Induction

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry

Fall 2007

Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 4.1 & 4.2 of Rosen cse235@cse.unl.edu

Introduction

How can we prove the following quantified statement?

 $\forall s \in SP(x)$

 \blacktriangleright For a finite set $S=\{s_1,s_2,\ldots,s_n\},$ we can prove that P(x) holds for each element because of the equivalence,

 $P(s_1) \wedge P(s_2) \wedge \cdots \wedge P(s_n)$

- ▶ We can use *universal generalization* for infinite sets.
- Another, more sophisticated way is to use *Induction*.

What is Induction?

- \blacktriangleright If a statement $P(n_0)$ is true for some nonnegative integer; say $n_0=1.$
- Also suppose that we are able to prove that if P(k) is true for $k \ge n_0$, then P(k+1) is also true;

 $P(k) \rightarrow P(k+1)$

 \blacktriangleright It follows from these two statements that P(n) is true for all $n \geq n_0.$ I.e.

 $\forall n \ge n_0 P(n)$

This is the basis of the most widely used proof technique: *Induction*.

Notes

The Well Ordering Principle I

Why is induction a legitimate proof technique?

At its heart is the Well Ordering Principle.

Theorem (Principle of Well Ordering)

Every nonempty set of nonnegative integers has a least element.

Since every such set has a least element, we can form a *base case*.

We can then proceed to establish that the set of integers $n \ge n_0$ such that P(n) is false is actually empty.

Thus, induction (both "weak" and "strong" forms) are logical equivalences of the well-ordering principle.

Another View I

To look at it another way, assume that the statements

$$P(n_0) \tag{1}$$

$$P(k) \rightarrow P(k+1) \tag{2}$$

are true. We can now use a form of universal generalization as follows.

Say we choose an element from the universe of discourse c. We wish to establish that P(c) is true. If $c=n_0$ then we are done.

Another View II

Otherwise, we apply $(\ref{eq:second})$ above to get

$$P(n_0) \Rightarrow P(n_0 + 1)$$

$$\Rightarrow P(n_0 + 2)$$

$$\Rightarrow P(n_0 + 3)$$

...

$$\Rightarrow P(c - 1)$$

$$\Rightarrow P(c)$$

Via a finite number of steps $(c - n_0)$, we get that P(c) is true. Since c was arbitrary, the universal generalization is established.

 $\forall n \ge n_0 P(n)$

Induction I Formal Definition

Theorem (Principle of Mathematical Induction)

Given a statement P concerning the integer n, suppose

- 1. *P* is true for some particular integer n_0 ; $P(n_0) = 1$.
- 2. If P is true for some particular integer $k \ge n_0$ then it is true for k+1.

Then P is true for all integers $n \ge n_0$, that is

 $\forall n \ge n_0 P(n)$

is true.

Induction II Formal Definition

- Showing that $P(n_0)$ holds for some initial integer n_0 is called the Basis Step.
- \blacktriangleright Showing the implication $P(k) \rightarrow P(k+1)$ for every $k \geq n_0$ is called the Induction Step.
- The assumption $P(n_k)$ itself is called the *inductive hypothesis*.
- ► Together, induction can be expressed as an inference rule.

 $(P(n_0) \land \forall k \ge n_0 P(k) \to P(k+1)) \to \forall n \ge n_0 P(n)$

Example I

Example

Prove that $n^2 \leq 2^n$ for all $n \geq 5$ using induction.

We formalize the statement as $P(n) = (n^2 \le 2^n)$.

Our base case here is for n = 5. We directly verify that

 $25 = 5^2 \le 2^5 = 32$

and so ${\cal P}(5)$ is true and thus the basic step holds.

Note	es				
_					
_		 	 	 	
_		 	 	 	
_		 	 	 	
-		 	 	 	

Notes

Example I

. Continued

We now perform the induction step and $\mbox{assume that } P(k)$ (the inductive hypothesis) is true. Thus,

 $k^2 \leq 2^k$

Multiplying by 2 we get

 $2k^2 \le 2^{k+1}$

By a separate proof, we can show that for all $k\geq 5,$

$$2k^2 \ge k^2 + 5k > k^2 + 2k + 1 = (k+1)^2$$

Using transitivity, we get that

 $(k+1)^2 < 2k^2 \le 2^{k+1}$

Thus, ${\cal P}(k+1)$ holds

Example II

Example

Prove that for any $n \geq 1$,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

The base case is easily verified;

$$1 = 1^2 = \frac{(1+1)(2+1)}{6} = 1$$

Now assume that P(k) holds for some $k \ge 1$, so

$$\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$$

Example II Continued

We want to show that P(k+1) is true; that is, we want to show that

$$\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

However, observe that this sum can be written

$$\sum_{i=1}^{k+1} i^2 = 1^2 + 2^2 + \dots + k^2 + (k+1)^2 = \sum_{i=1}^k i^2 + (k+1)^2$$

No	tes			

Example II
Continued
$$\sum_{i=1}^{k+1} i^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \quad (*)$$

$$= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)[2k^2 + 7k + 6]}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

Example II Continued

Thus we have that

$$\sum_{i=1}^{k+1} = \frac{(k+1)(k+2)(2k+3)}{6}$$

so we've established that $P(k) \rightarrow P(k+1)$.

Thus, by the principle of mathematical induction,

$$\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$

Example III

Example

Prove that for any integer $n \ge 1$, $2^{2n} - 1$ is divisible by 3.

Define P(n) to be the statement that $3 \mid (2^{2n} - 1)$.

Again, we note that the base case is n=1, so we have that

 $2^{2 \cdot 1} - 1 = 3$

which is certainly divisible by 3.

We next assume that P(k) holds. That is, we assume that there exists an integer ℓ such that

 $2^{2k} - 1 = 3\ell$

Example III Continued

Note that

 $2^{2(k+1)} - 1 = 4 \cdot 2^{2k} - 1$

By the inductive hypothesis, $2^{2k}=3\ell+1,$ applying this we get that

$$2^{2(k+1)} - 1 = 4(3\ell + 1) - 1$$

= $12\ell + 4 - 1$
= $12\ell + 3$
= $3(4\ell + 1)$

And we are done, since 3 divides the RHS, it must divide the LHS. Thus, by the principle of mathematical induction, $2^{2n}-1$ is divisible by 3 for all $n\geq 1.$

Example IV

Example

Prove that $n! > 2^n$ for all $n \ge 4$

The base case holds since $24 = 4! > 2^4 = 16$.

We now make our inductive hypothesis and assume that

$$k! > 2^k$$

for some integer $k\geq 4$

Since $k\geq 4,$ it certainly is the case that k+1>2. Therefore, we have that

 $(k+1)! = (k+1)k! > 2 \cdot 2^k = 2^{k+1}$

So by the principle of mathematical induction, we have our desired result. $\hfill \square$

Example V

Example

Let $m \in \mathbb{Z}$ and suppose that $x \equiv y \pmod{m}$. Then for all $n \ge 1$,

 $x^n \equiv y^n \pmod{m}$

The base case here is trivial as it is encompassed by the assumption. $\label{eq:case-star}$

Now assume that it is true for some $k \ge 1$;

$$x^k \equiv y^k \pmod{m}$$

Example VI

Example

Show that

 $\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2$

 $\text{ for all } n \geq 1.$

The base case is trivial since $1^3 = (1)^2$.

The inductive hypothesis will assume that it holds for some $k \ge 1$:

 $\sum_{i=1}^{k} i^3 = \left(\sum_{i=1}^{k} i\right)^2$

Example VI

Continued

Fact

By another standard induction proof (see the text) the summation of natural numbers up to \boldsymbol{n} is

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

We now consider the summation for $\left(k+1\right)\!\!:$

$$\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^k i^3 + (k+1)^3$$

Example VI
Continued
$$\sum_{i=1}^{k+1} i^3 = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3 \\
= \frac{(k^2(k+1)^2) + 4(k+1)^3}{2^2} \\
= \frac{(k+1)^2 [k^2 + 4k + 4]}{2^2} \\
= \frac{(k+1)^2(k+2)^2}{2^2} \\
= \left(\frac{(k+1)(k+2)}{2}\right)^2$$
So by the PMI, the equality holds.

Example VII The Bad Example

Consider this "proof" that all of you will receive the same grade.

Proof.

Let P(n) be the statement that every set of n students receives the same grade. Clearly P(1) is true, so the base case is satisfied.

Now assume that P(k-1) is true. Given a group of k students, apply P(k-1) to the subset $\{s_1, s_2, \ldots, s_{k-1}\}$. Now, separately apply the inductive hypothesis to the subset $\{s_2, s_3, \ldots, s_k\}$.

Combining these two facts tells us that P(k) is true. Thus, P(n) is true for all students. $\hfill \Box$

Example VII The Bad Example - Continued

- \blacktriangleright The mistake is not the base case, P(1) is true.
- \blacktriangleright Also, it is the case that, say $P(73) \to P(74),$ so this cannot be the mistake.

The error is in $P(1)\to P(2)$ which is certainly not true; we cannot combine the two inductive hypotheses to get P(2).

Strong Induction I

Another form of induction is called the "strong form".

Despite the name, it is *not* a *stronger* proof technique.

In fact, we have the following.

Lemma

The following are equivalent.

- ► The Well Ordering Principle
- The Principle of Mathematical Induction
- ▶ The Principle of Mathematical Induction, Strong Form

Strong Induction II

Theorem (Principle of Mathematical Induction (Strong Form))

Given a statement P concerning the integer $n, \ {\rm suppose}$

- 1. *P* is true for some particular integer n_0 ; $P(n_0) = 1$.

Then P is true for all integers $n \ge n_0$; i.e.

 $\forall (n \ge n_0) P(n)$

is true.

Example

Derivatives

Example

Show that for all $n \ge 1$ and $f(x) = x^n$,

$$f'(x) = nx^{n-1}$$

Verifying the base case for $n=1\ {\rm is\ straightforward};$

$$f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0 + h) - x_0}{h} = 1 = 1x^0$$

Notes

Example

Continued

Now assume that the inductive hypothesis holds for some k; i.e. for $f(x)=x^k,$ $f'(x)=kx^{k-1}$

$$f'(x) = kx^{k-1}$$

Now consider $f_2(x) = x^{k+1} = x^k \cdot x.$ Using the product rule we observe that

 $f_2'(x) = (x^k)' \cdot x + x^k \cdot (x')$

From the inductive hypothesis, the first derivative is kx^{k-1} and the base case gives us the second derivative. Thus,

$$\begin{array}{rcl} f_{2}'(x) & = & kx^{k-1} \cdot x + x^{k} \cdot 1 \\ & = & kx^{k} + x^{k} \\ & = & (k+1)x^{k} \end{array}$$

Strong Form Example

Fundamental Theorem of Arithmetic

Recall that the Fundamental Theorem of Arithmetic states that any integer $n\geq 2$ can be written as a unique product of primes.

We'll use the strong form of induction to prove this.

Let $P(\boldsymbol{n})$ be the statement " \boldsymbol{n} can be written as a product of primes."

Clearly, $P(2) \mbox{ is true since } 2 \mbox{ is a prime itself. Thus the base case holds.}$

Strong Form Example

Fundamental Theorem of Arithmetic - Continued

We make our inductive hypothesis. Here we assume that the predicate P holds for all integers less than some integer $k\geq 2;$ i.e. we assume that

$$P(2) \wedge P(3) \wedge \cdots \wedge P(k)$$

is true.

We want to show that this implies ${\cal P}(k+1)$ holds. We consider two cases.

If k+1 is prime, then P(k+1) holds and we are done.

Else, k+1 is a composite and so it has factors u,v such that $2 \leq u, v < k+1$ such that

 $u\cdot v=k+1$

Notes

Strong Form Example

Fundamental Theorem of Arithmetic - Continued

We now apply the inductive hypothesis; both u and v are less than k+1 so they can both be written as a unique product of primes;

$$u = \prod_{i} p_i, \quad v = \prod_{j} p_j$$

Therefore,

$$k+1 = \left(\prod_{i} p_{i}\right) \left(\prod_{j} p_{j}\right)$$

and so by the strong form of the PMI, P(k+1) holds.

Strong Form Example GCD

Recall the following.

Lemma

If $a,b\in\mathbb{N}$ are such that $\gcd(a,b)=1$ then there are integers s,t such that gcd(a,b)=1=sa+tb

We will prove this using the strong form of induction.

Strong Form Example

Let P(n) be the statement

 $a, b \in \mathbb{N} \land \gcd(a, b) = 1 \land a + b = n \Rightarrow \exists s, t \in \mathbb{Z}, as + tb = 1$

Our base case here is when n = 2 since a = b = 1.

For s=1,t=0, the statement ${\cal P}(2)$ is satisfied since

$$sa + bt = 1 \cdot 1 + 1 \cdot 0 = 1$$

$\begin{array}{c} \text{Strong Form Example} \\ _{\text{GCD}} \end{array}$

We now form the inductive hypothesis. Suppose $n \in \mathbb{N}, n \ge 2$ and assume that P(k) is true for all k with $2 \le k \le n$.

Now suppose that for $a, b \in \mathbb{N}$,

$$gcd(a,b) = 1 \land a + b = n + 1$$

We consider three cases.

Strong Form Example

 $\textbf{Case 1} \ a = b$

In this case

gcd(a, b)	=	gcd(a, a) $ a $ $ 1$	by definition by definition by assumption
	=	1	by assumption

Therefore, since the \gcd is one, it must be the case that a=b=1 and so we simply have the base case, P(2).

Case 2 *a* < *b*

GCD

Strong Form Example

Since b > a, it follows that b - a > 0 and so

 $\gcd(a,b)=\gcd(a,b-a)=1$

(Why?)

Furthermore,

 $2 \leq a + (b-a) = n+1 - a \leq n$

Notes			

Strong Form Example GCD

Since $a+(b-a)\leq n,$ we can apply the inductive hypothesis and conclude that P(n+1-a)=P(a+(b-a)) is true.

This implies that there exist integers $\boldsymbol{s}_0, \boldsymbol{t}_0$ such that

$$as_0 + (b-a)t_0 = 1$$

and so

So for $s = s_0 - t_0$ and $t = t_0$ we get

as+bt=1

 $a(s_0 - t_0) + bt_0 = 1$

Thus, ${\cal P}(n+1)$ is established for this case.

Strong Form Example

GCD

Case 3 a > b This is completely symmetric to case 2; we use a - b instead of b - a.

Since all three cases handle every possibility, we've established that P(n+1) is true and so by the strong PMI, the lemma holds. $\hfill\square$

