

Fu	nc	tic	ons

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Functions

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry

Fall 2007

Computer Science & Engineering 235 Introduction to Discrete Mathematics Section 2.3 of Rosen

Introduction

Functions

CSE235

Introduction Definitions

One-To-One & Onto

Inverses and Compositions

Important Functions You've already encountered *functions* throughout your education.

f(x,y) = x + y f(x) = x $f(x) = \sin x$

Here, however, we will study functions on *discrete* domains and ranges. Moreover, we generalize functions to mappings. Thus, there may not always be a "nice" way of writing functions like above.

Definition Function

Functions

CSE235

Introduction Definitions

One-To-One & Onto

Inverses and Compositions

Important Functions

Definition

A function f from a set A to a set B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element $a \in A$. If f is a function from A to B, we write

$$f: A \to B$$

This can be read as "f maps A to B".

Note the subtlety:

- Each and every element in A has a *single* mapping.
- Each element in *B* may be mapped to by *several* elements in *A* or not at all.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Definitions Terminology

Definition

Functions

CSE235

Introduction

Definitions

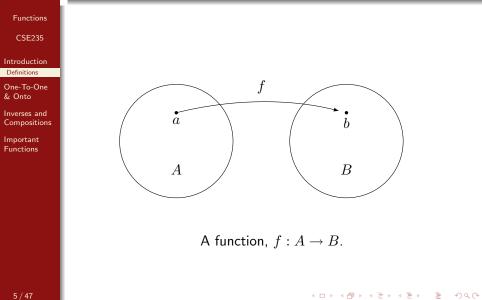
One-To-One & Onto

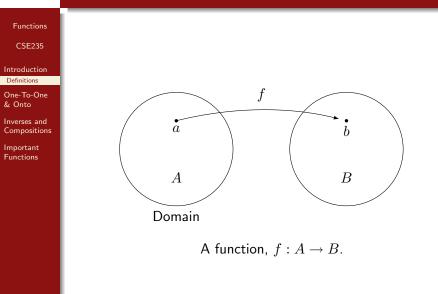
Inverses and Compositions

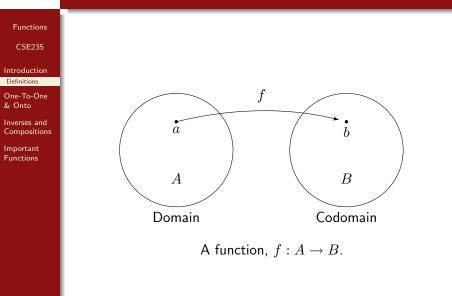
Important Functions Let $f : A \to B$ and let f(a) = b. Then we use the following terminology:

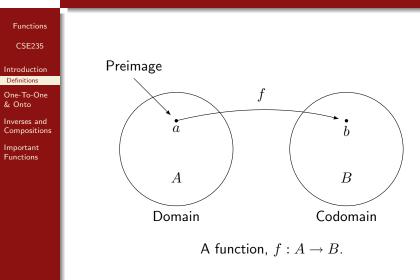
- A is the *domain* of f, denoted dom(f).
- B is the *codomain* of f.
- b is the *image* of a.
- *a* is the *preimage* (antecedent) of *b*.
- The range of f is the set of all images of elements of A, denoted rng(f).

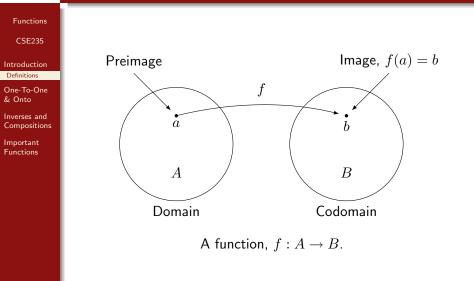
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

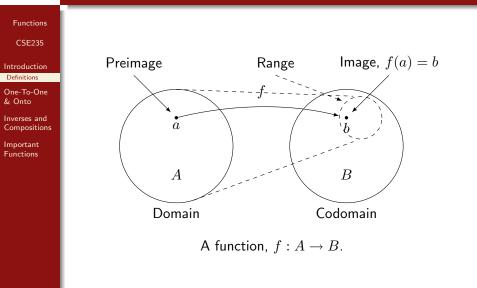












Definition I More Definitions

Functions

CSE235

Introduction

Definitions

One-To-One & Onto

Inverses and Compositions

Important Functions

Definition

Let f_1 and f_2 be functions from a set A to \mathbb{R} . Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbb{R} defined by

$$\begin{array}{rcl} (f_1 + f_2)(x) &=& f_1(x) + f_2(x) \\ (f_1 f_2)(x) &=& f_1(x) f_2(x) \end{array}$$

Example

L

et
$$f_1(x) = x^4 + 2x^2 + 1$$
 and $f_2(x) = 2 - x^2$ then
 $(f_1 + f_2)(x) = (x^4 + 2x^2 + 1) + (2 - x^2)$
 $= x^4 + x^2 + 3$
 $(f_1f_2)(x) = (x^4 + 2x^2 + 1) \cdot (2 - x^2)$
 $= -x^6 + 3x^2 + 2$

Definition II More Definitions

Functions

CSE235

Introduction Definitions

One-To-One & Onto

Inverses and Compositions

Important Functions

Definition

Let $f : A \to B$ and let $S \subseteq A$. The *image* of S is the subset of B that consists of all the images of the elements of S. We denote the image of S by f(S), so that

$$f(S) = \{f(s) \mid s \in S\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Note that here, an *image* is a *set* rather than an element.

Definition III More Definitions

Functions

CSE235

Introduction

Definitions

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let

• $A = \{a_1, a_2, a_3, a_4, a_5\}$

•
$$B = \{b_1, b_2, b_3, b_4\}$$

•
$$f = \{(a_1, b_2), (a_2, b_3), (a_3, b_3), (a_4, b_1), (a_5, b_4)\}$$

•
$$S = \{a_1, a_3\}$$

Draw a diagram for f. The *image* of S is $f(S) = \{b_2, b_3\}$

Definition IV More Definitions

Functions

CSE235

Introduction

Definitions

One-To-One & Onto

Inverses and Compositions

Important Functions

Definition

A function f whose domain and codomain are subsets of the set of real numbers is called *strictly increasing* if f(x) < f(y) whenever x < y and x and y are in the domain of f. A function f is called *strictly decreasing* if f(x) > f(y) whenever x < y and x and y are in the domain of f.

Nebraska

Injections, Surjections, Bijections I Definitions

Functions

CSE235

Introduction

One-To-One & Onto

Examples Exercises

Inverses and Compositions

Important Functions

Definition

A function f is said to be *one-to-one* (or *injective*) if

$$f(x) = f(y) \Rightarrow x = y$$

for all x and y in the domain of f. A function is an *injection* if it is one-to-one.

Intuitively, an injection simply means that each element in B has at most one preimage (antecedent).

It may be useful to think of the contrapositive of this definition:

$$x \neq y \Rightarrow f(x) \neq f(y)$$

Nebraska Injections, Surjections, Bijections II

Functions

CSE235

Introduction

One-To-One & Onto

Examples Exercises

Inverses and Compositions

Important Functions

Definition

A function $f : A \to B$ is called *onto* (or *surjective*) if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function is called a *surjection* if it is onto.

Again, intuitively, a surjection means that every element in the codomain is mapped. This implies that the range is the same as the codomain.

Injections, Surjections, Bijections III Definitions

Functions

CSE235

Introduction

One-To-One & Onto

Examples Exercises

Inverses and Compositions

Important Functions

Definition

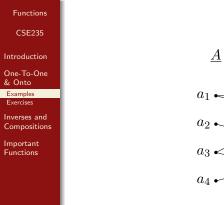
A function f is a *one-to-one correspondence* (or a *bijection*, if it is *both* one-to-one and onto.

One-to-one correspondences are important because they endow a function with an *inverse*. They also allow us to have a concept of cardinality for infinite sets!

Let's take a look at a few general examples to get the feel for these definitions.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Function Examples A Non-function



This is not a function: Both a_1 and a_2 map to more than one element in B.

<u>B</u>

• *b*₁

 $\bullet b_2$

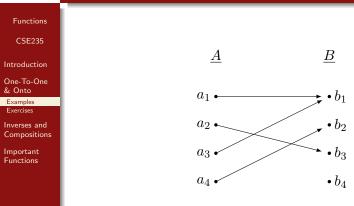
• *b*₃

• b_4

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

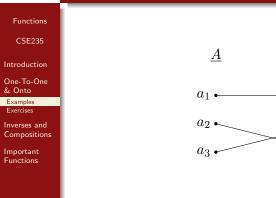
Function Examples

A Function; Neither One-To-One Nor Onto



This function not one-to-one since a_1 and a_3 both map to b_1 . It is not onto either since b_4 is not mapped to by any element in A.

Function Examples One-To-One, Not Onto



This function is one-to-one since every $a_i \in A$ maps to a unique element in B. However, it is not onto since b_4 is not mapped to by any element in A.

В

• b1

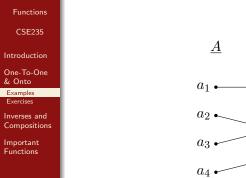
 b_2

• b₃

• b₄

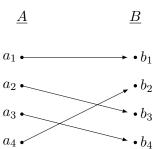
▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Function Examples Onto, Not One-To-One



 $\underline{A} \qquad \underline{B}$ $a_1 \longleftarrow b_1$ $a_2 \longleftarrow b_2$ $a_3 \longleftarrow b_3$ $a_4 \longleftarrow$

This function is onto since every element $b_i \in B$ is mapped to by some element in A. However, it is not one-to-one since b_3 is mapped to more than one element in A.



This function is a bijection because it is both one-to-one and onto; every element in A maps to a unique element in B and every element in B is mapped by some element in A.

Exercises I Exercise I

Functions

CSE235

Introduction

One-To-One & Onto Examples Exercises

Inverses and Compositions

Important Functions

Example

Let
$$f:\mathbb{Z}
ightarrow\mathbb{Z}$$
 be defined by

$$f(x) = 2x - 3$$

What is the domain and range of f? Is it onto? One-to-one?

Clearly, $\operatorname{dom}(f) = \mathbb{Z}$. To see what the range is, note that

$$b \in \operatorname{rng}(f) \iff b = 2a - 3 \qquad a \in \mathbb{Z}$$
$$\iff b = 2(a - 2) + 1$$
$$\iff b \text{ is odd}$$

Exercises II Exercise I

Functions

CSE235

Introduction

One-To-One & Onto Examples Exercises

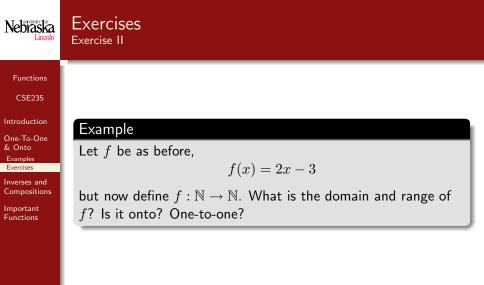
Inverses and Compositions

Important Functions Therefore, the range is the set of all *odd* integers. Since the range and codomain are different, (i.e. $rng(f) \neq \mathbb{Z}$) we can also conclude that f is *not* onto.

However, f is one-to-one. To prove this, note that

$$f(x_1) = f(x_2) \implies 2x_1 - 3 = 2x_2 - 3$$
$$\implies x_1 = x_2$$

follows from simple algebra.



Exercises

Exercise II

Functions Introduction Example One-To-One & Onto Let f be as before, Examples f(x) = 2x - 3Exercises Inverses and Compositions but now define $f : \mathbb{N} \to \mathbb{N}$. What is the domain and range of Important *f*? Is it onto? One-to-one? Functions

By changing the domain/codomain in this example, f is not even a function anymore. Consider $f(1) = 2 \cdot 1 - 3 = -1 \notin \mathbb{N}$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Exercises I Exercise III

Functions

CSE235

Introduction

One-To-One & Onto Examples Exercises

Inverses and Compositions

Important Functions

Example

Define $f:\mathbb{Z}\to\mathbb{Z}$ by

$$f(x) = x^2 - 5x + 5$$

Is this function one-to-one? Onto?

It is not one-to-one since for

$$f(x_1) = f(x_2) \implies x_1^2 - 5x_1 + 5 = x_2^2 - 5x_2 + 5$$

$$\implies x_1^2 - 5x_1 = x_2^2 - 5x_2$$

$$\implies x_1^2 - x_2^2 = 5x_1 - 5x_2$$

$$\implies (x_1 - x_2)(x_1 + x_2) = 5(x_1 - x_2)$$

$$\implies (x_1 + x_2) = 5$$

◆□ > ◆□ > ◆臣 > ◆臣 > □臣 = のへで

Exercises II Exercise III

Functions

CSE235

Introduction

One-To-One & Onto Examples Exercises

Inverses and Compositions

Important Functions Therefore, any $x_1, x_2 \in \mathbb{Z}$ satisfies the equality (i.e. there are an infinite number of solutions). In particular f(2) = f(3) = -1.

It is also *not* onto. The function is a parabola with a global minimum (calculus exercise) at $(\frac{5}{2}, -\frac{5}{4})$. Therefore, the function fails to map to any integer less than -1.

What would happen if we changed the domain/codomain?

Exercises I Exercise IV

Functions

CSE235

Introduction

One-To-One & Onto Examples Exercises

Inverses and Compositions

Important Functions

Example

Define $f:\mathbb{Z}\to\mathbb{Z}$ by

$$f(x) = 2x^2 + 7x$$

Is this function one-to-one? Onto?

Again, since this is a parabola, it cannot be onto (where is the global minimum?).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Exercises II Exercise IV

Functions

CSE235

Introduction

One-To-One & Onto Examples Exercises

Inverses and Compositions

Important Functions However, it *is* one-to-one. We follow a similar argument as before:

$$\begin{aligned} f(x_1) &= f(x_2) &\Rightarrow 2x_1^2 + 7x_1 = 2x_2^2 + 7x_2 \\ &\Rightarrow 2(x_1 - x_2)(x_1 + x_2) = 7(x_2 - x_1) \\ &\Rightarrow (x_1 + x_2) = \frac{7}{2} \end{aligned}$$

But $\frac{7}{2} \notin \mathbb{Z}$ therefore, it must be the case that $x_1 = x_2$. It follows that f is one-to-one.

Exercises I Exercise V

Functions

CSE235

Introduction

One-To-One & Onto Examples Exercises

Inverses and Compositions

Important Functions

Example

Define $f: \mathbb{Z} \to \mathbb{Z}$ by

$$f(x) = 3x^3 - x$$

Is f one-to-one? Onto?

To see if its one-to-one, again suppose that $f(x_1) = f(x_2)$ for $x_1, x_2 \in \mathbb{Z}$. Then

$$\begin{array}{rcl} 3x_1^3 - x_1 = 3x_2^3 - x_2 & \Rightarrow & 3(x_1^3 - x_2^3) = (x_1 - x_2) \\ & \Rightarrow & 3(x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = (x_1 - x_2) \\ & \Rightarrow & (x_1^2 + x_1x_2 + x_2^2) = \frac{1}{3} \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ つへで

Exercises II Exercise V

Functions

CSE235

Introduction

One-To-One & Onto Examples Exercises

Inverses and Compositions

Important Functions Again, this is impossible since x_1, x_2 are integers, thus f is one-to-one.

However, the function is *not* onto. Consider this counter example: f(a) = 1 for some integer a. If this were true, then it must be the case that

$$a(3a^2 - 1) = 1$$

Where a and $(3a^2 - 1)$ are integers. But the only time we can ever get that the product of two integers is 1 is when we have -1(-1) or 1(1) neither of which satisfy the equality.

Inverse Functions I

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Definition

Let $f: A \to B$ be a bijection. The *inverse function* of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b. The inverse function of f is denoted by f^{-1} . Thus $f^{-1}(b) = a$ when f(a) = b.

More succinctly, if an inverse exists,

$$f(a) = b \iff f^{-1}(b) = a$$

Inverse Functions II

Functions

CSE235

Introduction

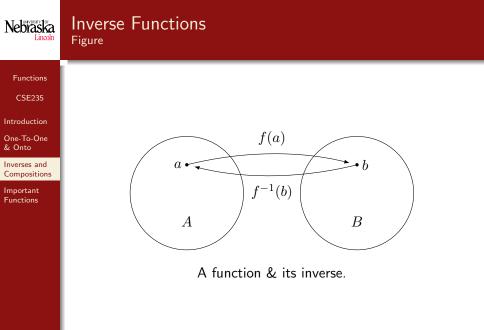
One-To-One & Onto

Inverses and Compositions

Important Functions Note that by the definition, a function can have an inverse if and only if it is a bijection. Thus, we say that a bijection is *invertible*.

Why must a function be bijective to have an inverse?

- Consider the case where f is not one-to-one. This means that some element b ∈ B is mapped to by more than one element in A; say a₁ and a₂. How can we define an inverse? Does f⁻¹(b) = a₁ or a₂?
- Consider the case where f is not onto. This means that there is some element $b \in B$ that is not mapped to by any $a \in A$, therefore what is $f^{-1}(b)$?



< □ > < □ > < Ξ > < Ξ > < Ξ > ○ < ♡ < ♡

Examples Example I

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let $f:\mathbb{R}\to\mathbb{R}$ be defined by

$$f(x) = 2x - 3$$

What is f^{-1} ?

First, verify that f is a bijection (it is). To find an inverse, we use substitution:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● の Q ()

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let $f:\mathbb{R}\to\mathbb{R}$ be defined by

$$f(x) = 2x - 3$$

What is f^{-1} ?

First, verify that f is a bijection (it is). To find an inverse, we use substitution:

• Let
$$f^{-1}(y) = x$$

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = 2x - 3$$

What is f^{-1} ?

First, verify that f is a bijection (it is). To find an inverse, we use substitution:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Let
$$f^{-1}(y) = x$$

• Let y = 2x - 3 and solve for x

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = 2x - 3$$

What is f^{-1} ?

First, verify that f is a bijection (it is). To find an inverse, we use substitution:

- Let $f^{-1}(y) = x$
- Let y = 2x 3 and solve for x
- Clearly, $x = \frac{y+3}{2}$ so,

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let $f:\mathbb{R}\to\mathbb{R}$ be defined by

$$f(x) = 2x - 3$$

What is f^{-1} ?

First, verify that f is a bijection (it is). To find an inverse, we use substitution:

• Let
$$f^{-1}(y) = x$$

• Let y = 2x - 3 and solve for x

• Clearly,
$$x = \frac{y+3}{2}$$
 so,

•
$$f^{-1}(y) = \frac{y+3}{2}$$
.

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

What is f^{-1} ?

Let

No domain/codomain has been specified. Say $f : \mathbb{R} \to \mathbb{R}$ Is f a bijection? Does an inverse exist?

 $f(x) = x^2$

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

What is f^{-1} ?

Let

No domain/codomain has been specified. Say $f : \mathbb{R} \to \mathbb{R}$ Is f a bijection? Does an inverse exist?

 $f(x) = x^2$

No, however if we specify that

$$A = \{ x \in \mathbb{R} \mid x \le 0 \}$$

and

$$B = \{ y \in \mathbb{R} \mid y \ge 0 \}$$

then it becomes a bijection and thus has an inverse.

Examples Example II Continued

Functions

CSE23

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions To find the inverse, we again, let $f^{-1}(y) = x$ and $y = x^2$. Solving for x we get $x = \pm \sqrt{y}$. But which is it?

Examples Example II Continued

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions To find the inverse, we again, let $f^{-1}(y) = x$ and $y = x^2$. Solving for x we get $x = \pm \sqrt{y}$. But which is it?

Since dom(f) is all nonpositive and rng(f) is nonnegative, y must be positive, thus

 $f^{-1}(y) = -\sqrt{y}$

Examples Example II Continued

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions To find the inverse, we again, let $f^{-1}(y) = x$ and $y = x^2$. Solving for x we get $x = \pm \sqrt{y}$. But which is it?

Since dom(f) is all nonpositive and rng(f) is nonnegative, y must be positive, thus

$$f^{-1}(y) = -\sqrt{y}$$

Thus, it should be clear that domains/codomains are just as important to a function as the definition of the function itself.

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let

What should the domain/codomain be for this to be a bijection? What is the inverse?

 $f(x) = 2^x$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let

V

b

The function should be $f : \mathbb{R} \to \mathbb{R}^+$. What happens when we include 0? Restrict either one to \mathbb{Z} ?

 $f(x) = 2^x$

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let

What should the domain/codomain be for this to be a bijection? What is the inverse?

The function should be $f : \mathbb{R} \to \mathbb{R}^+$. What happens when we include 0? Restrict either one to \mathbb{Z} ?

 $f(x) = 2^x$

Let $f^{-1}(y) = x$ and $y = 2^x$, solving for x we get $x = \log_2(x)$.

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let

What should the domain/codomain be for this to be a bijection? What is the inverse?

The function should be $f : \mathbb{R} \to \mathbb{R}^+$. What happens when we include 0? Restrict either one to \mathbb{Z} ?

 $f(x) = 2^x$

Let $f^{-1}(y) = x$ and $y = 2^x$, solving for x we get $x = \log_2(x)$. Therefore,

$$f^{-1}(y) = \log_2\left(y\right)$$

Nebraska Lincoln	Composition I
Functions CSE235 Introduction One-To-One & Onto Inverses and Compositions	The values of functions can be used as the input to other functions. Definition Let $g: A \to B$ and let $f: B \to C$. The composition of the functions f and g is $(f \circ g)(x) = f(g(x))$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶

Composition II

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions Note the *order* that you apply a function matters—you go from inner most to outer most.

The composition $f \circ g$ cannot be defined unless the the range of g is a subset of the domain of f;

 $f \circ g$ is defined $\iff \operatorname{rng}(g) \subseteq \operatorname{dom}(f)$

It also follows that $f \circ g$ is not necessarily the same as $g \circ f$.

Composition of Functions Nebraska Lincolr Figure Functions Introduction $(f \circ g)(a)$ One-To-One & Onto Inverses and Compositions gfImportant f(g(a))ag(a)Functions

A

The composition of two functions.

B

C

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let f and g be functions, $\mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = 2x - 3$$

$$g(x) = x^2 + 1$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

What are $f \circ g$ and $g \circ f$?

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Example

Let f and g be functions, $\mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = 2x - 3$$

$$g(x) = x^2 + 1$$

What are $f \circ g$ and $g \circ f$?

Note that f is bijective, thus $dom(f) = rng(f) = \mathbb{R}$. For g, we have that $dom(g) = \mathbb{R}$ but that $rng(g) = \{x \in \mathbb{R} \mid x \ge 1\}$.

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions Even so, $\operatorname{rng}(g) \subseteq \operatorname{dom}(f)$ and so $f \circ g$ is defined. Also, $\operatorname{rng}(f) \subseteq \operatorname{dom}(g)$ so $g \circ f$ is defined as well.

 $(f \circ g)(x) \ = \ g(f(x))$

and

$$(g \circ f)(x) = f(g(x))$$

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions Even so, $\operatorname{rng}(g) \subseteq \operatorname{dom}(f)$ and so $f \circ g$ is defined. Also, $\operatorname{rng}(f) \subseteq \operatorname{dom}(g)$ so $g \circ f$ is defined as well.

$$(f \circ g)(x) = g(f(x))$$

= $g(2x - 3)$

and

$$(g \circ f)(x) = f(g(x))$$

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions Even so, $\operatorname{rng}(g) \subseteq \operatorname{dom}(f)$ and so $f \circ g$ is defined. Also, $\operatorname{rng}(f) \subseteq \operatorname{dom}(g)$ so $g \circ f$ is defined as well.

$$(f \circ g)(x) = g(f(x))$$

= $g(2x - 3)$
= $(2x - 3)^2 + 1$

and

$$(g \circ f)(x) = f(g(x))$$

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions Even so, $\operatorname{rng}(g) \subseteq \operatorname{dom}(f)$ and so $f \circ g$ is defined. Also, $\operatorname{rng}(f) \subseteq \operatorname{dom}(g)$ so $g \circ f$ is defined as well.

$$(f \circ g)(x) = g(f(x)) = g(2x - 3) = (2x - 3)^2 + 1 = 4x^2 - 12x + 10$$

and

$$(g \circ f)(x) = f(g(x))$$

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions Even so, $\operatorname{rng}(g) \subseteq \operatorname{dom}(f)$ and so $f \circ g$ is defined. Also, $\operatorname{rng}(f) \subseteq \operatorname{dom}(g)$ so $g \circ f$ is defined as well.

$$(f \circ g)(x) = g(f(x)) = g(2x - 3) = (2x - 3)^2 + 1 = 4x^2 - 12x + 10$$

and

$$(g \circ f)(x) = f(g(x))$$

= $f(x^2 + 1)$

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions Even so, $\operatorname{rng}(g) \subseteq \operatorname{dom}(f)$ and so $f \circ g$ is defined. Also, $\operatorname{rng}(f) \subseteq \operatorname{dom}(g)$ so $g \circ f$ is defined as well.

$$(f \circ g)(x) = g(f(x)) = g(2x - 3) = (2x - 3)^2 + 1 = 4x^2 - 12x + 10$$

and

$$g \circ f)(x) = f(g(x)) = f(x^2 + 1) = 2(x^2 + 1) - 3$$

Functions

CSE235

Introduction

One-To-One & Onto

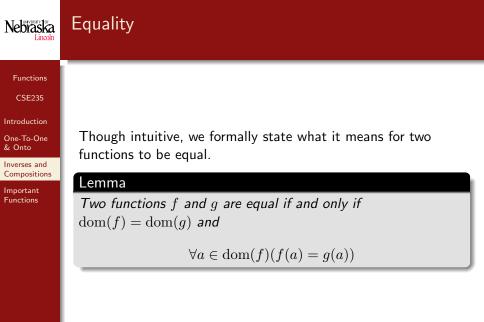
Inverses and Compositions

Important Functions Even so, $\operatorname{rng}(g) \subseteq \operatorname{dom}(f)$ and so $f \circ g$ is defined. Also, $\operatorname{rng}(f) \subseteq \operatorname{dom}(g)$ so $g \circ f$ is defined as well.

$$(f \circ g)(x) = g(f(x)) = g(2x - 3) = (2x - 3)^2 + 1 = 4x^2 - 12x + 10$$

and

$$g \circ f)(x) = f(g(x)) = f(x^2 + 1) = 2(x^2 + 1) - 3 = 2x^2 - 1$$



Nebraska Lincoln	Associativity
Functions CSE235	
Introduction One-To-One & Onto Inverses and Compositions Important	Though the composition of functions is not commutative $(f \circ g \neq g \circ f)$, it <i>is associative</i> . Lemma
Functions	Composition of functions is an associative operation; that is, $(f\circ g)\circ h=f\circ (g\circ h)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶

Important Functions Identity Function

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Definition

The *identity function* on a set A is the function

 $\iota:A\to A$

defined by $\iota(a) = a$ for all $a \in A$. This symbol is the Greek letter iota.

One can view the identity function as a composition of a function and its inverse;

$$\iota(a) = (f \circ f^{-1})(a)$$

Moreover, the composition of any function f with the identity function is itself f;

$$(f \circ \iota)(a) = (\iota \circ f)(a) = f(a)$$

Inverses & Identity

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions The identity function, along with the composition operation gives us another characterization for when a function has an inverse.

Theorem

Functions $f: A \rightarrow B$ and $g: B \rightarrow A$ are inverses if and only if

$$g \circ f = \iota_A \text{ and } f \circ g = \iota_B$$

That is,

$$\forall a \in A, b \in B\bigl((g(f(a))) = a \land f(g(b)) = b\bigr)$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Important Functions I Absolute Value Function

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions

Definition

The *absolute value* function, denoted |x| is a function $f : \mathbb{R} \to \{y \in \mathbb{R} \mid y \ge 0\}$. Its value is defined by

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Floor & Ceiling Functions

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

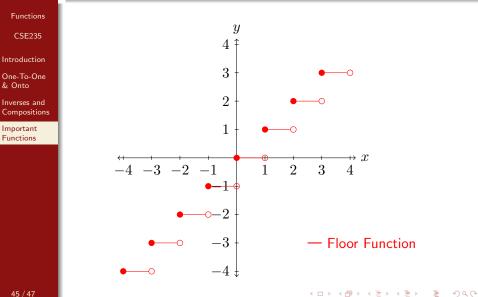
Important Functions

Definition

The *floor function*, denoted $\lfloor x \rfloor$ is a function $\mathbb{R} \to \mathbb{Z}$. Its value is the largest integer that is less than or equal to x. The *ceiling function*, denoted $\lceil x \rceil$ is a function $\mathbb{R} \to \mathbb{Z}$. Its value is the smallest integer that is greater than or equal to x.

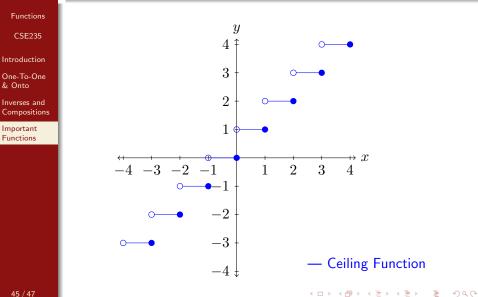
▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Floor & Ceiling Functions Nebraska **Graphical View**



Lincolr

Floor & Ceiling Functions Nebraska **Graphical View**



Lincolr

Factorial Function

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions The factorial function gives us the number of permutations (that is, uniquely ordered arrangement) of a collection of n objects.

Definition

The *factorial function*, denoted n! is a function $\mathbb{N} \to \mathbb{Z}^+$. Its value is the product of the first n positive integers.

$$n! = \prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Factorial Function Stirling's Approximation

Functions

CSE235

Introduction

One-To-One & Onto

Inverses and Compositions

Important Functions The factorial function is defined on a discrete domain. In many applications, it is useful to consider a continuous version of the function (say if we want to differentiate it).

To this end, we have Stirling's Formula:

$$n! \approx \sqrt{2\pi n} \frac{n^n}{e^n}$$