
Graphs

Slides by Christopher M. Bourke
Instructor: Berthe Y. Choueiry

Fall 2007

Computer Science & Engineering 235
Introduction to Discrete Mathematics

Sections 9.1-9.5 of Rosen
cse235@cse.unl.edu

Notes

Introduction I

Graph theory was introduced in the 18th century by Leonhard
Euler via the Königsberg bridge problem.

In Königsberg (old Prussia), a river ran through town that created
an island and then split off into two parts.

Seven bridges were built so that people could easily get around.

Euler wondered, is it possible to walk around Königsberg, crossing
every bridge exactly once?

Notes

Introduction II Notes

Introduction III

To solve this problem, we need to model it mathematically.

Specifically, we can define a graph whose vertices are the land
areas and whose edges are the bridges.

v1

v2

v3

v4

b0 b1

b2 b3

b4

b5

b6

Notes

Introduction IV

The question now becomes, does there exist a path in the
following graph such that every edge is traversed exactly once?

v1

v2

v3

v4

b4

b5

b6

b0 b1

b2 b3

Notes

Definitions I

Definition

A simple graph G = (V,E) is a 2-tuple with

I V = {v1, v2, . . . , vn} – a finite set of vertices.

I E = V × V = {e1, e2, . . . , em} – an unordered set of edges
where each ei = (v, v′) is an unordered pair of vertices,
v, v′ ∈ V .

Since V and E are sets, it makes sense to consider their
cardinality. As is standard, |V | = n denotes the number of vertices
in G and |E| = m denotes the number of edges in G.

Notes

Definitions II

I A multigraph is a graph in which the edge set E is a multiset.
Multiple distinct (or parallel) edges can exist between vertices.

I A pseudograph is a graph in which the edge set E can have
edges of the form (v, v) called loops

I A directed graph is one in which E contains ordered pairs.
The orientation of an edge (v, v′) is said to be “from v to v′”.

I A directed multigraph is a multigraph whose edges set
consists of ordered pairs.

Notes

Definitions III

If we look at a graph as a relation then, among other things,

I Undirected graphs are symmetric.

I Non-pseudographs are irreflexive.

I Multigraphs have nonnegative integer entries in their matrix;
this corresponds to degrees of relatedness.

Other types of graphs can include labeled graphs (each edge has a
uniquely identified label or weight), colored graphs (edges are
colored) etc.

Notes

Terminology
Adjacency

For now, we will concern ourselves with simple, undirected graphs.
We now look at some more terminology.

Definition

Two vertices u, v in an undirected graph G = (V,E) are called
adjacent (or neighbors) if e = (u, v) ∈ E.

We say that e is incident with or incident on the vertices u and v.

Edge e is said to connect u and v.

u and v are also called the endpoints of e.

Notes

Terminology
Degree

Definition

The degree of a vertex in an undirected graph G = (V,E) is the
number of edges incident with it.

The degree of a vertex v ∈ V is denoted

deg(v)

In a multigraph, a loop contributes to the degree twice.

A vertex of degree 0 is called isolated.

Notes

Terminology
Handshake Theorem

Theorem

Let G = (V,E) be an undirected graph. Then

2|E| =
∑
v∈V

deg(v)

The handshake lemma applies even in multi and pseudographs.

proof By definition, each e = (v, v′) will contribute 1 to the degree
of each vertex, deg(v),deg(v′). If e = (v, v) is a loop then it
contributes 2 to deg(v). Therefore, the total degree over all
vertices will be twice the number of edges.

Notes

Terminology
Handshake Lemma

Corollary

An undirected graph has an even number of vertices of odd degree.

Notes

Terminology - Directed Graphs I

In a directed graph (digraph), G = (V,E), we have analogous
definitions.

I Let e = (u, v) ∈ E.

I u is adjacent to or incident on v.

I v is adjacent from or incident from u.

I u is the initial vertex.

I v is the terminal vertex.

I For a loop, these are the same.

Notes

Terminology - Directed Graphs II

We make a distinction between incoming and outgoing edges with
respect to degree.

I Let v ∈ V .

I The in-degree of v is the number of edges incident on v

deg−(v)

I The out-degree of v is the number of edges incident from v.

deg+(v)

Notes

Terminology - Directed Graphs III

Every edge e = (u, v) contributes 1 to the out-degree of u and 1 to
the in-degree of v. Thus, the sum over all vertices is the same.

Theorem

Let G = (V,E) be a directed graph. Then∑
v∈V

deg−(v) =
∑
v∈V

deg+(v) = |E|

Notes

More Terminology I

A path in a graph is a sequence of vertices,

v1v2 · · · vk

such that (vi, vi+1) ∈ E for all i = 1, . . . , k − 1.

We can denote such a path by p : v1 vk.

The length of p is the number of edges in the path,

|p| = k − 1

Notes

More Terminology II

A cycle in a graph is a path that begins and ends at the same
vertex.

v1v2 · · · vkv1

Cycles are also called circuits.

We define paths and cycles for directed graphs analogously.

A path or cycle is called simple if no vertex is traversed more than
once. From now on we will only consider simple paths and cycles.

Notes

Classes Of Graphs

I Complete Graphs – Denoted Kn are simple graphs with n
vertices where every possible edge is present.

I Cycle Graphs – Denoted Cn are simply cycles on n vertices.

I Wheels – Denoted Wn are cycle graphs (on n vertices) with
an additional vertex connected to all other vertices.

I n-cubes – Denoted Qn are graphs with 2n vertices
corresponding to each bit string of length n. Edges connect
vertices whose bit strings differ by a single bit.

I Grid Graphs – finite graphs on the N×N grid.

Notes

Bipartite Graphs

Definition

A graph is called bipartite if its vertex set V can be partitioned
into two disjoint subsets L,R such that no pair of vertices in L (or
R) is connected.

We often use G = (L,R,E) to denote a bipartite graph.

Notes

Bipartite Graphs

Theorem

A graph is bipartite if and only if it contains no odd-length cycles.

Another way to look at this theorem is as follows. A graph G can
be colored (here, we color vertices) by at most 2 colors such that
no two adjacent vertices have the same color if and only if G is
bipartite.

Notes

Bipartite Graphs

A bipartite graph is complete if every u ∈ L is connected to every
v ∈ R. We denote a complete bipartite graph as

Kn1,n2

which means that |L| = n1 and |R| = n2.

Examples?

Notes

Decomposing & Composing Graphs I

We can (partially) decompose graphs by considering subgraphs.

Definition

A subgraph of a graph G = (V,E) is a graph H = (V ′, E′) where

I V ′ ⊆ V and

I E′ ⊆ E.

Subgraphs are simply part(s) of the original graph.

Notes

Decomposing & Composing Graphs II

Conversely, we can combine graphs.

Definition

The union of two graphs G1 = (V1, E1) and G2 = (V1, E1) is
defined to be G = (V,E) where

I V = V1 ∪ V2 and

I E = E1 ∪ E2.

Notes

Data Structures I

A graph can be implemented as a data structure using one of three
representations:

1. Adjacency list (vertices to list of vertices)

2. Adjacency matrix (vertices to vertices)

3. Incidence matrix (vertices to edges)

These representations can greatly affect the running time of
certain graph algorithms.

Notes

Data Structures II

Adjacency List – An adjacency list representation of a graph
G = (V,E) maintains |V | linked lists. For each vertex v ∈ V , the
head of the list is v and subsequent entries correspond to adjacent
vertices v′ ∈ V .

Example

Notes

Data Structures III

What is the associated graph of the following adjacency list?

v0 v2 v3 v4

v1 v0 v2

v2 v0 v1 v3 v4

v3 v1 v4

v4 v1

Notes

Data Structures IV

I Advantages: Less storage

I Disadvantages: Adjacency look up is O(|V |), extra work to
maintain vertex ordering (lexicographic)

Adjacency Matrix – An adjacency matrix representation
maintains an n× n sized matrix with entries

ai,j =
{

0 if (vi, vj) 6∈ E
1 if (vi, vj) ∈ E

for 0 ≤ i, j ≤ (n− 1).

Notes

Data Structures V

Example

For the same graph in the previous example, we have the following
adjacency matrix.

0 0 1 1 1
1 0 1 0 0
1 1 0 1 1
0 1 0 0 1
0 1 0 0 0

I Advantages: Adjacency/Weight look up is constant

I Disadvantages: Extra storage

Notes

Data Structures VI

The entry of 1 for edges e = (vi, vj) can be changed to a weight
function wt : E → N. Alternatively, entries can be used to
represent pseudographs.

Note that either representation is equally useful for directed and
undirected graphs.

Notes

Sparse vs Dense Graphs

We say that a graph is sparse if |E| ∈ O(|V |) and dense if
|E| ∈ O(|V |2).

A complete graph Kn has precisely |E| = n(n−1)
2 edges.

Thus, for sparse graphs, Adjacency lists tend to be better while for
dense graphs, adjacency matrices are better in general.

Notes

Graph Isomorphism I

An isomorphism is a bijection (one-to-one and onto) that preserves
the structure of some object.

In some sense, if two objects are isomorphic to each other, they are
essentially the same.

Most properties that hold for one object hold for any object that it
is isomorphic to.

An isomorphism of graphs preserves adjacency.

Notes

Graph Isomorphism II

Definition

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if
there exists a bijection

ϕ : V1 → V2

such that (v, v′) ∈ E1 if and only if(
ϕ(v), ϕ(v′)

)
∈ E2

for all vertices v ∈ V1.

If G1 is isomorphic to G2 we use the notation

G1
∼= G2

Notes

Graph Isomorphism III

Lemma

Isomorphism of graphs is an equivalence relation.

Proof?

Notes

Graph Isomorphism I
Computability

Problem

Given: Two graphs, G1, G2.
Question: Is G1

∼= G2?

The obvious way of solving this problem is to simply try to find a
bijection that preserves adjacency. That is, search through all n! of
them.

Wait: Do we really need to search all n! bijections?

There are smarter, but more complicated ways. However, the best
known algorithm for general graphs is still only

O(exp(
√

n log n))

Notes

Graph Isomorphism II
Computability

The graph isomorphism problem is of great theoretical interest
because it is believed to be a problem of ‘intermediate complexity.’

Conversely, it is sometimes easier (though not in general) to show
that two graphs are not isomorphic.

In particular, it suffices to show that the pair (G1, G2) do not have
a property that isomorphic graphs should. Such a property is called
invariant wrt isomorphism.

Notes

Graph Isomorphism III
Computability

Examples of invariant properties:

I |V1| = |V2|
I |E1| = |E2|
I Degrees of vertices must be preserved.

I Lengths of paths & cycles.

Such properties are a necessary condition of being isomorphic, but
are not a sufficient condition.

Notes

Graph Isomorphism I
Example

Example

(9.3.35) Are the following two graphs isomorphic?

u5 u4

u3

u2

u1

v5 v4

v3

v2

v1

Notes

Graph Isomorphism II
Example

All of the invariant properties previously mentioned hold.

However, we still need to give an explicit bijection ϕ if they are
isomorphic.

Consider the following bijection.

ϕ(u1) = v1

ϕ(u2) = v3

ϕ(u3) = v5

ϕ(u4) = v2

ϕ(u5) = v4

We still need to verify that ϕ preserves adjacency.

Notes

Graph Isomorphism III
Example

The original edges were

(u1, u2) → (ϕ(u1), ϕ(u2)) = (v1, v3) ∈ E2?
(u2, u3) → (ϕ(u2), ϕ(u3)) = (v3, v5) ∈ E2?
(u3, u4) → (ϕ(u3), ϕ(u4)) = (v4, v2) ∈ E2?
(u4, u5) → (ϕ(u4), ϕ(u5)) = (v2, v4) ∈ E2?
(u5, u1) → (ϕ(u5), ϕ(u1)) = (v4, v1) ∈ E2?

Thus, they are isomorphic. Note that there are several bijections
that show these graphs are isomorphic.

Notes

Using Paths & Cycles in Isomorphisms I

Recall that the lengths of paths & cycles are invariant properties
for isomorphisms.

Moreover, they can be used to find potential isomorphisms.

For example, say there is a path of length k in G1

v0v1 · · · vk

Now consider the degree sequence of each vertex;

deg(v0),deg(v1), . . . ,deg(vk)

Since both of these properties are invariants, we could try looking
for a path (of length k) in G2 that has the same degree sequence.

Notes

Using Paths & Cycles in Isomorphisms II

If we can find such a path, say

u0u1 · · ·uk

it may be a good (partial) candidate for an isomorphic bijection.

Notes

Connectivity I

An undirected graph is called connected if for every pair of
vertices, u, v there exists a path connecting u to v.

A graph that is not connected is the union of two or more
subgraphs called connected components.

We have analogous (but more useful) notions for directed graphs
as well.

Definition

A directed graph is strongly connected if for every pair of vertices
u, v

I There exists p1 : u v and

I There exists p2 : v u.

Notes

Connectivity II

Even if a graph is not strongly connected, it can still be
(graphically) “one piece”.

Definition

A directed graph is weakly connected if there is a path between
every two vertices in the underlying undirected graph (i.e. the
symmetric closure).

The subgraphs of a directed graph that are strongly connected are
called strongly connected components.

Such notions are useful in applications where we want to determine
what individuals can communicate in a network (here, the notion
of condensation graphs is useful).

Example?

Notes

Counting Paths I

Often, we are concerned as to how connected two vertices are in a
graph.

That is, how many unique, paths (directed or undirected, but not
necessarily simple) there are between two vertices, u, v?

An easy solution is to use matrix multiplication on the adjacency
matrix of a graph.

Theorem

Let G be a graph with adjacency matrix A. The number of
distinct paths of length r from vi vj equals the entry aij in the
matrix Ar.

The proof is a nice proof by induction.

Notes

Euler Paths & Cycles I

Recall the Königsberg Bridge Problem. In graph theory
terminology, the question can be translated as follows.

Given a graph G, does there exist a cycle traversing every edge
exactly once? Such a cycle is known as an Euler cycle.

Definition

An Euler cycle in a graph G is a cycle that traverses every edge
exactly once. An Euler path is a path in G that traverses every
edge exactly once.

Notes

Euler Paths & Cycles II

Theorem (Euler)

A graph G contains an Euler cycle if and only if every vertex has
even degree.

This theorem also holds more generally for multigraphs.

Notes

Euler Paths & Cycles III

Therefore, the answer to the Königsberg Bridge problem is, no,
does there does not exist an Euler cycle. In fact, there is not even
an Euler path.

Theorem

A graph G contains an Euler path (not a cycle) if and only if it has
exactly two vertices of odd degree.

Notes

Constructing Euler Cycles I

Constructing Euler paths is simple. Given a (multi)graph G, we
can start at an arbitrary vertex.

We then find any arbitrary cycle c1 in the graph.

Once this is done, we can look at the induced subgraph; the graph
created by eliminating the cycle c1.

We can repeat this step (why?) until we have found a collection of
cycles that involves every edge; c1, . . . , ck.

Notes

Constructing Euler Cycles II

The Euler cycle can then be constructed from these cycles as
follows. Starting with c1, traverse the cycle until we reach a vertex
in common with another cycle, ci; then we continue our tour on
this cycle until we reach a vertex in common with another cycle,
etc.

We are always guaranteed a way to return to the original vertex by
completing the tour of each cycle.

Notes

Hamiltonian Paths & Circuits I

Euler cycles & paths traverse every edge exactly once.

Cycles and paths that traverse every vertex exactly once are
Hamiltonian cycles and paths.

Definition

A path v0, v1, . . . , vn in a graph G = (V,E) is called a
Hamiltonian Path if V = {v0, . . . , vn} and vi 6= vj for i 6= j. A
Hamiltonian cycle is a Hamiltonian path with (vn, v0) ∈ E.

Notes

Hamiltonian Paths & Circuits II

Exercise

Show that Kn has a Hamiltonian Cycle for all n ≥ 3.

Notes

Hamiltonian Paths & Circuits III

For general graphs, however, there is no known simple necessary
and sufficient condition for a Hamiltonian Cycle to exist.

This is a stark contrast with Euler Cycles: we have a simple,
efficiently verifiable condition for such a cycle to exist.

There are no known efficient algorithms for determining whether or
not a graph G contains a Hamiltonian Cycle.

This problem is NP-complete. When the edges are weighted, we
get Traveling Salesperson Problem, which is NP-hard.

Notes

Hamiltonian Paths & Circuits IV

Nevertheless, there are sufficient conditions.

Theorem (Dirac Theorem)

If G is a graph with n vertices with n ≥ 3 such that the degree of
every vertex in G is at least n/2, then G has a Hamiltonian cycle.

Theorem (Ore’s Theorem)

If G is a graph with n vertices with n ≥ 3 such that
deg(u) + deg(v) ≥ n for every pair of nonadjacent vertices u, v in
G then G has a Hamiltonian cycle.

Notes

Application: Gray Codes I

Electronic devices often report state by using a series of switches
which can be thought of as bit strings of length n. (corresponding
to 2n states).

If we use the usual binary enumeration, a state change can take a
long time—going from 01111 to 10000 for example.

It is much better to use a scheme (a code) such that the change in
state can be achieved by flipping a single bit.

A Gray Code does just that.

Recall Qn, the cube graph.

Notes

Application: Gray Codes II

000 001

101100

010 011

111110

Each edge connects bit strings that differ by a single bit. To define
a Gray Code, it suffices to find a Hamiltonian cycle in Qn.

Notes

Application: Gray Codes III

000 001

101100

010 011

111110

A Hamiltonian Path

Notes

Application: Gray Codes IV

So our code is as follows.

000
001
101
111
011
010
110
100

Notes

