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Notes

Introduction

How can we prove the following quantified statement?

∀s ∈ SP (x)

I For a finite set S = {s1, s2, . . . , sn}, we can prove that P (x)
holds for each element because of the equivalence,

P (s1) ∧ P (s2) ∧ · · · ∧ P (sn)

I We can use universal generalization for infinite sets.

I Another, more sophisticated way is to use Induction.

Notes

What is Induction?

I If a statement P (n0) is true for some nonnegative integer; say
n0 = 1.

I Also suppose that we are able to prove that if P (k) is true for
k ≥ n0, then P (k + 1) is also true;

P (k) → P (k + 1)

I It follows from these two statements that P (n) is true for all
n ≥ n0. I.e.

∀n ≥ n0P (n)

This is the basis of the most widely used proof technique:
Induction.

Notes



The Well Ordering Principle I

Why is induction a legitimate proof technique?

At its heart is the Well Ordering Principle.

Theorem (Principle of Well Ordering)

Every nonempty set of nonnegative integers has a least element.

Since every such set has a least element, we can form a base case.

We can then proceed to establish that the set of integers n ≥ n0

such that P (n) is false is actually empty.

Thus, induction (both “weak” and “strong” forms) are logical
equivalences of the well-ordering principle.

Notes

Another View I

To look at it another way, assume that the statements

P (n0) (1)

P (k) → P (k + 1) (2)

are true. We can now use a form of universal generalization as
follows.

Say we choose an element from the universe of discourse c. We
wish to establish that P (c) is true. If c = n0 then we are done.

Notes

Another View II

Otherwise, we apply (??) above to get

P (n0) ⇒ P (n0 + 1)
⇒ P (n0 + 2)
⇒ P (n0 + 3)
· · ·
⇒ P (c− 1)
⇒ P (c)

Via a finite number of steps (c− n0), we get that P (c) is true.
Since c was arbitrary, the universal generalization is established.

∀n ≥ n0P (n)

Notes



Induction I
Formal Definition

Theorem (Principle of Mathematical Induction)

Given a statement P concerning the integer n, suppose

1. P is true for some particular integer n0; P (n0) = 1.

2. If P is true for some particular integer k ≥ n0 then it is true
for k + 1.

Then P is true for all integers n ≥ n0, that is

∀n ≥ n0P (n)

is true.

Notes

Induction II
Formal Definition

I Showing that P (n0) holds for some initial integer n0 is called
the Basis Step.

I Showing the implication P (k) → P (k + 1) for every k ≥ n0 is
called the Induction Step.

I The assumption P (nk) itself is called the inductive hypothesis.

I Together, induction can be expressed as an inference rule.(
P (n0) ∧ ∀k ≥ n0P (k) → P (k + 1)

)
→ ∀n ≥ n0P (n)

Notes

Example I

Example

Prove that n2 ≤ 2n for all n ≥ 5 using induction.

We formalize the statement as P (n) = (n2 ≤ 2n).

Our base case here is for n = 5. We directly verify that

25 = 52 ≤ 25 = 32

and so P (5) is true and thus the basic step holds.

Notes



Example I
Continued

We now perform the induction step and assume that P (k) (the
inductive hypothesis) is true. Thus,

k2 ≤ 2k

Multiplying by 2 we get

2k2 ≤ 2k+1

By a separate proof, we can show that for all k ≥ 5,

2k2 ≥ k2 + 5k > k2 + 2k + 1 = (k + 1)2

Using transitivity, we get that

(k + 1)2 < 2k2 ≤ 2k+1

Thus, P (k + 1) holds

Notes

Example II

Example

Prove that for any n ≥ 1,

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6

The base case is easily verified;

1 = 12 =
(1 + 1)(2 + 1)

6
= 1

Now assume that P (k) holds for some k ≥ 1, so

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6

Notes

Example II
Continued

We want to show that P (k + 1) is true; that is, we want to show
that

k+1∑
i=1

i2 =
(k + 1)(k + 2)(2k + 3)

6

However, observe that this sum can be written

k+1∑
i=1

i2 = 12 + 22 + · · · k2 + (k + 1)2 =
k∑

i=1

i2 + (k + 1)2

Notes



Example II
Continued

k+1∑
i=1

i2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2 (∗)

=
k(k + 1)(2k + 1)

6
+

6(k + 1)2

6

=
(k + 1) [k(2k + 1) + 6(k + 1)]

6

=
(k + 1)

[
2k2 + 7k + 6

]
6

=
(k + 1)(k + 2)(2k + 3)

6
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Example II
Continued

Thus we have that

k+1∑
i=1

=
(k + 1)(k + 2)(2k + 3)

6

so we’ve established that P (k) → P (k + 1).

Thus, by the principle of mathematical induction,

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
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Example III

Example

Prove that for any integer n ≥ 1, 22n − 1 is divisible by 3.

Define P (n) to be the statement that 3 | (22n − 1).

Again, we note that the base case is n = 1, so we have that

22·1 − 1 = 3

which is certainly divisible by 3.

We next assume that P (k) holds. That is, we assume that there
exists an integer ` such that

22k − 1 = 3`

Notes



Example III
Continued

Note that
22(k+1) − 1 = 4 · 22k − 1

By the inductive hypothesis, 22k = 3`+1, applying this we get that

22(k+1) − 1 = 4(3` + 1)− 1
= 12` + 4− 1
= 12` + 3
= 3(4` + 1)

And we are done, since 3 divides the RHS, it must divide the LHS.
Thus, by the principle of mathematical induction, 22n − 1 is
divisible by 3 for all n ≥ 1.

Notes

Example IV

Example

Prove that n! > 2n for all n ≥ 4

The base case holds since 24 = 4! > 24 = 16.

We now make our inductive hypothesis and assume that

k! > 2k

for some integer k ≥ 4

Since k ≥ 4, it certainly is the case that k + 1 > 2. Therefore, we
have that

(k + 1)! = (k + 1)k! > 2 · 2k = 2k+1

So by the principle of mathematical induction, we have our desired
result.

Notes

Example V

Example

Let m ∈ Z and suppose that x ≡ y (mod m). Then for all n ≥ 1,

xn ≡ yn (mod m)

The base case here is trivial as it is encompassed by the
assumption.

Now assume that it is true for some k ≥ 1;

xk ≡ yk (mod m)

Notes



Example V
Continued

Since multiplication of corresponding sides of a congruence is still
a congruence, we have

x · xk ≡ y · yk (mod m)

And so
xk+1 ≡ yk+1 (mod m)

Notes

Example VI

Example

Show that
n∑

i=1

i3 =

(
n∑

i=1

i

)2

for all n ≥ 1.

The base case is trivial since 13 = (1)2.

The inductive hypothesis will assume that it holds for some k ≥ 1:

k∑
i=1

i3 =

(
k∑

i=1

i

)2

Notes

Example VI
Continued

Fact

By another standard induction proof (see the text) the summation
of natural numbers up to n is

n∑
i=1

i =
n(n + 1)

2

We now consider the summation for (k + 1):

k+1∑
i=1

i3 =
k∑

i=1

i3 + (k + 1)3

Notes



Example VI
Continued

k+1∑
i=1

i3 =
(

k(k + 1)
2

)2

+ (k + 1)3

=
(k2(k + 1)2) + 4(k + 1)3

22

=
(k + 1)2

[
k2 + 4k + 4

]
22

=
(k + 1)2(k + 2)2

22

=
(

(k + 1)(k + 2)
2

)2

So by the PMI, the equality holds.

Notes

Example VII
The Bad Example

Consider this “proof” that all of you will receive the same grade.

Proof.

Let P (n) be the statement that every set of n students receives
the same grade. Clearly P (1) is true, so the base case is satisfied.

Now assume that P (k − 1) is true. Given a group of k students,
apply P (k − 1) to the subset {s1, s2, . . . sk−1}. Now, separately
apply the inductive hypothesis to the subset {s2, s3, . . . , sk}.

Combining these two facts tells us that P (k) is true. Thus, P (n)
is true for all students.

Notes

Example VII
The Bad Example - Continued

I The mistake is not the base case, P (1) is true.

I Also, it is the case that, say P (73) → P (74), so this cannot
be the mistake.

The error is in P (1) → P (2) which is certainly not true; we cannot
combine the two inductive hypotheses to get P (2).

Notes



Strong Induction I

Another form of induction is called the “strong form”.

Despite the name, it is not a stronger proof technique.

In fact, we have the following.

Lemma

The following are equivalent.

I The Well Ordering Principle

I The Principle of Mathematical Induction

I The Principle of Mathematical Induction, Strong Form

Notes

Strong Induction II

Theorem (Principle of Mathematical Induction (Strong Form))

Given a statement P concerning the integer n, suppose

1. P is true for some particular integer n0; P (n0) = 1.

2. If k > n0 is any integer and P is true for all integers l in the
range n0 ≤ l < k, then it is true also for k.

Then P is true for all integers n ≥ n0; i.e.

∀(n ≥ n0)P (n)

is true.

Notes

Example
Derivatives

Example

Show that for all n ≥ 1 and f(x) = xn,

f ′(x) = nxn−1

Verifying the base case for n = 1 is straightforward;

f ′(x) = lim
h→0

f(x0 + h)− f(x0)
h

= lim
h→0

(x0 + h)− x0

h
= 1 = 1x0

Notes



Example
Continued

Now assume that the inductive hypothesis holds for some k; i.e.
for f(x) = xk,

f ′(x) = kxk−1

Now consider f2(x) = xk+1 = xk · x. Using the product rule we
observe that

f ′2(x) = (xk)′ · x + xk · (x′)

From the inductive hypothesis, the first derivative is kxk−1 and
the base case gives us the second derivative. Thus,

f ′2(x) = kxk−1 · x + xk · 1
= kxk + xk

= (k + 1)xk

Notes

Strong Form Example
Fundamental Theorem of Arithmetic

Recall that the Fundamental Theorem of Arithmetic states that
any integer n ≥ 2 can be written as a unique product of primes.

We’ll use the strong form of induction to prove this.

Let P (n) be the statement “n can be written as a product of
primes.”

Clearly, P (2) is true since 2 is a prime itself. Thus the base case
holds.

Notes

Strong Form Example
Fundamental Theorem of Arithmetic - Continued

We make our inductive hypothesis. Here we assume that the
predicate P holds for all integers less than some integer k ≥ 2; i.e.
we assume that

P (2) ∧ P (3) ∧ · · · ∧ P (k)

is true.

We want to show that this implies P (k + 1) holds. We consider
two cases.

If k + 1 is prime, then P (k + 1) holds and we are done.

Else, k + 1 is a composite and so it has factors u, v such that
2 ≤ u, v < k + 1 such that

u · v = k + 1

Notes



Strong Form Example
Fundamental Theorem of Arithmetic - Continued

We now apply the inductive hypothesis; both u and v are less than
k + 1 so they can both be written as a unique product of primes;

u =
∏

i

pi, v =
∏
j

pj

Therefore,

k + 1 =

(∏
i

pi

)∏
j

pj


and so by the strong form of the PMI, P (k + 1) holds.
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Strong Form Example
GCD

Recall the following.

Lemma

If a, b ∈ N are such that gcd(a, b) = 1 then there are integers s, t
such that

gcd(a, b) = 1 = sa + tb

We will prove this using the strong form of induction.

Notes

Strong Form Example
GCD

Let P (n) be the statement

a, b ∈ N ∧ gcd(a, b) = 1 ∧ a + b = n ⇒ ∃s, t ∈ Z, as + tb = 1

Our base case here is when n = 2 since a = b = 1.

For s = 1, t = 0, the statement P (2) is satisfied since

sa + bt = 1 · 1 + 1 · 0 = 1

Notes



Strong Form Example
GCD

We now form the inductive hypothesis. Suppose n ∈ N, n ≥ 2 and
assume that P (k) is true for all k with 2 ≤ k ≤ n.

Now suppose that for a, b ∈ N,

gcd(a, b) = 1 ∧ a + b = n + 1

We consider three cases.

Notes

Strong Form Example
GCD

Case 1 a = b

In this case

gcd(a, b) = gcd(a, a) by definition
= a by definition
= 1 by assumption

Therefore, since the gcd is one, it must be the case that a = b = 1
and so we simply have the base case, P (2).
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Strong Form Example
GCD

Case 2 a < b

Since b > a, it follows that b− a > 0 and so

gcd(a, b) = gcd(a, b− a) = 1

(Why?)

Furthermore,

2 ≤ a + (b− a) = n + 1− a ≤ n

Notes



Strong Form Example
GCD

Since a + (b− a) ≤ n, we can apply the inductive hypothesis and
conclude that P (n + 1− a) = P (a + (b− a)) is true.

This implies that there exist integers s0, t0 such that

as0 + (b− a)t0 = 1

and so
a(s0 − t0) + bt0 = 1

So for s = s0 − t0 and t = t0 we get

as + bt = 1

Thus, P (n + 1) is established for this case.
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Strong Form Example
GCD

Case 3 a > b This is completely symmetric to case 2; we use a− b
instead of b− a.

Since all three cases handle every possibility, we’ve established that
P (n + 1) is true and so by the strong PMI, the lemma holds.

Notes


