1)}{6} = 1
\]
Example II

Example

Prove that for any \(n \geq 1 \),

\[
\sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6}
\]

The base case is easily verified;

\[
1 = 1^2 = \frac{(1 + 1)(2 + 1)}{6} = 1
\]

Now assume that \(P(k) \) holds for some \(k \geq 1 \), so

\[
\sum_{i=1}^{k} i^2 = \frac{k(k + 1)(2k + 1)}{6}
\]
We want to show that $P(k + 1)$ is true; that is, we want to show that

$$
\sum_{i=1}^{k+1} i^2 = \frac{(k + 1)(k + 2)(2k + 3)}{6}
$$
We want to show that $P(k + 1)$ is true; that is, we want to show that

$$
\sum_{i=1}^{k+1} i^2 = \frac{(k + 1)(k + 2)(2k + 3)}{6}
$$

However, observe that this sum can be written

$$
\sum_{i=1}^{k+1} i^2 = 1^2 + 2^2 + \cdots + k^2 + (k + 1)^2 = \sum_{i=1}^{k} i^2 + (k + 1)^2
$$
Example II
Continued

\[\sum_{i=1}^{k+1} i^2 = \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \quad (*) \]
Example II
Continued

\[
\sum_{i=1}^{k+1} i^2 = \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \quad (*)
\]

\[
= \frac{k(k + 1)(2k + 1)}{6} + \frac{6(k + 1)^2}{6}
\]
Example II
Continued

\[\sum_{i=1}^{k+1} i^2 = \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \]

\[= \frac{k(k + 1)(2k + 1)}{6} + \frac{6(k + 1)^2}{6} \]

\[= \frac{(k + 1) [k(2k + 1) + 6(k + 1)]}{6} \]
Example II
Continued

\[
\sum_{i=1}^{k+1} i^2 = \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \quad (*)
\]

\[
= \frac{k(k + 1)(2k + 1)}{6} + \frac{6(k + 1)^2}{6}
\]

\[
= \frac{k(k + 1)[k(2k + 1) + 6(k + 1)]}{6}
\]

\[
= \frac{(k + 1) \left[2k^2 + 7k + 6\right]}{6}
\]
Example II

Continued

\[
\sum_{i=1}^{k+1} i^2 = \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \quad (*)
\]

\[
= \frac{k(k + 1)(2k + 1)}{6} + \frac{6(k + 1)^2}{6}
\]

\[
= (k + 1) \left[k(2k + 1) + 6(k + 1) \right] \quad 6
\]

\[
= \frac{(k + 1) \left[2k^2 + 7k + 6 \right]}{6}
\]

\[
= \frac{(k + 1)(k + 2)(2k + 3)}{6}
\]
Thus we have that

\[
\sum_{i=1}^{k+1} i^2 = \frac{(k + 1)(k + 2)(2k + 3)}{6}
\]

so we’ve established that \(P(k) \rightarrow P(k + 1) \).

Thus, by the principle of mathematical induction,

\[
\sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6}
\]
Example

Prove that for any integer $n \geq 1$, $2^{2n} - 1$ is divisible by 3.
Example III

Example

Prove that for any integer $n \geq 1$, $2^{2n} - 1$ is divisible by 3.

Define $P(n)$ to be the statement that $3 \mid (2^{2n} - 1)$.
Example III

Example

Prove that for any integer \(n \geq 1 \), \(2^{2n} - 1 \) is divisible by 3.

Define \(P(n) \) to be the statement that \(3 | (2^{2n} - 1) \).

Again, we note that the base case is \(n = 1 \), so we have that

\[
2^{2 \cdot 1} - 1 = 3
\]

which is certainly divisible by 3.
Example III

Example

Prove that for any integer \(n \geq 1 \), \(2^{2n} - 1 \) is divisible by 3.

Define \(P(n) \) to be the statement that \(3 \mid (2^{2n} - 1) \).

Again, we note that the base case is \(n = 1 \), so we have that

\[
2^{2 \cdot 1} - 1 = 3
\]

which is certainly divisible by 3.

We next assume that \(P(k) \) holds. That is, we assume that there exists an integer \(\ell \) such that

\[
2^{2k} - 1 = 3\ell
\]
Note that

\[2^{2(k+1)} - 1 = 4 \cdot 2^{2k} - 1 \]
Note that

\[2^{2(k+1)} - 1 = 4 \cdot 2^{2k} - 1 \]

By the inductive hypothesis, \(2^{2k} = 3\ell + 1 \), applying this we get that

\[
\begin{align*}
2^{2(k+1)} - 1 &= 4(3\ell + 1) - 1 \\
&= 12\ell + 4 - 1 \\
&= 12\ell + 3 \\
&= 3(4\ell + 1)
\end{align*}
\]
Note that
\[2^{2(k+1)} - 1 = 4 \cdot 2^{2k} - 1 \]

By the inductive hypothesis, \(2^{2k} = 3\ell + 1 \), applying this we get that
\[
\begin{align*}
2^{2(k+1)} - 1 &= 4(3\ell + 1) - 1 \\
&= 12\ell + 4 - 1 \\
&= 12\ell + 3 \\
&= 3(4\ell + 1)
\end{align*}
\]

And we are done, since 3 divides the RHS, it must divide the LHS. Thus, by the principle of mathematical induction, \(2^{2n} - 1 \) is divisible by 3 for all \(n \geq 1 \).
Example IV

Example

Prove that $n! > 2^n$ for all $n \geq 4$

The base case holds since $2^4 = 4! > 2^4 = 16$.

We now make our inductive hypothesis and assume that $k! > 2^k$ for some integer $k \geq 4$.

Since $k \geq 4$, it certainly is the case that $k + 1 > 2$. Therefore, we have that $(k+1)! = (k+1)k! > 2 \cdot 2^k = 2^{k+1}$.

So by the principle of mathematical induction, we have our desired result.
Example IV

Example

Prove that $n! > 2^n$ for all $n \geq 4$

The base case holds since $2^4 = 16$.
Example IV

Example

Prove that $n! > 2^n$ for all $n \geq 4$

The base case holds since $24 = 4! > 2^4 = 16$.

We now make our inductive hypothesis and assume that

$$k! > 2^k$$

for some integer $k \geq 4$
Example IV

Example

Prove that $n! > 2^n$ for all $n \geq 4$

The base case holds since $24 = 4! > 2^4 = 16$.

We now make our inductive hypothesis and assume that

$$k! > 2^k$$

for some integer $k \geq 4$

Since $k \geq 4$, it certainly is the case that $k + 1 > 2$. Therefore, we have that

$$(k + 1)! = (k + 1)k! > 2 \cdot 2^k = 2^{k+1}$$

So by the principle of mathematical induction, we have our desired result.
Example V

Example

Let $m \in \mathbb{Z}$ and suppose that $x \equiv y \pmod{m}$. Then for all $n \geq 1$,

$$x^n \equiv y^n \pmod{m}$$
Example V

Example

Let $m \in \mathbb{Z}$ and suppose that $x \equiv y \pmod{m}$. Then for all $n \geq 1$,

$$x^n \equiv y^n \pmod{m}$$

The base case here is trivial as it is encompassed by the assumption.
Example V

Example

Let $m \in \mathbb{Z}$ and suppose that $x \equiv y \pmod{m}$. Then for all $n \geq 1$,

$$x^n \equiv y^n \pmod{m}$$

The base case here is trivial as it is encompassed by the assumption.

Now assume that it is true for some $k \geq 1$;

$$x^k \equiv y^k \pmod{m}$$
Since multiplication of corresponding sides of a congruence is still a congruence, we have

\[x \cdot x^k \equiv y \cdot y^k \pmod{m} \]
Since multiplication of corresponding sides of a congruence is still a congruence, we have

\[x \cdot x^k \equiv y \cdot y^k \pmod{m} \]

And so

\[x^{k+1} \equiv y^{k+1} \pmod{m} \]
Example VI

Example

Show that

$$\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i \right)^2$$

for all $n \geq 1$.

The base case is trivial since $1^3 = (1)^2$.

The inductive hypothesis will assume that it holds for some $k \geq 1$:

$$\sum_{i=1}^{k} i^3 = \left(\sum_{i=1}^{k} i \right)^2$$
By another standard induction proof (see the text) the summation of natural numbers up to n is

$$\sum_{i=1}^{n} i = \frac{n(n + 1)}{2}$$

We now consider the summation for $(k + 1)$:

$$\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^{k} i^3 + (k + 1)^3$$
Example VI
Continued

\[
\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k + 1)}{2}\right)^2 + (k + 1)^3
\]
Example VI
Continued

\[\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k+1)}{2} \right)^2 + (k+1)^3 = \frac{k^2(k+1)^2 + 4(k+1)^3}{2^2} \]

So by the PMI, the equality holds.
Example VI
Continued

\[
\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k + 1)}{2} \right)^2 + (k + 1)^3
\]

\[
= \frac{k^2(k + 1)^2 + 4(k + 1)^3}{2^2}
\]

\[
= (k + 1)^2 \left[\frac{k^2 + 4k + 4}{2^2} \right]
\]

So by the PMI, the equality holds.
Example VI
Continued

\[
\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k+1)}{2} \right)^2 + (k+1)^3
\]

\[
= \frac{(k^2(k + 1)^2) + 4(k+1)^3}{2^2}
\]

\[
= \frac{(k + 1)^2 [k^2 + 4k + 4]}{2^2}
\]

\[
= \frac{(k + 1)^2(k + 2)^2}{2^2}
\]

So by the PMI, the equality holds.
Example VI

Continued

\[
\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k+1)}{2} \right)^2 + (k+1)^3
\]

\[
\frac{(k^2(k+1)^2) + 4(k+1)^3}{2^2} = \frac{(k+1)^2 [k^2 + 4k + 4]}{2^2}
\]

\[
\frac{(k+1)^2(k+2)^2}{2^2} = \left(\frac{(k+1)(k+2)}{2} \right)^2
\]

So by the PMI, the equality holds.
\[
\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k + 1)}{2} \right)^2 + (k + 1)^3 \\
= \frac{(k^2(k + 1)^2) + 4(k + 1)^3}{2^2} \\
= \frac{(k + 1)^2 [k^2 + 4k + 4]}{2^2} \\
= \frac{(k + 1)^2(k + 2)^2}{2^2} \\
= \left(\frac{(k + 1)(k + 2)}{2} \right)^2
\]

So by the PMI, the equality holds.
Example VII
The *Bad* Example

Consider this “proof” that all of you will receive the same grade.

Proof.

Let $P(n)$ be the statement that every set of n students receives the same grade. Clearly $P(1)$ is true, so the base case is satisfied.

Now assume that $P(k-1)$ is true. Given a group of k students, apply $P(k-1)$ to the subset $\{s_1, s_2, \ldots, s_{k-1}\}$. Now, separately apply the inductive hypothesis to the subset $\{s_2, s_3, \ldots, s_k\}$. Combining these two facts tells us that $P(k)$ is true. Thus, $P(n)$ is true for all students.
Example VII
The *Bad* Example - Continued

- The mistake is not the base case, $P(1)$ is true.
- Also, it *is* the case that, say $P(73) \rightarrow P(74)$, so this cannot be the mistake.
Example VII
The *Bad* Example - Continued

- The mistake is not the base case, $P(1)$ is true.
- Also, it *is* the case that, say $P(73) \rightarrow P(74)$, so this cannot be the mistake.

The error is in $P(1) \rightarrow P(2)$ which is certainly not true; we cannot combine the two inductive hypotheses to get $P(2)$.
Another form of induction is called the “strong form”. Despite the name, it is *not* a *stronger* proof technique. In fact, we have the following.

Lemma

The following are equivalent.

- The Well Ordering Principle
- The Principle of Mathematical Induction
- The Principle of Mathematical Induction, Strong Form
Theorem (Principle of Mathematical Induction (Strong Form))

Given a statement P concerning the integer n, suppose

1. P is true for some particular integer n_0; $P(n_0) = 1$.
2. If $k > n_0$ is any integer and P is true for all integers l in the range $n_0 \leq l < k$, then it is true also for k.

Then P is true for all integers $n \geq n_0$; i.e.

$$\forall (n \geq n_0)P(n)$$

is true.
Example

Show that for all $n \geq 1$ and $f(x) = x^n$,

$$f'(x) = nx^{n-1}$$
Example

Derivatives

Show that for all \(n \geq 1 \) and \(f(x) = x^n \),

\[
f'(x) = nx^{n-1}
\]

Verifying the base case for \(n = 1 \) is straightforward;

\[
f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0 + h) - x_0}{h} = 1 = 1x^0
\]
Now assume that the inductive hypothesis holds for some k; i.e. for $f(x) = x^k$,

$$f'(x) = kx^{k-1}$$
Example
Continued

Now assume that the inductive hypothesis holds for some k; i.e. for $f(x) = x^k$,

$$f'(x) = kx^{k-1}$$

Now consider $f_2(x) = x^{k+1} = x^k \cdot x$. Using the product rule we observe that

$$f_2'(x) = (x^k)' \cdot x + x^k \cdot (x')$$
Now assume that the inductive hypothesis holds for some k; i.e. for $f(x) = x^k$,
\[f'(x) = kx^{k-1} \]

Now consider $f_2(x) = x^{k+1} = x^k \cdot x$. Using the product rule we observe that
\[f'_2(x) = (x^k)' \cdot x + x^k \cdot (x') \]

From the inductive hypothesis, the first derivative is kx^{k-1} and the base case gives us the second derivative.
Now assume that the inductive hypothesis holds for some k; i.e., for $f(x) = x^k$,
$$f'(x) = kx^{k-1}$$

Now consider $f_2(x) = x^{k+1} = x^k \cdot x$. Using the product rule we observe that
$$f'_2(x) = (x^k)' \cdot x + x^k \cdot (x')$$

From the inductive hypothesis, the first derivative is kx^{k-1} and the base case gives us the second derivative. Thus,
$$f'_2(x) = kx^{k-1} \cdot x + x^k \cdot 1$$
$$= kx^k + x^k$$
$$= (k + 1)x^k$$
Recall that the Fundamental Theorem of Arithmetic states that any integer \(n \geq 2 \) can be written as a unique product of primes. We’ll use the strong form of induction to prove this.
Recall that the Fundamental Theorem of Arithmetic states that any integer \(n \geq 2 \) can be written as a unique product of primes. We’ll use the strong form of induction to prove this.

Let \(P(n) \) be the statement “\(n \) can be written as a product of primes.”

Clearly, \(P(2) \) is true since 2 is a prime itself. Thus the base case holds.
We make our inductive hypothesis. Here we assume that the predicate P holds for all integers less than some integer $k \geq 2$; i.e. we assume that

$$P(2) \land P(3) \land \cdots \land P(k)$$

is true.
We make our inductive hypothesis. Here we assume that the predicate P holds for all integers less than some integer $k \geq 2$; i.e. we assume that

$$P(2) \land P(3) \land \cdots \land P(k)$$

is true.

We want to show that this implies $P(k + 1)$ holds. We consider two cases.

If $k + 1$ is prime, then $P(k + 1)$ holds and we are done.
We make our inductive hypothesis. Here we assume that the predicate P holds for all integers less than some integer $k \geq 2$; i.e. we assume that

$$P(2) \land P(3) \land \cdots \land P(k)$$

is true.

We want to show that this implies $P(k + 1)$ holds. We consider two cases.

If $k + 1$ is prime, then $P(k + 1)$ holds and we are done.

Else, $k + 1$ is a composite and so it has factors u, v such that $2 \leq u, v < k + 1$ such that

$$u \cdot v = k + 1$$
We now apply the inductive hypothesis; both u and v are less than $k + 1$ so they can both be written as a unique product of primes;

$$u = \prod_{i} p_i, \quad v = \prod_{j} p_j$$
We now apply the inductive hypothesis; both u and v are less than $k + 1$ so they can both be written as a unique product of primes:

$$u = \prod_{i} p_i, \quad v = \prod_{j} p_j$$

Therefore,

$$k + 1 = \left(\prod_{i} p_i \right) \left(\prod_{j} p_j \right)$$

and so by the strong form of the PMI, $P(k + 1)$ holds.
Recall the following.

Lemma

If \(a, b \in \mathbb{N} \) are such that \(\gcd(a, b) = 1 \) then there are integers \(s, t \) such that

\[
\gcd(a, b) = 1 = sa + tb
\]

We will prove this using the strong form of induction.
Let $P(n)$ be the statement

$$a, b \in \mathbb{N} \land \gcd(a, b) = 1 \land a + b = n \Rightarrow \exists s, t \in \mathbb{Z}, as + tb = 1$$

Our base case here is when $n = 2$ since $a = b = 1$.

For $s = 1, t = 0$, the statement $P(2)$ is satisfied since

$$sa + bt = 1 \cdot 1 + 1 \cdot 0 = 1$$
We now form the inductive hypothesis. Suppose $n \in \mathbb{N}, n \geq 2$ and assume that $P(k)$ is true for all k with $2 \leq k \leq n$.

Now suppose that for $a, b \in \mathbb{N}$,

$$\gcd(a, b) = 1 \land a + b = n + 1$$

We consider three cases.
Case 1 \(a = b \)

In this case

\[
gcd(a, b) = gcd(a, a) \quad \text{by definition}
\]
\[
= a \quad \text{by definition}
\]
\[
= 1 \quad \text{by assumption}
\]

Therefore, since the \(gcd \) is one, it must be the case that \(a = b = 1 \) and so we simply have the base case, \(P(2) \).
Case 2 $a < b$

Since $b > a$, it follows that $b - a > 0$ and so $\text{gcd}(a, b) = \text{gcd}(a, b - a) = 1$ (Why?)

Furthermore, $2 \leq a + (b - a) = n + 1 - a \leq n$
Case 2 $a < b$

Since $b > a$, it follows that $b - a > 0$ and so

$$\gcd(a, b) = \gcd(a, b - a) = 1$$

(Why?)
Case 2 \(a < b \)

Since \(b > a \), it follows that \(b - a > 0 \) and so

\[
\gcd(a, b) = \gcd(a, b - a) = 1
\]

(Why?)

Furthermore,

\[
2 \leq a + (b - a) = n + 1 - a \leq n
\]
Since $a + (b - a) \leq n$, we can apply the inductive hypothesis and conclude that $P(n + 1 - a) = P(a + (b - a))$ is true.

This implies that there exist integers s_0, t_0 such that

$$as_0 + (b - a)t_0 = 1$$
Since $a + (b - a) \leq n$, we can apply the inductive hypothesis and conclude that $P(n + 1 - a) = P(a + (b - a))$ is true.

This implies that there exist integers s_0, t_0 such that

$$as_0 + (b - a)t_0 = 1$$

and so

$$a(s_0 - t_0) + bt_0 = 1$$
Since \(a + (b - a) \leq n \), we can apply the inductive hypothesis and conclude that \(P(n + 1 - a) = P(a + (b - a)) \) is true.

This implies that there exist integers \(s_0, t_0 \) such that

\[
as_0 + (b - a)t_0 = 1
\]

and so

\[
a(s_0 - t_0) + bt_0 = 1
\]

So for \(s = s_0 - t_0 \) and \(t = t_0 \) we get

\[
as + bt = 1
\]

Thus, \(P(n + 1) \) is established for this case.
Case 3 $a > b$ This is completely symmetric to case 2; we use $a - b$ instead of $b - a$.

Since all three cases handle every possibility, we’ve established that $P(n + 1)$ is true and so by the strong PMI, the lemma holds.