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, . You've already encountered functions throughout your
ntroduction

Definitions education.

One-To-One
& Onto

Inverses and —
Compositions f(f]?, y) €T + y
Important €T

Functions f(.']j) — Sin T

=
&
I

Here, however, we will study functions on discrete domains and
ranges. Moreover, we generalize functions to mappings. Thus,
there may not always be a “nice” way of writing functions like
above.
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Definition

Function

Definition

A function f from a set A to a set B is an assignment of
exactly one element of B to each element of A. We write
f(a) = b if b is the unique element of B assigned by the
function f to the element a € A. If f is a function from A to
B, we write

f:A— B
This can be read as “f maps A to B".

Note the subtlety:

@ Each and every element in A has a single mapping.

@ Each element in B may be mapped to by several elements
in A or not at all.
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—— Let f: A — B and let f(a) =b. Then we use the following

One-To-One .
& Onto terminology:

Inverses and A is the domain of f, denoted dom(f).

Compositions

Important
Functions

B is the codomain of f.
b is the image of a.

a is the preimage (antecedent) of b.

The range of f is the set of all images of elements of A,
denoted rng(f).
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A function, f: A — B.
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Domain

A function, f: A — B.
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Domain Codomain

A function, f: A — B.
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Domain Codomain

A function, f: A — B.
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Domain Codomain

A function, f: A — B.
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Domain Codomain

A function, f: A — B.



e Definition |

Bl More Definitions

Functions

Definition
Let fi and fy be functions from a set A to R. Then f; + f2
and f1 fo are also functions from A to R defined by

CSE235

Introduction

Definitions

One-To-One

& Onto (fi+ fo)lx) = filz)+ fa(x)
s s (i) = h@h)
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Example
Let fi(z) = 2* + 222 + 1 and fo(z) = 2 — 22 then

(f1 + f2)(2)

(z* 4222 + 1) + (2 — z?)

t+22+3

(frf2)(z) = (z*+222+1)-(2—2?)
= —2%+4+322+2
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One-To-One Let f: A— B andlet S C A. The image of S is the subset of
nverees and B that consists of all the images of the elements of S. We
Bl denote the image of S by f(.5), so that

f(8)={f(s) | s €5}

Functions

Note that here, an image is a set rather than an element.
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Let

One-To-One
& Onto

o A= {ah az,as, a4, a5}
Inverses and

Compositions e B= {blg b2’ bg’ b4}
Important

Functions ) f = {(al, bg), (az, bg), (a3, bg), ((L4, bl), (a5, b4)}
o S ={ai,as}

Draw a diagram for f.

The image of S'is f(S) = {ba, b3}
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Definition

A function f whose domain and codomain are subsets of the
bl sct of real numbers is called strictly increasing if f(x) < f(y)
Important whenever x < y and x and y are in the domain of f. A
Functions function f is called strictly decreasing if f(x) > f(y) whenever
x <y and z and y are in the domain of f.

One-To-One
& Onto




Ne‘BWERSWV]or

Lincoln

Functions

CSE235

Introduction

One-To-One
& Onto
Examples
Exercises

Inverses and
Compositions

Important
Functions

Injections, Surjections, Bijections |

Definitions

Definition
A function f is said to be one-to-one (or injective) if

f@)=fy)=z=y

for all  and y in the domain of f. A function is an injection if
it is one-to-one.

Intuitively, an injection simply means that each element in B
has at most one preimage (antecedent).

It may be useful to think of the contrapositive of this definition:

x#y=flz)# f(y)
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el A function f : A — B is called onto (or surjective) if for every
T

Evercises element b € B there is an element a € A with f(a) =b. A
fverses and function is called a surjection if it is onto.
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Again, intuitively, a surjection means that every element in the
codomain is mapped. This implies that the range is the same
as the codomain.
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Introduction Deﬁnition

One-To-One A function f is a one-to-one correspondence (or a bijection, if

Examples it is both one-to-one and onto.

Exercises

Inverses and
Compositions

One-to-one correspondences are important because they endow
Important . . .
At a function with an inverse. They also allow us to have a
concept of cardinality for infinite sets!

Let's take a look at a few general examples to get the feel for
these definitions.
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Examples al > bl

Exercises

Inverses and

Compositions 42 ) b2

Important

Functions a3 ) bS

a4 *by

This is not a function: Both a; and as map to more than one
element in B.
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Q4 e by

This function not one-to-one since aq; and a3 both map to b;.

It is not onto either since by is not mapped to by any element
in A.
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One-To-One
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a >

Examples ! ) bl
Exercises
Inverses and a2 ) b2
Compositions
Important as : b3
Functions

L] b4

This function is one-to-one since every a; € A maps to a
unique element in B. However, it is not onto since by is not
mapped to by any element in A.
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Ibl

Examples
Exercises

Inverses and az ’ b2
Compositions ><
Important as ' b3
Functions /

G4

This function is onto since every element b; € B is mapped to
by some element in A. However, it is not one-to-one since bg is
mapped to more than one element in A.
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a4 e by

This function is a bijection because it is both one-to-one and
onto; every element in A maps to a unique element in B and
every element in B is mapped by some element in A.
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Exercise |

Let f : Z — Z be defined by

f(z) =22 -3

What is the domain and range of f7 Is it onto? One-to-one?

Clearly, dom(f) = Z. To see what the range is, note that

bemg(f) <— b=2a-3 ac€Z
— b=2a-2)+1
<= bisodd
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Introduction Therefore, the range is the set of all odd integers. Since the

OO range and codomain are different, (i.e. rng(f) # Z) we can

et also conclude that f is not onto.

Exercises

Iveisss However, f is one-to-one. To prove this, note that

Compositions

Important

Functions f(],‘l) = f(fEQ) = 21131 —-3= 2x2 -3
= I1 =2

follows from simple algebra.



Newaswv]or Exe rCISeS

Lincoln Exercise |l

Functions

CSE235

Introduction

One-To-One
& Onto Let f be as before,

Examples
Exercises f(x) — 2x _ 3

Inverses and
Compositions

but now define f : N — N. What is the domain and range of
ks f7 Is it onto? One-to-one?
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Introduction

One-To-One
& Onto Let f be as before,

Examples
Exercises f(x) = 2x _ 3
Inverses and

Bl but now define f : N — N. What is the domain and range of

Important

Functions f7 Is it onto? One-to-one?

By changing the domain/codomain in this example, f is not
even a function anymore. Consider f(1) =2-1—-3=—-1¢N.
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Define f : Z — Z by

Introduction

One-To-One 2

& Onto f(ﬂf):l‘ _51:"_5
Examples

Exercises

Is this function one-to-one? Onto?

Inverses and
Compositions

Important

Functions It is not one-to-one since for

f(x1) = f(x2) 22 —5r1+5=a% 513 +5

x% —br1 = :c% — bxo

2?2 — 22 =511 — by

(.’L‘1 — 1‘2)(1’1 + 5132) = 5(.%‘1 — 1‘2)

(331 +l‘2) =35

R
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Introduction

oo Therefore, any z1,x9 € Z satisfies the equality (i.e. there are

& Onto an infinite number of solutions). In particular

Examples

Exercises f(2) = f(3) = _1

Inverses and ) ) . .

Compositions It is also not onto. The function is a parabola with a global
Important minimum (calculus exercise) at (3, —2). Therefore, the
Functions

function fails to map to any integer less than —1.

What would happen if we changed the domain/codomain?



Netu)mmswv]or Exe rc | SEeS |

Lincoln Exercise |V

Functions

CSE235

Introduction

One-To-One

& Qi Define f : Z — Z by

Examples
Exercises

Inverses and f({,E) = 2{E2 + 7./.5

Compositions

Important

Functions Is this function one-to-one? Onto?

Again, since this is a parabola, it cannot be onto (where is the
global minimum?).
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before:

Introduction

One-To-One
& Onto

Examples
Exercises

Composons fa) = flx2) = 207+ Ty = 223 + Tp
Important = 2(3:1 - $2)($1 + 1172) - 7("1)2 - :E]_)
Functions = (351 4 332) — %

But % & 7, therefore, it must be the case that z1 = x2. It
follows that f is one-to-one.
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Define f : Z — Z by

Introduction

One-To-One 3
& Onto flz) =32 -z

Examples

Exercises

Inverses and Is f one-to-one? Onto?

Compositions

Important
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To see if its one-to-one, again suppose that f(z1) = f(x2) for

r1,%2 € Z. Then
323 — 21 =323 — 1y = 3z} —23) = (21 — x2)
= 3(z1 — x2)(23 + m120 + 23) = (21 —

= (22 +z120 +23) = %
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Again, this is impossible since x1, x5y are integers, thus f is
Introduction one-to-one.

One-To-One

’to”tl" However, the function is not onto. Consider this counter
camples

Exercises example: f(a) = 1 for some integer a. If this were true, then it
Inverses and must be the case that

Compositions

Important

Functions a(3a2 —_ 1) = 1

Where a and (3a® — 1) are integers. But the only time we can
ever get that the product of two integers is 1 is when we have
—1(—1) or 1(1) neither of which satisfy the equality.
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e To-One Let f: A — B be a bijection. The inverse function of f is the
re—— function that assigns to an element b € B the unique element
e o € A such that f(a) = b. The inverse function of f is denoted
Funcrions by f~*. Thus f~(b) = a when f(a) = b.

More succinctly, if an inverse exists,

fla)=b < b =a
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and only if it is a bijection. Thus, we say that a bijection is
invertible.
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Introduction

One-To-One
& Onto . .. . .
Why must a function be bijective to have an inverse?

Inverses and
Compositions

g @ Consider the case where f is not one-to-one. This means
that some element b € B is mapped to by more than one
element in A; say a1 and as. How can we define an
inverse? Does f~1(b) = ay or az?
@ Consider the case where f is not onto. This means that
there is some element b € B that is not mapped to by any
a € A, therefore what is f~1(b)?
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Important f_ 1 (b)

Functions

A function & its inverse.
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One-To-One f({[,') = 2.’[} — 3

& Onto

Inverses and

Compositions What iS fil ?

Important
Functions

First, verify that f is a bijection (it is). To find an inverse, we
use substitution:
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One-To-One f({[,') = 2.’[} — 3

& Onto

Inverses and

Compositions What iS fil ?

Important
Functions

First, verify that f is a bijection (it is). To find an inverse, we
use substitution:

o Let f7(y) =2
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One-To-One f({[,') = 2.’[} — 3

& Onto

Inverses and

Compositions What iS fil ?
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First, verify that f is a bijection (it is). To find an inverse, we
use substitution:

o Let fl(y) ==
@ Let y = 2x — 3 and solve for x
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Let f: R — R be defined by

Introduction

One-To-One f({[,') = 2.’[} — 3

& Onto

Inverses and

Compositions What iS fil ?
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First, verify that f is a bijection (it is). To find an inverse, we
use substitution:

o Let f7(y) =2

@ Let y = 2x — 3 and solve for x

o Clearly, x = M so,
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Introduction

One-To-One f({[,') = 2.’[} — 3

& Onto
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Compositions What iS fil ?

Important
Functions

First, verify that f is a bijection (it is). To find an inverse, we
use substitution:

o Let fl(y) ==
@ Let y = 2x — 3 and solve for x

o Clearly, x = M so,

o [Tiy) = %3-
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Introduction f(.flf) = IEQ
One-To-One

& Onto What is f~17?

Inverses and
Compositions

Important No domain/codomain has been specified. Say f: R — RIs f a
Function: .. . . .
netens bijection? Does an inverse exist?
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Let

Introduction f(.flf) = IEQ
One-To-One

& Onto What is f~17?

Inverses and
Compositions

Important No domain/codomain has been specified. Say f: R — RIs f a
Function: .. . . .
netens bijection? Does an inverse exist?

No, however if we specify that
A={zeR |z <0}

and
B={yeR|y=0}

then it becomes a bijection and thus has an inverse.
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Tt To find the inverse, we again, let f_l(y) =z and y = 22

One-To-One Solving for x we get x = £,/y. But which is it?
& Onto

Since dom(f) is all nonpositive and rng(f) is nonnegative, y
must be positive, thus

Inverses and
Compositions

Important
Functions

FH ) =—-vy
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Tt To find the inverse, we again, let f_l(y) =z and y = 22

One-To-One Solving for x we get x = £,/y. But which is it?
& Onto

Inverses and
Compositions

Since dom(f) is all nonpositive and rng(f) is nonnegative, y
must be positive, thus

Important
Functions

FH ) =—-vy

Thus, it should be clear that domains/codomains are just as
important to a function as the definition of the function itself.
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& Onto

— What should the domain/codomain be for this to be a
Camposiions bijection? What is the inverse?

Important
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Let
flz) =27

What should the domain/codomain be for this to be a
bijection? What is the inverse?

The function should be f : R — R™. What happens when we
include 0?7 Restrict either one to Z7?
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Examples
Example Il

Let
flz) =27

What should the domain/codomain be for this to be a
bijection? What is the inverse?

The function should be f : R — R™. What happens when we
include 0?7 Restrict either one to Z7?

Let f~1(y) = = and y = 2%, solving for z we get x = log, (7).
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Examples
Example Il

Let
flz) =27

What should the domain/codomain be for this to be a
bijection? What is the inverse?

The function should be f : R — R™. What happens when we
include 0?7 Restrict either one to Z7?

Let f~1(y) = = and y = 2%, solving for z we get x = log, (7).

Therefore,
M y) =1logy ()
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& Onto .

functions.
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Compositions

Definition

Important

AOGHS Let g: A— B andlet f: B — C. The composition of the
functions f and g is
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Introduction Note the order that you apply a function matters—you go from

anTO*O"e inner most to outer most.
nto

Inverses and

Compositions The composition f o g cannot be defined unless the the range
T— of g is a subset of the domain of f;

Functions

f ogis defined <= rng(g) C dom(f)

It also follows that f o g is not necessarily the same as g o f.
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The composition of two functions.
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One-To-One

& Onto Let f and g be functions, R — R defined by

Inverses and

Compositions f(x) = 2z — 3
Important = 2
P gle) = a°+1

Functions

What are fog and go f?
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Composition

Example |

Example
Let f and g be functions, R — R defined by

fl@) = 2z-3
g(z) = a*+1

What are fog and go f?

Note that f is bijective, thus dom(f) = rng(f) = R. For g, we
have that dom(g) = R but that rng(g) = {z € R |z > 1}.
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cozis Even so, rng(g) € dom(f) and so f o g is defined. Also,
Introduction rng(f) C dom(g) so go f is defined as well.

One-To-One
& Onto

(fog)x) = g(f(x))

Inverses and
Compositions

Important
Functions

and
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cozis Even so, rng(g) € dom(f) and so f o g is defined. Also,
Introduction rng(f) C dom(g) so go f is defined as well.

One-To-One
& Onto

Inverses and (fog)x) = g(f(z))
Compositions — 9(2«73 _ 3)

Important
Functions

and
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cozis Even so, rng(g) € dom(f) and so f o g is defined. Also,
Introduction rng(f) C dom(g) so go f is defined as well.

One-To-One
& Onto

(fog)x) = g(f(z))
= 9(2x-3)
s = (2z-3)%+1

Inverses and
Compositions

and
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cozis Even so, rng(g) € dom(f) and so f o g is defined. Also,
Introduction rng(f) C dom(g) so go f is defined as well.

One-To-One
& Onto

(fog)x) = g(f(x))

Inverses and

Compositions = 9(2{]3 — 3)
e = (=371

and
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cozis Even so, rng(g) € dom(f) and so f o g is defined. Also,
Introduction rng(f) C dom(g) so go f is defined as well.

One-To-One
& Onto

(fog)x) = g(f(x))

Inverses and

Compositions = 9(2{]3 — 3)
e = (=371

and

(gof)(@) = flg(x))
f
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cozis Even so, rng(g) € dom(f) and so f o g is defined. Also,
Introduction rng(f) C dom(g) so go f is defined as well.

One-To-One
& Onto

(fog)x) = g(f(x))

Inverses and

Compositions = 9(2{]3 — 3)
e = (=371

and

(gof)lx) =
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cozis Even so, rng(g) € dom(f) and so f o g is defined. Also,
Introduction rng(f) C dom(g) so go f is defined as well.

One-To-One
& Onto

(fog)z) = g(f())

= g2z -3)
Fonctions = (2z-3)2%+1
= 422 - 122+ 10

Inverses and
Compositions

and
(go fllz) = [flg(x))
= f(z?+1)
= 2(2?+1)-3
= 222 -1
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One-To-One Though intuitive, we formally state what it means for two
& oo functions to be equal.

Inverses and
Compositions

Important
Functions

Two functions f and g are equal if and only if
dom(f) = dom(g) and

Va € dom(f)(f(a) = g(a))
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2one Though the composition of functions is not commutative

(fog#gof), itis associative.

Inverses and
Compositions

Important
Functions

Composition of functions is an associative operation; that is,

(fog)oh=fo(goh)
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Important Functions

Identity Function

The identity function on a set A is the function
t:A— A

defined by ¢(a) = a for all @ € A. This symbol is the Greek
letter iota.

One can view the identity function as a composition of a
function and its inverse;

a) = (fof ) (a)

Moreover, the composition of any function f with the identity
function is itself f;
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Inverses & ldentity

The identity function, along with the composition operation
gives us another characterization for when a function has an
inverse.

Theorem

Functions f : A — B and g : B — A are inverses if and only if
gof=14and fog=1p

That is,

Va € A,be B((g9(f(a)) = an f(g(b)) =)
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One-To-One . e
& Onto Definition

it  The absolute value function, denoted || is a function
f:R— {ycR|y>0}. Itsvalue is defined by

2] = T ifz>0
= —x ifz<0

Important
Functions




Roe Floor & Ceiling Functions

Lincoln

Functions

CSE235

Introduction

One-To-One
& Onto Definition

Inverses and

USRI The floor function, denoted |z] is a function R — Z. Its value
Important is the largest integer that is less than or equal to x.

The ceiling function, denoted [x] is a function R — Z. Its
value is the smallest integer that is greater than or equal to x.
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' + t t x
4 -3 -2 1 1 2 3 4
o—1-¢
02
PR 31 — Floor Function




NeBWERSWV ] OF

Lincoln

Functions

CSE235

Introduction

One-To-One
& Onto

Inverses and
Compositions

Important
Functions

Floor & Ceiling Functions

Graphical View

4 -3 -2 —1 3 4
o—e—1
o—e -2
o—e -3

— Ceiling Function



Azt Factorial Function

Lincoln

Functions

CSE235

Introduction The factorial function gives us the number of permutations
One-To-One (that is, uniquely ordered arrangement) of a collection of n
& Onto .

’ objects.

Inverses and
Compositions

Definition
The factorial function, denoted n! is a function N — ZT. Its
value is the product of the first n positive integers.

Important
Functions

n
nl=J[i=1-2:3---(n-1)n
=1
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Introduction

O T The factorial function is defined on a discrete domain. In many
N applications, it is useful to consider a continuous version of the
CUSEEN  function (say if we want to differentiate it).

Important
Functions

To this end, we have Stirling’s Formula:

n
n

nl & V'
e



	Introduction
	Definitions

	One-To-One & Onto
	Examples
	Exercises

	Inverses and Compositions
	Important Functions

