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Introduction

How can we prove the following quantified statement?

Vs € SP(x)

> For a finite set S = {s1, s2,...,sn}, we can prove that P(z)
holds for each element because of the equivalence,

P(s1) ANP(s2) A--+ A P(sy)

» We can use universal generalization for infinite sets.

» Another, more sophisticated way is to use Induction.

What is Induction?

> If a statement P(nyg) is true for some nonnegative integer; say
ng = 1.

> Also suppose that we are able to prove that if P(k) is true for
k > ng, then P(k + 1) is also true;

P(k) —» P(k+1)

» It follows from these two statements that P(n) is true for all
n > ng. le.
Vn > noP(n)

This is the basis of the most widely used proof technique:
Induction.

The Well Ordering Principle |

Why is induction a legitimate proof technique?

At its heart is the Well Ordering Principle.

Theorem (Principle of Well Ordering)

Every nonempty set of nonnegative integers has a least element.

Since every such set has a least element, we can form a base case.

We can then proceed to establish that the set of integers n > ng
such that P(n) is false is actually empty.

Thus, induction (both “weak” and “strong” forms) are logical
equivalences of the well-ordering principle.

Another View |

To look at it another way, assume that the statements

P(ng) (1)
P(k) — Pk+1) (2

are true. We can now use a form of universal generalization as
follows.

Say we choose an element from the universe of discourse c¢. We
wish to establish that P(c) is true. If ¢ = ng then we are done.

Another View I

Otherwise, we apply (2) above to get

P(’r’lo) = P(WO + 1)
= P(no+2)
= P(no+3)
= P(c—-1)
= P(c)

Via a finite number of steps (¢ — ng), we get that P(c) is true.
Since ¢ was arbitrary, the universal generalization is established.

Vn > noP(n)




Induction |

Formal Definition

Theorem (Principle of Mathematical Induction)

Given a statement P concerning the integer n, suppose

1. P is true for some particular integer ng; P(ng) = 1.

2. If P is true for some particular integer k > nq then it is true
for k+ 1.

Then P is true for all integers n > ng, that is
Vn > noP(n)

is true.

Induction |l

Formal Definition

v

Showing that P(ng) holds for some initial integer ny is called
the Basis Step.

v

Showing the implication P(k) — P(k + 1) for every k > ng is
called the Induction Step.

v

The assumption P(ny) itself is called the inductive hypothesis.

v

Together, induction can be expressed as an inference rule.

(P(no) AVk > noP(k) — P(k+ 1)) — Vn > ngP(n)

Example |

Example
Prove that n? < 2" for all n > 5 using induction.

We formalize the statement as P(n) = (n? < 2").

Our base case here is for n = 5. We directly verify that
25=5%<2° =32

and so P(5) is true and thus the basic step holds.

Example |

Continued
We now perform the induction step and assume that P(k) (the
inductive hypothesis) is true. Thus,

K2 < o
Multiplying by 2 we get
2k2 < 2FH1
By a separate proof, we can show that for all k£ > 5,
2> K245k > k2 +2k+ 1= (k+ 1)
Using transitivity, we get that
(k+1)% < 2k? < 2kH1

Thus, P(k + 1) holds O

Example Il

Example
Prove that for any n > 1,

ZiQ _ n(n + 1)6(2n +1)

The base case is easily verified,;
1+D2+1)

1=12=
6

=1

Now assume that P(k) holds for some k > 1, so

iiz _ (k4 1)(2k+1)

‘ 6
i=1

Example I

Continued

We want to show that P(k + 1) is true; that is, we want to show
that .
iiQ _ (k4 1)k +2)(2k+3)
B 6

i=1

However, observe that this sum can be written

k+1 k
D=2 B (k1= i (k1)
i—1 =1




Example I

Continued

Thus we have that

M e+ Dk +2)(2k + 3
Zf( )( . )( )

so we've established that P(k) — P(k + 1).

Thus, by the principle of mathematical induction,

i o n(n+1)2n+1)

=
6

i=1

Example Il
Continued
k+1 .
;ZQ _ k(k+1)ﬁ(2k+1)+(l€+1)2 )
_ Mk+g@k+1y+mk+n2
B 6 6
_ (E+1)[k(2k+1) +6(k + 1)]
6
_ (k+1)[2k? + 7k + 6]
B 6
_ (k1) (k+2)(2k+3)
6
Example 111
Example

Prove that for any integer n > 1, 227 — 1 is divisible by 3.

Define P(n) to be the statement that 3 | (22" — 1).
Again, we note that the base case is n = 1, so we have that
221 _1=3

which is certainly divisible by 3.

We next assume that P(k) holds. That is, we assume that there
exists an integer ¢ such that

2% —1=3¢

Example Ill

Continued

Note that
92(k+1) _ 1 —4.92k _q

By the inductive hypothesis, 22* = 3¢ -1, applying this we get that

22+ 1 = 4(30+1) -1
= 120+4-1
= 120+3
= 3(40+1)

And we are done, since 3 divides the RHS, it must divide the LHS.
Thus, by the principle of mathematical induction, 22n _ 1 s
divisible by 3 for all n > 1.

Example IV

Example

Prove that n! > 2™ for all n > 4

The base case holds since 24 = 4! > 24 = 16.

We now make our inductive hypothesis and assume that
k> 2k

for some integer k > 4

Since k > 4, it certainly is the case that k + 1 > 2. Therefore, we
have that
(E+ 1) = (k+1)k! > 2. 2F = ok

So by the principle of mathematical induction, we have our desired
result. OJ

Example V

Example

Let m € Z and suppose that z =y (mod m). Then for all n > 1,

n

" =y"

(mod m)

The base case here is trivial as it is encompassed by the
assumption.

Now assume that it is true for some k > 1;

2 =y*  (mod m)




Example V

Continued

Since multiplication of corresponding sides of a congruence is still
a congruence, we have

Example VI

Example
Show that
n n 2
>0 (3]
i=1 i=1
for all n > 1.

The base case is trivial since 13 = (1)2.

The inductive hypothesis will assume that it holds for some k& > 1:

L)

i=1

z-zF=y.y*¥ (mod m)
And so
2* = L (mod m)
O
Example VI
Continued
Fact

By another standard induction proof (see the text) the summation
of natural numbers up to n is

zn:i* n(n+1)
)
i=1

We now consider the summation for (k + 1):

k+1

k
D=+ (k1)
i=1 i=1

Example VII

The Bad Example

Consider this “proof” that all of you will receive the same grade.

Proof.

Let P(n) be the statement that every set of n students receives
the same grade. Clearly P(1) is true, so the base case is satisfied.

Now assume that P(k — 1) is true. Given a group of k students,
apply P(k — 1) to the subset {s1, s2,...sk—1}. Now, separately
apply the inductive hypothesis to the subset {s2,s3,...,sk}.

Combining these two facts tells us that P(k) is true. Thus, P(n)
is true for all students. 0

Example VI
Continued
k+1 2
41
Zyj?’ = (@) +(k+1)3
i=1
(K (k +1)%) +4(k +1)°
- 5
(k+1)2 [k* + 4k + 4]
- 5
(k+1)%(k +2)?
-
(D) (E+2)\?
B 2
So by the PMI, the equality holds. |
Example VII

The Bad Example - Continued

» The mistake is not the base case, P(1) is true.

» Also, it is the case that, say P(73) — P(74), so this cannot
be the mistake.

The error is in P(1) — P(2) which is certainly not true; we cannot
combine the two inductive hypotheses to get P(2).




Strong Induction |

Another form of induction is called the “strong form”.
Despite the name, it is not a stronger proof technique.

In fact, we have the following.
Lemma

The following are equivalent.

> The Well Ordering Principle
» The Principle of Mathematical Induction

» The Principle of Mathematical Induction, Strong Form

Strong Induction Il

Theorem (Principle of Mathematical Induction (Strong Form))

Given a statement P concerning the integer n, suppose

1. P is true for some particular integer ng; P(ng) = 1.

2. If k > ng is any integer and P is true for all integers [ in the
range ng < | < k, then it is true also for k.

Then P is true for all integers n > ny; i.e.
V(n > ng)P(n)

is true.

Example

Derivatives

Example
Show that for all n > 1 and f(z) = 2",

/(@) = na"?

Verifying the base case for n = 1 is straightforward;

h—0 h h—0 h

Example

Continued

Now assume that the inductive hypothesis holds for some k; i.e.
for f(z) = a*,

(@) = katt
Now consider fo(x) = zF+t1 = 2 . & Using the product rule we
observe that

fila) = @) - +ak - (@)

From the inductive hypothesis, the first derivative is kz*=1 and
the base case gives us the second derivative.  Thus,

fix) = kablox4ab1
ka4 2F
(k+1)z*

Strong Form Example

Fundamental Theorem of Arithmetic

Recall that the Fundamental Theorem of Arithmetic states that
any integer n > 2 can be written as a unique product of primes.

We'll use the strong form of induction to prove this.

Let P(n) be the statement “n can be written as a product of
primes.”

Clearly, P(2) is true since 2 is a prime itself. Thus the base case
holds.

Strong Form Example

Fundamental Theorem of Arithmetic - Continued

We make our inductive hypothesis. Here we assume that the
predicate P holds for all integers less than some integer k > 2; i.e.
we assume that

P(2)ANP(3)A---AP(k)

is true.

We want to show that this implies P(k + 1) holds. We consider
two cases.

If k4 1 is prime, then P(k + 1) holds and we are done.

Else, k + 1 is a composite and so it has factors u, v such that
2 <wu,v < k+ 1 such that

u-v=k+1




Strong Form Example

Fundamental Theorem of Arithmetic - Continued

We now apply the inductive hypothesis; both u and v are less than
k + 1 so they can both be written as a unique product of primes;

u=Tp o=TIw
i J
Therefore,
k+1= (sz') 117
i J

and so by the strong form of the PMI, P(k + 1) holds. O

Strong Form Example
GCD

Recall the following.

Lemma

If a,b € N are such that gcd(a,b) = 1 then there are integers s,t
such that
ged(a,b) =1 =sa+tb

We will prove this using the strong form of induction.

Strong Form Example
GCD

Let P(n) be the statement

a,be NAged(a,b) =1ANa+b=n=3s,t € Z,as+th=1
Our base case here is when n =2 since a =b = 1.
For s =1,t = 0, the statement P(2) is satisfied since

sa+bt=1-1+1-0=1

Strong Form Example
GCD

We now form the inductive hypothesis. Suppose n € N,n > 2 and
assume that P(k) is true for all k with 2 < k <n.

Now suppose that for a,b € N,

ged(a,b) =1Aa+b=n+1

We consider three cases.

Strong Form Example
GCD

Casela=10>
In this case

ged(a,b) = ged(a,a) by definition
= a by definition
=1 by assumption

Therefore, since the ged is one, it must be the case thata =b=1
and so we simply have the base case, P(2).

Strong Form Example
GCD

Case2a<b

Since b > a, it follows that b —a > 0 and so
ged(a,b) = ged(a,b—a) =1

(Why?)

Furthermore,

2<a+(b-a)=n+1-a<n




Strong Form Example
GCD

Since a + (b — a) < n, we can apply the inductive hypothesis and
conclude that P(n+1 —a) = P(a+ (b— a)) is true.

This implies that there exist integers sg, o such that
aso+ (b—a)tp =1

and so
a(So — to) + bty =1

So for s = sg — tg and ¢t =ty we get
as+bt=1

Thus, P(n + 1) is established for this case.

Strong Form Example
GCD

Case 3 a > b This is completely symmetric to case 2; we use a — b
instead of b — a.

Since all three cases handle every possibility, we've established that
P(n+1) is true and so by the strong PMI, the lemma holds. [




