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Notes

Introduction

How can we prove the following quantified statement?

Vs € SP(x)

> For a finite set S = {s1,52,...,5,}, we can prove that P(z)
holds for each element because of the equivalence,

P(s1) A P(s2) A+ A P(sn)

» We can use universal generalization for infinite sets.

» Another, more sophisticated way is to use Induction.

Notes

What is Induction?

» If a statement P(ny) is true for some nonnegative integer; say
ng = 1.

» Also suppose that we are able to prove that if P(k) is true for
k > ng, then P(k + 1) is also true;

P(k) — P(k +1)

> |t follows from these two statements that P(n) is true for all

n >mng. le.
Vn > ngP(n)

This is the basis of the most widely used proof technique:
Induction.

Notes




The Well Ordering Principle |

Why is induction a legitimate proof technique?

At its heart is the Well Ordering Principle.
Theorem (Principle of Well Ordering)

Every nonempty set of nonnegative integers has a least element.

Since every such set has a least element, we can form a base case.

We can then proceed to establish that the set of integers n > nyg

such that P(n) is false is actually empty.

Thus, induction (both “weak” and “strong” forms) are logical
equivalences of the well-ordering principle.

Notes

Another View |

To look at it another way, assume that the statements

P(no)
P(k) — Pk+1)

are true. We can now use a form of universal generalization as
follows.

Say we choose an element from the universe of discourse c. We
wish to establish that P(c) is true. If ¢ =ng then we are done.

Notes

Another View Il

Otherwise, we apply (??) above to get

P(ng) = P(no+1)
= P(TLO + 2)
= P(YL() + 3)
= P(c—1)
= P(c)

Via a finite number of steps (¢ — ng), we get that P(c) is true.
Since ¢ was arbitrary, the universal generalization is established.

Vn > nogP(n)

Notes




Induction |

Formal Definition

Theorem (Principle of Mathematical Induction)

Given a statement P concerning the integer n, suppose

1. P is true for some particular integer ng; P(ng) = 1.

2. If P is true for some particular integer k > nq then it is true
for k + 1.

Then P is true for all integers n > ny, that is
Vn > ngP(n)

is true.

Notes

Induction Il

Formal Definition

» Showing that P(ng) holds for some initial integer ng is called
the Basis Step.

» Showing the implication P(k) — P(k + 1) for every k > ng is
called the Induction Step.

» The assumption P(ny) itself is called the inductive hypothesis.

» Together, induction can be expressed as an inference rule.

(P(no) AVE = ngP(k) — P(k+1)) — Vn > noP(n)

Notes

Example |

Example
Prove that n2 < 2" for all n > 5 using induction.

We formalize the statement as P(n) = (n? < 27).
Our base case here is for n = 5. We directly verify that
25 =52 <25 =32

and so P(5) is true and thus the basic step holds.

Notes




Example |

Continued

We now perform the induction step and assume that P(k) (the
inductive hypothesis) is true. Thus,

K < 2
Multiplying by 2 we get
22 < 2+ 1
By a separate proof, we can show that for all k > 5,
2k% > k2 + 5k > k2 + 2k + 1= (k +1)*
Using transitivity, we get that
(k+1)? < 22 < 2k+L

Thus, P(k + 1) holds O

Notes

Example Il

Example
Prove that for any n > 1,

o nn+1)2n+1)

=~
6

1

n

i

The base case is easily verified;
2 14+1)(2+1) _

1=
6

1

Now assume that P(k) holds for some k > 1, so
k
S Kk + 1)(2k + 1)

6

i=1

Notes

Example |1

Continued

We want to show that P(k + 1) is true; that is, we want to show
that .
fiQ (k4 1)(k+2)(2k +3)
N 6

i=1
However, observe that this sum can be written

k+1 k
S 2=12 424 R (k12 =Y 2 (k1)
i=1 =1

Notes




Notes

Example I
Continued
k+1
Y- Mk+%?k+n+%k+nz(ﬂ
i=1
k(k+1)(2k+1)  6(k+1)2
- 6 %
(k1) [EQE+1)+6(k+1)
N 6
(k4 1) [2k? + Tk + 6]
N 6
_ (k+1)(k+2)(2k +3)
N 6
Example Il
Continued
Thus we have that
354(k+1Xk+%@k+®
N 6
i=1

so we've established that P(k) — P(k +1).

Thus, by the principle of mathematical induction,

En:iQ _nn+1)(2n+1)
B 6
i=1

Notes

Example Il

Example

Prove that for any integer n > 1, 22" — 1 is divisible by 3.

Define P(n) to be the statement that 3 | (22" —

1)

Again, we note that the base case is n = 1, so we have that

221 _1=3

which is certainly divisible by 3.

We next assume that P(k) holds. That is, we assume that there

exists an integer ¢ such that

2% —1=3¢

Notes




Example Il

Continued

Note that
92k+1) _ 1 — .92k _ 1

By the inductive hypothesis, 22 = 3¢+ 1, applying this we get that

22+ 1 = 4(3¢+1)—1
120+4-1
= 120+3
= 34L+1)

And we are done, since 3 divides the RHS, it must divide the LHS.
Thus, by the principle of mathematical induction, 22* — 1 is
divisible by 3 for all n > 1.

Notes

Example IV

Example

Prove that n! > 2™ for all n > 4

The base case holds since 24 = 4! > 2* = 16.

We now make our inductive hypothesis and assume that
k!> 2k

for some integer k > 4

Since k > 4, it certainly is the case that k + 1 > 2. Therefore, we
have that
(k+1)! = (k+ 1)kl > 2.2k = ok +!

So by the principle of mathematical induction, we have our desired
result. |

Notes

Example V

Example

Let m € Z and suppose that z =y (mod m). Then for all n > 1,

2" =y"  (mod m)

The base case here is trivial as it is encompassed by the
assumption.

Now assume that it is true for some k& > 1;

zF =y*  (mod m)

Notes




Example V

Continued

Since multiplication of corresponding sides of a congruence is still
a congruence, we have

Notes

z-2¥=y-y* (mod m)
And so
#* = F+1 (mod m)
O
Example VI
Example
Show that
n n 2
i=1 i=1
for all n > 1.

The base case is trivial since 13 = (1)2.

The inductive hypothesis will assume that it holds for some k > 1:

S5

i=1

Notes

Example VI

Continued

Fact

By another standard induction proof (see the text) the summation
of natural numbers up to n is

~ n(n+1)
di==5—

We now consider the summation for (k + 1):

k+1

k
St => P (k+ 1)
i=1 i=1

Notes




Example VI

Notes

Continued
k+1 . 2
d it = (Lk; U) + (k +1)3
i=1
(K2(k+1)%) +4(k +1)3
= 7
(k+1)% [k + 4k + 4]
= 5
(k+1)%(k + 2)?
=
(DR +2))
N 2
So by the PMI, the equality holds. |
Example VII

The Bad Example

Consider this “proof” that all of you will receive the same grade.

Proof.

Let P(n) be the statement that every set of n students receives
the same grade. Clearly P(1) is true, so the base case is satisfied.

Now assume that P(k — 1) is true. Given a group of k students,
apply P(k — 1) to the subset {s1, s2,...sx_1}. Now, separately

Notes

apply the inductive hypothesis to the subset {s2, s3, ..., sk}

Combining these two facts tells us that P(k) is true. Thus, P(n)

is true for all students. |
Example VII

The Bad Example - Continued

> The mistake is not the base case, P(1) is true.

> Also, it is the case that, say P(73) — P(74), so this cannot
be the mistake.

The error is in P(1) — P(2) which is certainly not true; we cannot
combine the two inductive hypotheses to get P(2).

Notes




Strong Induction |

Another form of induction is called the “strong form”.

Despite the name, it is not a stronger proof technique.

In fact, we have the following.

Lemma
The following are equivalent.

» The Well Ordering Principle
» The Principle of Mathematical Induction

» The Principle of Mathematical Induction, Strong Form

Notes

Strong Induction Il

Theorem (Principle of Mathematical Induction (Strong Form))

Given a statement P concerning the integer n, suppose

1. P is true for some particular integer ng; P(ng) = 1.

2. If k > ng is any integer and P is true for all integers | in the

range no <l < k, then it is true also for k.
Then P is true for all integers n > ny; i.e.
V(n > no)P(n)

is true.

Notes

Example

Derivatives

Example
Show that for all » > 1 and f(z) = 2",

f/(l‘) — TL.Z‘”71

Verifying the base case for n = 1 is straightforward;

F(a) = lim LEFEN = f@0) _ @oth) —a0

h—0 h h—0 h

Notes




Example

Continued

Now assume that the inductive hypothesis holds for some k; i.e.
for f(x) = z*,
(@) = ka""!

k+1 — gk . g, Using the product rule we

Now consider fa(z) = x
observe that

fo(a) = @) - + 2k - (@)

From the inductive hypothesis, the first derivative is kz*1 and
the base case gives us the second derivative.  Thus,

fi@) = kabF 1tz 4ok
= kat +2F
(k+1)a*

Notes

Strong Form Example

Fundamental Theorem of Arithmetic

Recall that the Fundamental Theorem of Arithmetic states that
any integer n > 2 can be written as a unique product of primes.

We'll use the strong form of induction to prove this.

Let P(n) be the statement “n can be written as a product of
primes.”

Clearly, P(2) is true since 2 is a prime itself. Thus the base case
holds.

Notes

Strong Form Example

Fundamental Theorem of Arithmetic - Continued

We make our inductive hypothesis. Here we assume that the
predicate P holds for all integers less than some integer k > 2; i.e.
we assume that

P2YAPB)A---NP(k)

is true.

We want to show that this implies P(k + 1) holds. We consider
two cases.

If k4 1 is prime, then P(k + 1) holds and we are done.

Else, k + 1 is a composite and so it has factors u, v such that
2 <wu,v < k+ 1 such that

u-v="Fk+1

Notes




Strong Form Example
Fundamental Theorem of Arithmetic - Continued

We now apply the inductive hypothesis; both u and v are less than
k 4 1 so they can both be written as a unique product of primes;

=TI o=TIn
i J
Therefore,
k+1= (H}L) Hpj
i J

and so by the strong form of the PMI, P(k + 1) holds. O

Notes

Strong Form Example
GCD

Recall the following.

Lemma

If a,b € N are such that ged(a,b) = 1 then there are integers s,t
such that
ged(a,b) =1 = sa+ tb

We will prove this using the strong form of induction.

Notes

Strong Form Example
GCD

Let P(n) be the statement

a,be NAged(a,b) =1Na+b=n=3s,t € Z,as+tb=1

Our base case here is when n =2 sincea = b= 1.

For s = 1,t = 0, the statement P(2) is satisfied since

sa+bt=1-1+1-0=1

Notes




Strong Form Example
GCD

We now form the inductive hypothesis. Suppose n € N,n > 2 and
assume that P(k) is true for all k with 2 <k <n.

Now suppose that for a,b € N,

ged(a,b) =1ANa+b=n+1

We consider three cases.

Notes

Strong Form Example
GCD

Casela=10
In this case

ged(a,b) = ged(a,a) by definition
= a by definition
=1 by assumption

Therefore, since the ged is one, it must be the case thata =b=1
and so we simply have the base case, P(2).

Notes

Strong Form Example
GCD

Case2a<b

Since b > a, it follows that b —a > 0 and so
ged(a,b) = ged(a,b—a) =1

(Why?)

Furthermore,

2<a+(b—a)=n+1-a<n

Notes




Strong Form Example
GCD

Since a 4+ (b — a) < n, we can apply the inductive hypothesis and
conclude that P(n+1 —a) = P(a+ (b—a)) is true.

This implies that there exist integers sg, tg such that
aso + (b* (L)t[] =1

and so
a(sg —to) +btp =1

So for s = s9 — tg and t =ty we get
as+bt =1

Thus, P(n + 1) is established for this case.

Notes

Strong Form Example
GCD

Case 3 a > b This is completely symmetric to case 2; we use a — b
instead of b — a.

Since all three cases handle every possibility, we've established that
P(n + 1) is true and so by the strong PMI, the lemma holds.  [J
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