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Introduction |

Graph theory was introduced in the 18th century by Leonhard
Euler via the Konigsberg bridge problem.

In Konigsberg (old Prussia), a river ran through town that
created an island and then split off into two parts.

Seven bridges were built so that people could easily get around.

Euler wondered, is it possible to walk around Konigsberg,
crossing every bridge exactly once?
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S To solve this problem, we need to model it mathematically.

CSE235 Specifically, we can define a graph whose vertices are the land
areas and whose edges are the bridges.
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CSE235 The question now becomes, does there exist a path in the
following graph such that every edge is traversed exactly once?
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Definition

A simple graph G = (V, E) is a 2-tuple with

Introduction

Clsss o V ={uv,va,...,v,} — a finite set of vertices.
Representations

A o E=V xV ={ej,e9,...,e,} — an unordered set of
R edges where each e; = (v,v’) is an unordered pair of
uller vertices, v,v’ € V.

Hamiltonian

Since V and E are sets, it makes sense to consider their
cardinality. As is standard, |V'| = n denotes the number of

vertices in G and |E| = m denotes the number of edges in G.
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o A multigraph is a graph in which the edge set F is a
Introduction multiset. Multiple distinct (or parallel) edges can exist
between vertices.

Classes

@ A pseudograph is a graph in which the edge set F can
have edges of the form (v, v) called loops

Representations

Isomorphism

Connectivity @ A directed graph is one in which E contains ordered pairs.
Euler & The orientation of an edge (v, v’) is said to be “from v to

Hamiltonian
VALl

[

@ A directed multigraph is a multigraph whose edges set
consists of ordered pairs.
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If we look at a graph as a relation then, among other things,

Introduction

@ Undirected graphs are symmetric.

Classes

Reprceaetion @ Non-pseudographs are irreflexive.

Lenorebin @ Multigraphs have nonnegative integer entries in their

Connectivity matrix; this corresponds to degrees of relatedness.
Euler &
Hamiltonian

Other types of graphs can include labeled graphs (each edge
has a uniquely identified label or weight), colored graphs (edges
are colored) etc.



el |erminology

Lincoln Ad_j acency

Graphs
CSE235

el For now, we will concern ourselves with simple, undirected
graphs. We now look at some more terminology.

Classes

Definition

Representations
Isomorphism Two vertices u, v in an undirected graph G = (V, E) are called
Connectivity adjacent (or neighbors) if e = (u,v) € E.

puler e We say that e is incident with or incident on the vertices u and
V.

Edge e is said to connect v and v.

u and v are also called the endpoints of e.
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Introduction Deﬁnition

The degree of a vertex in an undirected graph G = (V, E) is
the number of edges incident with it.
The degree of a vertex v € V is denoted

Classes
Representations
Isomorphism
Connectivity
deg(v)
Euler &

Hamiltonian

In a multigraph, a loop contributes to the degree twice.

A vertex of degree 0 is called isolated.
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Introduction

Let G = (V, E) be an undirected graph. Then

Classes

Representations 2|E| = Z deg('l))
veV

Isomorphism

Connectivity

Euler & The handshake lemma applies even in multi and pseudographs.

Hamiltonian

proof By definition, each e = (v, v") will contribute 1 to the
degree of each vertex, deg(v),deg(v’). If e = (v,v) is a loop
then it contributes 2 to deg(v). Therefore, the total degree
over all vertices will be twice the number of edges. O
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Introduction

Classes
Representations
Isomorphism An undirected graph has an even number of vertices of odd

Connectivity degree_

Euler &
Hamiltonian
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Introduction In a directed graph (digraph), G = (V, E), we have analogous
definitions.

Classes
Representations| o Let e = (u, U) S E

isomorphism @ wu is adjacent to or incident on v.

Connectivity

Euler & @ v is adjacent from or incident from wu.

Hamiltonian

@ w is the initial vertex.
@ v is the terminal vertex.

@ For a loop, these are the same.
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We make a distinction between incoming and outgoing edges

IIEELITET with respect to degree.

Classes @ LetveV.

Representations

@ The in-degree of v is the number of edges incident on v

Isomorphism
Connectivity d —

eg” (v)
Euler & g
Hamiltonian

@ The out-degree of v is the number of edges incident from
.

deg™ (v)
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Vs Every edge e = (u,v) contributes 1 to the out-degree of u and
1 to the in-degree of v. Thus, the sum over all vertices is the
Classes same.

Representations

Isomorphism

Connectivity Let G = (V, E) be a directed graph. Then

S deg(v) = 3 deg*(v) = ||

Hamiltonian
veV veV
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Introduction A path in a graph is a sequence of vertices,

Classes V102 -+ - Vg

Representations
Isomorphism such that (Ui, 'UZ'+1) cFk for all 1 = 17 ey k—1.

Connectivity

e We can denote such a path by p: v1 ~ v.

Hamiltonian

The length of p is the number of edges in the path,

p|=k—1
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A cycle in a graph is a path that begins and ends at the same
vertex.

Introduction
Classes V102 -+ - Vg1
Representations

Isomorphism Cycles are also called circuits.

Connectivity

Euler & We define paths and cycles for directed graphs analogously.

Hamiltonian

A path or cycle is called simple if no vertex is traversed more
than once. From now on we will only consider simple paths and
cycles.
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Introduction Complete Graphs — Denoted K, are simple graphs with n
P P ple grap
Types vertices where every possible edge is present.

Classes @ Cycle Graphs — Denoted (), are simply cycles on n

Bipartite Graphs

Representations Vertices-

el @ Wheels — Denoted W,, are cycle graphs (on n vertices)
Gy with an additional vertex connected to all other vertices.
Euler & . )

Hamiltonian @ n-cubes — Denoted @),, are graphs with 2" vertices

corresponding to each bit string of length n. Edges
connect vertices whose bit strings differ by a single bit.

@ Grid Graphs — finite graphs on the N x N grid.
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Introduction
Types —
c.yapsses Definition

BeanicCone A graph is called bipartite if its vertex set V' can be partitioned
Ml into two disjoint subsets L, R such that no pair of vertices in L

(or R) is connected.

Isomorphism

Connectivity

Euler &

ety We often use G = (L, R, E) to denote a bipartite graph.
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Introduction
Types

Classes A graph is bipartite if and only if it contains no odd-length

Bipartite Graphs

Representations 4 cles.

Isomorphism

Connectivity Another way to look at this theorem is as follows. A graph GG
Euler & can be colored (here, we color vertices) by at most 2 colors

Hamiltonian

such that no two adjacent vertices have the same color if and
only if G is bipartite.
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Introduction

Tvpes A bipartite graph is complete if every u € L is connected to
Classes

oo | €very v € R. We denote a complete bipartite graph as

Representations
Isomorphism Knl,n2

Connectivity

Euler & which means that |L| ES and |R‘ = ng9.

Hamiltonian

Examples?
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We can (partially) decompose graphs by considering subgraphs.

Types

Classes

Definition

Bipartite Graphs
P A subgraph of a graph G = (V, E) is a graph H = (V' E’)
Isomorphism Where

Connectivity ° V/ g V and

Euler &

Hamiltonian (] El g E

Subgraphs are simply part(s) of the original graph.
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. Conversely, we can combine graphs.
ypes

Classes

Definition

Bipartite Graphs
Representations| The union Of two graphs Gl = (‘/1, El) and G2 = (%,El) is
Isomorphism defined to be G = (V, E') where

Connectivity - V _ ‘/1 U ‘/2 and
Euler &
Hamiltonian ° E = E]. U E2.
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A graph can be implemented as a data structure using one of

Types )
three representations:

Classes
Representations|

© Adjacency list (vertices to list of vertices)

Isomorphism

Connectivity @ Adjacency matrix (vertices to vertices)

Euler &
Hamiltonian

© Incidence matrix (vertices to edges)

These representations can greatly affect the running time of
certain graph algorithms.
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Graphs Adjacency List — An adjacency list representation of a graph
R G = (V, E) maintains |V| linked lists. For each vertex v € V,
the head of the list is v and subsequent entries correspond to
adjacent vertices v’ € V.

What is the associated graph of the following adjacency list?

Introduction
Types

Classes

Representations|

Isomorphism

Connectivity Vo V9 V3 Vg
Euler &

Hamiltonian UO

U2 Vo

v
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@ Advantages: Less storage
Introduction

e Disadvantages: Adjacency look up is O(|V]), extra work
to maintain vertex ordering (lexicographic)

Types
Classes
Representations
. Adjacency Matrix — An adjacency matrix representation
Cammesiivi maintains an n X n sized matrix with entries
Euler &
Hamiltonian o 0 lf (viu U]) ¢ E

@i = { 1 if (v;,v5) € E

for0<i,j<(n—1).
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Introduction For the same graph in the previous example, we have the
Types following adjacency matrix.

Classes
Representations|
Isomorphism
Connectivity

Euler &
Hamiltonian

S O = = O
il e S e B )
S OO =
O O = O =
O = = O =

e Advantages: Adjacency/Weight look up is constant

o Disadvantages: Extra storage
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Introduction

Types

The entry of 1 for edges e = (v;,v;) can be changed to a
weight function wt : £ — N. Alternatively, entries can be used
to represent pseudographs.

Classes
Representations|
Isomorphism

Connectivity

Note that either representation is equally useful for directed
S and undirected graphs.
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Introduction

Types

Classes We say that a graph is sparse if |E| € O(|V|) and dense if
Representations| |E| S O(|V’2)

Isomorphism . n(n 1)

A complete graph K, has precisely |E| = edges.

Connectivity

Euler &
Hamiltonian

Thus, for sparse graphs, Adjacency lists tend to be better while
for dense graphs, adjacency matrices are better in general.
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Introduction

E— An isomorphism is a bijection (one-to-one and onto) that
s preserves the structure of some object.

Representations

| ’ In some sense, if two objects are isomorphic to each other, they
somorphism .
Compitability are essentially the same.

Example
Identifying

“Candidates' Most properties that hold for one object hold for any object

Connectivity that it is isomorphic to.
Euler &

Hamiltonian

An isomorphism of graphs preserves adjacency.
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Two graphs G; = (V1, E1) and Gy = (Va, Es) are isomorphic if
ltodicucs there exists a bijection

Types

Classes © : ‘/i — V2
Representations
Isomorphism such that (v,v’) € Ej if and only if

Computability
Example

e (o(v),0(v")) € B
Connectivity

Euler & for all vertices v € Vj.

Hamiltonian

CSE235

If G1 is isomorphic to G5 we use the notation

G1 = Ga
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Introduction
Types
Classes

Representations

Isomorphism of graphs is an equivalence relation.

Isomorphism

Computability
Example

Identifying ?
‘Candidates’ P rOOf .
Connectivity

Euler &
Hamiltonian
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o Problem

Given: Two graphs, G1,Gbs.
Question: /s G| =2 Gy7

Introduction

Types

Classes
(ERN®  The obvious way of solving this problem is to simply try to find
Isomorphism a bijection that preserves adjacency. That is, search through all

Computability

Example n! Of them
Identifying

‘Candidates’

Connectivity Wait: Do we really need to search all n! bijections?

Euler & .
Hamiltonian There are smarter, but more complicated ways. However, the

best known algorithm for general graphs is still only

O(exp(y/nlogn))
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Introduction The graph isomorphism problem is of great theoretical interest
Types because it is believed to be a problem of ‘intermediate
Gl complexity.’

Representations

Isomorphism Conversely, it is sometimes easier (though not in general) to
ool show that two graphs are not isomorphic.

Example
Identifying
‘Candidates’

In particular, it suffices to show that the pair (G1,G3) do not
have a property that isomorphic graphs should. Such a

Connectivity

Euler &
Hamiltonian property is called invariant wrt isomorphism.
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Introduction Examples of invariant properties:

Types

Classes J ‘Vl’ = ‘VQ‘

Representations o ‘Ely — ‘EQ‘

Isomorphism )

Computability o egrees Or vertices mus € preserved.
Degrees of vert t be p d

Example

oot @ Lengths of paths & cycles.

Connectivity

Euler & Such properties are a necessary condition of being isomorphic,
Hamiltonian . . .
but are not a sufficient condition.
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Introduction Examp|e

Types (9.3.35) Are the following two graphs isomorphic?

Classes

Representations| ()

U2

Isomorphism

Computability

Example

Identifying U1 U3
‘Candidates’ (751 us

Connectivity

Euler &

Hamiltonian

Uus Uq Us U4
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Introduction However, we still need to give an explicit bijection ¢ if they are
Types isomorphic.

Classes

Consider the following bijection.

Representations

Isomorphism

Computability QO(Ul) U1
Example _

g pluz) = s
Connectivity 90(U3) - 'U5
Euler. & ; SO(UAL) = U2
Hamiltonian SO(U5) = 4

We still need to verify that ¢ preserves adjacency.
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The original edges were

Introduction
Types
Classes

Representations ( )
Isomorphism (U3, U4)
Computability ( )
Example ( )

Identifying
‘Candidates’

U AR
I

AN N N S
A~ N N S
£
w
— — — — —
€6 € €6
A~ N N~
IS
Ny
— — — N —
S N N N
NN N N
<
Ny
<
N
~— — — — —
m
5
~

Connectivity

palerke Thus, they are isomorphic. Note that there are several

bijections that show these graphs are isomorphic.
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Example
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Connectivity
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Hamiltonian

Using Paths & Cycles in Isomorphisms |

Recall that the lengths of paths & cycles are invariant
properties for isomorphisms.

Moreover, they can be used to find potential isomorphisms.

For example, say there is a path of length &k in G
Uovl .. UI’C
Now consider the degree sequence of each vertex;

deg(vg), deg(vy),. .., deg(vg)

Since both of these properties are invariants, we could try
looking for a path (of length k) in G that has the same degree
sequence.
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Introduction
T .
e If we can find such a path, say

Classes

Representations

uoul .. uk
Isomorphism
Computability
\dentiying it may be a good (partial) candidate for an isomorphic

‘Candidates’

bijection.

Connectivity

Euler &

Hamiltonian
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Connectivity |

An undirected graph is called connected if for every pair of
vertices, u, v there exists a path connecting u to v.

A graph that is not connected is the union of two or more
subgraphs called connected components.

We have analogous (but more useful) notions for directed
graphs as well.

Definition

A directed graph is strongly connected if for every pair of
vertices u, v

@ There exists p; : u ~» v and

@ There exists po : v ~ u.
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Connectivity Il

Even if a graph is not strongly connected, it can still be
(graphically) “one piece”.

Definition

A directed graph is weakly connected if there is a path between
every two vertices in the underlying undirected graph (i.e. the
symmetric closure).

The subgraphs of a directed graph that are strongly connected
are called strongly connected components.

Such notions are useful in applications where we want to
determine what individuals can communicate in a network
(here, the notion of condensation graphs is useful).

Example?
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Introduction na graph.

B That is, how many unique, paths (directed or undirected, but
Classes not necessarily simple) there are between two vertices, u, v?
Representations

Isomorphism An easy solution is to use matrix multiplication on the
Connectivity adjacency matrix of a graph.

Euler &
Hamiltonian

Let G be a graph with adjacency matrix A. The number of
distinct paths of length r from v; ~ v; equals the entry a;; in
the matrix A".

The proof is a nice proof by induction.
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lpiodiction Recall the Konigsberg Bridge Problem. In graph theory
e terminology, the question can be translated as follows.

Classes
WM. Given a graph G, does there exist a cycle traversing every edge
Isomorphism exactly once? Such a cycle is known as an Euler cycle.

Connectivity

Definition

Euler &
Sy An Euler cycle in a graph G is a cycle that traverses every edge
exactly once. An Euler path is a path in G that traverses every

edge exactly once.
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Introduction
Types
s Theorem (Euler)

GEREYRE A graph G contains an Euler cycle if and only if every vertex
Isomorphism has even degree.

Connectivity

Euler &
Hamiltonian

This theorem also holds more generally for multigraphs.
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Therefore, the answer to the Konigsberg Bridge problem is, no,
Types
Classes does there does not exist an Euler cycle. In fact, there is not
Representations even an Euler path

Isomorphism

Connectivity

A graph G contains an Euler path (not a cycle) if and only if it
has exactly two vertices of odd degree.

Euler &
Hamiltonian




el Constructing Euler Cycles |

Lincoln

Graphs

CSE235
Introduction
S Constructing Euler paths is simple. Given a (multi)graph G, we
Classes can start at an arbitrary vertex.

R\ then find any arbitrary cycle c¢; in the graph.

Isomorphism
Connectivity Once this is done, we can look at the induced subgraph; the
Sty & graph created by eliminating the cycle ¢;.

Hamiltonian

We can repeat this step (why?) until we have found a
collection of cycles that involves every edge; c1,...,Ck.
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Constructing Euler Cycles Il

The Euler cycle can then be constructed from these cycles as
follows. Starting with c;, traverse the cycle until we reach a
vertex in common with another cycle, ¢;; then we continue our
tour on this cycle until we reach a vertex in common with
another cycle, etc.

We are always guaranteed a way to return to the original vertex
by completing the tour of each cycle.
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Introduction

Types Euler cycles & paths traverse every edge exactly once.

Classes Cycles and paths that traverse every vertex exactly once are
Representations Hami/tonian Cycles and paths.

Isomorphism

Definition

Connectivity

Euler &
Hamiltonian

A path vg,v1,...,v, in a graph G = (V, E) is called a
Hamiltonian Path if V' = {v,...,v,} and v; # v; for i # j. A
Hamiltonian cycle is a Hamiltonian path with (v,,v) € E.
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Introduction
Types

Classes
Representations|

Isomorphism Show that K, has a Hamiltonian Cycle for all n > 3.

Connectivity

Euler &
Hamiltonian
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Tstiedliien For general graphs, however, there is no known simple necessary
Tjpes and sufficient condition for a Hamiltonian Cycle to exist.

Classes

This is a stark contrast with Euler Cycles: we have a simple,
efficiently verifiable condition for such a cycle to exist.

Representations

Isomorphism

Comuzeiiifiay There are no known efficient algorithms for determining
Fuler & whether or not a graph G contains a Hamiltonian Cycle.

Hamiltonian

This problem is NP-complete. When the edges are weighted,
we get Traveling Salesperson Problem, which is NP-hard.
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Hamiltonian Paths & Circuits IV

Nevertheless, there are sufficient conditions.

Theorem (Dirac Theorem)

If G is a graph with n vertices with n > 3 such that the degree
of every vertex in G is at least n/2, then G has a Hamiltonian
cycle.

Theorem (Ore's Theorem)

If G is a graph with n vertices with n > 3 such that
deg(u) + deg(v) > n for every pair of nonadjacent vertices u,v
in G then G has a Hamiltonian cycle.
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Electronic devices often report state by using a series of
Types switches which can be thought of as bit strings of length n.
e (corresponding to 2™ states).

Introduction

Representations

If we use the usual binary enumeration, a state change can take
a long time—going from 01111 to 10000 for example.

Isomorphism

Connectivity

Euler &
Hamiltonian

It is much better to use a scheme (a code) such that the
change in state can be achieved by flipping a single bit.

A Gray Code does just that.

Recall @,,, the cube graph.
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Application: Gray Codes Il

000 001

Each edge connects bit strings that differ by a single bit. To
define a Gray Code, it suffices to find a Hamiltonian cycle in

@n-
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. Gray Codes llI

000

001

A Hamiltonian Path
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So our code is as follows.

Introduction
Types

Classes
Representations
Isomorphism

Connectivity

Euler &
Hamiltonian

000
001
101
111
011
010
110
100
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