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Combinatorics I
Introduction

Combinatorics is the study of collections of objects.
Specifically, counting objects, arrangement, derangement, etc.
of objects along with their mathematical properties.

Counting objects is important in order to analyze algorithms
and compute discrete probabilities.

Originally, combinatorics was motivated by gambling: counting
configurations is essential to elementary probability.
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Combinatorics II
Introduction

A simple example: How many arrangements are there of a deck
of 52 cards?

In addition, combinatorics can be used as a proof technique.

A combinatorial proof is a proof method that uses counting
arguments to prove a statement.
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Product Rule

If two events are not mutually exclusive (that is, we do them
separately), then we apply the product rule.

Theorem (Product Rule)

Suppose a procedure can be accomplished with two disjoint
subtasks. If there are n1 ways of doing the first task and n2

ways of doing the second, then there are

n1 · n2

ways of doing the overall procedure.
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Sum Rule I

If two events are mutually exclusive, that is, they cannot be
done at the same time, then we must apply the sum rule.

Theorem (Sum Rule)

If an event e1 can be done in n1 ways and an event e2 can be
done in n2 ways and e1 and e2 are mutually exclusive, then the
number of ways of both events occurring is

n1 + n2
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Sum Rule II

There is a natural generalization to any sequence of m tasks;
namely the number of ways m mutually exclusive events can
occur is

n1 + n2 + · · ·nm−1 + nm

We can give another formulation in terms of sets. Let
A1, A2, . . . , Am be pairwise disjoint sets. Then

|A1 ∪A2 ∪ · · · ∪Am| = |A1|+ |A2|+ · · ·+ |Am|

In fact, this is a special case of the general Principle of
Inclusion-Exclusion.
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Principle of Inclusion-Exclusion (PIE) I
Introduction

Say there are two events, e1 and e2 for which there are n1 and
n2 possible outcomes respectively.

Now, say that only one event can occur, not both.

In this situation, we cannot apply the sum rule? Why?
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Principle of Inclusion-Exclusion (PIE) II
Introduction

We cannot use the sum rule because we would be over
counting the number of possible outcomes.

Instead, we have to count the number of possible outcomes of
e1 and e2 minus the number of possible outcomes in common
to both; i.e. the number of ways to do both “tasks”.

If again we think of them as sets, we have

|A1|+ |A2| − |A1 ∩A2|
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Principle of Inclusion-Exclusion (PIE) III
Introduction

More generally, we have the following.

Lemma

Let A,B be subsets of a finite set U . Then

1 |A ∪B| = |A|+ |B| − |A ∩B|
2 |A ∩B| ≤ min{|A|, |B|}
3 |A \B| = |A| − |A ∩B| ≥ |A| − |B|
4 |A| = |U | − |A|
5 |A⊕B| = |A ∪B| − |A ∩B| = |A|+ |B| − 2|A ∩B| =
|A \B|+ |B \A|

6 |A×B| = |A| × |B|
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Principle of Inclusion-Exclusion (PIE) I
Theorem

Theorem

Let A1, A2, . . . , An be finite sets, then

|A1 ∪A2 ∪ · · · ∪An| =
∑

i

|Ai|

−
∑
i<j

|Ai ∩Aj |

+
∑

i<j<k

|Ai ∩Aj ∩Ak|

− · · ·
+(−1)n+1|A1 ∩A2 ∩ · · · ∩An|

Each summation is over all i, pairs i, j with i < j, triples i, j, k
with i < j < k etc.
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Principle of Inclusion-Exclusion (PIE) II
Theorem

To illustrate, when n = 3, we have

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3|
−

[
|A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|

]
+|A1 ∩A2 ∩A3|
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Principle of Inclusion-Exclusion (PIE) III
Theorem

To illustrate, when n = 4, we have

|A1 ∪A2 ∪A3 ∪A4| = |A1|+ |A2|+ |A3|+ |A4|

−
[
|A1 ∩A2|+ |A1 ∩A3|+ +|A1 ∩A4|

|A2 ∩A3|+ |A2 ∩A4|+ |A3 ∩A4|
]

+
[
|A1 ∩A2 ∩A3|+ |A1 ∩A2 ∩A4|+

|A1 ∩A3 ∩A4|+ |A2 ∩A3 ∩A4|
]

−|A1 ∩A2 ∩A3 ∩A4|

12 / 94



Combinatorics

CSE235

Introduction

Counting

PIE

Examples

Derangements

Pigeonhole
Principle

Permutations

Combinations

Binomial
Coefficients

Generalizations

Algorithms

More
Examples

Principle of Inclusion-Exclusion (PIE) I
Example I

Example

How many integers between 1 and 300 (inclusive) are

1 Divisible by at least one of 3, 5, 7?

2 Divisible by 3 and by 5 but not by 7?

3 Divisible by 5 but by neither 3 nor 7?

Let
A = {n | 1 ≤ n ≤ 300 ∧ 3 | n}
B = {n | 1 ≤ n ≤ 300 ∧ 5 | n}
C = {n | 1 ≤ n ≤ 300 ∧ 7 | n}
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Principle of Inclusion-Exclusion (PIE) II
Example I

How big are each of these sets? We can easily use the floor
function;

|A| = b300/3c = 100
|B| = b300/5c = 60
|C| = b300/7c = 42

For (1) above, we are asked to find |A ∪B ∪ C|.
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Principle of Inclusion-Exclusion (PIE) III
Example I

By the principle of inclusion-exclusion, we have that

|A ∪B ∪ C| = |A|+ |B|+ |C|

−
[
|A ∩B|+ |A ∩ C|+ |B ∩ C|

]
+|A ∩B ∩ C|

It remains to find the final 4 cardinalities.

All three divisors, 3, 5, 7 are relatively prime. Thus, any integer
that is divisible by both 3 and 5 must simply be divisible by 15.
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Principle of Inclusion-Exclusion (PIE) IV
Example I

Using the same reasoning for all pairs (and the triple) we have

|A ∩B| = b300/15c = 20
|A ∩ C| = b300/21c = 14
|B ∩ C| = b300/35c = 8

|A ∩B ∩ C| = b300/105c = 2

Therefore,

|A ∪B ∪ C| = 100 + 60 + 42− 20− 14− 8 + 2 = 162
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Principle of Inclusion-Exclusion (PIE) V
Example I

For (2) above, it is enough to find

|(A ∩B) \ C|

By the definition of set-minus,

|(A ∩B) \ C| = |A ∩B| − |A ∩B ∩ C| = 20− 2 = 18
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Principle of Inclusion-Exclusion (PIE) VI
Example I

For (3) above, we are asked to find

|B \ (A ∪ C)| = |B| − |B ∩ (A ∪ C)|

By distributing B over the intersection, we get

|B ∩ (A ∪ C)| = |(B ∩A) ∪ (B ∩ C)|
= |B ∩A|+ |B ∩ C| − |(B ∩A) ∩ (B ∩ C)|
= |B ∩A|+ |B ∩ C| − |B ∩A ∩ C|
= 20 + 8− 2 = 26

So the answer is |B| − 26 = 60− 26 = 34.
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Principle of Inclusion-Exclusion (PIE) I
Example II

The principle of inclusion-exclusion can be used to count the
number of onto (surjective) functions.

Theorem

Let A,B be non-empty sets of cardinality m,n with m ≥ n.
Then there are

nm−
(

n

1

)
(n−1)m +

(
n

2

)
(n−2)m−· · ·+(−1)n−1

(
n

n− 1

)
1m

i.e.
∑n−1

i=0 (−1)i
(
n
i

)
(n− i)m onto functions f : A→ B.

See textbook page 509.
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Principle of Inclusion-Exclusion (PIE) II
Example II

Example

How many ways of giving out 6 pieces of candy to 3 children if
each child must receive at least one piece?

This can be modeled by letting A represent the set of candies
and B be the set of children.

Then a function f : A→ B can be interpreted as giving candy
ai to child cj .

Since each child must receive at least one candy, we are
considering only onto functions.
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Principle of Inclusion-Exclusion (PIE) III
Example II

To count how many there are, we apply the theorem and get
(for m = 6, n = 3),

36 −
(

3
1

)
(3− 1)6 +

(
3
2

)
(3− 2)6 = 540
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Derangements I

Consider the hatcheck problem.

An employee checks hats from n customers.

However, he forgets to tag them.

When customer’s check-out their hats, they are given one
at random.

What is the probability that no one will get their hat back?
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Derangements II

This can be modeled using derangements: permutations of
objects such that no element is in its original position.

For example, 21453 is a derangement of 12345, but 21543 is
not.

Theorem

The number of derangements of a set with n elements is

Dn = n!
[
1− 1

1!
+

1
2!
− 1

3!
+ · · · (−1)n 1

n!

]

See textbook page 510.
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Derangements III

Thus, the answer to the hatcheck problem is

Dn

n!

Its interesting to note that

e−1 = 1− 1
1!

+
1
2!
− 1

3!
+ · · ·+ (−1)n 1

n!
· · ·

So that the probability of the hatcheck problem converges;

lim
n→∞

Dn

n!
= e−1 = .368 . . .
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The Pigeonhole Principle I

The pigeonhole principle states that if there are more pigeons
than there are roosts (pigeonholes), for at least one pigeonhole,
more than two pigeons must be in it.

Theorem (Pigeonhole Principle)

If k + 1 or more objects are placed into k boxes, then there is
at least one box containing two ore more objects.

This is a fundamental tool of elementary discrete mathematics.
It is also known as the Dirichlet Drawer Principle or Dirichlet
Box Principle.
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The Pigeonhole Principle II

It is seemingly simple, but very powerful.

The difficulty comes in where and how to apply it.

Some simple applications in Computer Science:

Calculating the probability of Hash functions having a
collision.

Proving that there can be no lossless compression
algorithm compressing all files to within a certain ratio.

Lemma

For two finite sets A,B there exists a bijection f : A→ B if
and only if |A| = |B|.

26 / 94



Combinatorics

CSE235

Introduction

Counting

PIE

Pigeonhole
Principle

Generalized

Examples

Permutations

Combinations

Binomial
Coefficients

Generalizations

Algorithms

More
Examples

Generalized Pigeonhole Principle I

Theorem

If N objects are placed into k boxes then there is at least one
box containing at least ⌈

N

k

⌉

Example

In any group of 367 or more people, at least two of them must
have been born on the same date.
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Generalized Pigeonhole Principle II

A probabilistic generalization states that if n objects are
randomly put into m boxes with uniform probability (each
object is placed in a given box with probability 1/m) then at
least one box will hold more than one object with probability,

1− m!
(m− n)!mn
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Generalized Pigeonhole Principle III

Example

Among 10 people, what is the probability that two or more will
have the same birthday?

Here, n = 10 and m = 365 (ignore leapyears). Thus, the
probability that two will have the same birthday is

1− 365!
(365− 10)!36510

≈ .1169

So less than a 12% probability!
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Pigeonhole Principle I
Example I

Example

Show that in a room of n people with certain acquaintances,
some pair must have the same number of acquaintances.

Note that this is equivalent to showing that any symmetric,
irreflexive relation on n elements must have two elements with
the same number of relations.

We’ll show by contradiction using the pigeonhole principle.

Assume to the contrary that every person has a different
number of acquaintances; 0, 1, . . . , n− 1 (we cannot have n
here because it is irreflexive). Are we done?
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Pigeonhole Principle II
Example I

No, since we only have n people, this is okay (i.e. there are n
possibilities).

We need to use the fact that acquaintanceship is a symmetric,
irreflexive relation.

In particular, some person knows 0 people while another knows
n− 1 people.

In other words, someone knows everyone, but there is also a
person that knows no one.

Thus, we have reached a contradiction.
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Pigeonhole Principle I
Example II

Example

Show that in any list of ten nonnegative integers, A0, . . . , A9,
there is a string of consecutive items of the list al, al+1, . . .
whose sum is divisible by 10.

Consider the following 10 numbers.

a0

a0 + a1

a0 + a1 + a2
...
a0 + a1 + a2 + . . . + a9

If any one of them is divisible by 10 then we are done.
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Pigeonhole Principle II
Example II

Otherwise, we observe that each of these numbers must be in
one of the congruence classes

1 mod 10, 2 mod 10, . . . , 9 mod 10

By the pigeonhole principle, at least two of the integers above
must lie in the same congruence class. Say a, a′ lie in the
congruence class k mod 10.

Then

(a− a′) ≡ k − k(mod 10)

and so the difference (a− a′) is divisible by 10.
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Pigeonhole Principle I
Example III

Example

Say 30 buses are to transport 2000 Cornhusker fans to
Colorado. Each bus has 80 seats. Show that

1 One of the buses will have 14 empty seats.

2 One of the buses will carry at least 67 passengers.

For (1), the total number of seats is 30 · 80 = 2400 seats. Thus
there will be 2400− 2000 = 400 empty seats total.
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Pigeonhole Principle II
Example III

By the generalized pigeonhole principle, with 400 empty seats
among 30 buses, one bus will have at least⌈

400
30

⌉
= 14

empty seats.

For (2) above, by the pigeonhole principle, seating 2000
passengers among 30 buses, one will have at least⌈

2000
30

⌉
= 67

passengers.
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Permutations I

A permutation of a set of distinct objects is an ordered
arrangement of these objects. An ordered arrangement of r
elements of a set is called an r-permutation.

Theorem

The number of r permutations of a set with n distinct
elements is

P (n, r) =
r−1∏
i=0

(n− i) = n(n− 1)(n− 2) · · · (n− r + 1)
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Permutations II

It follows that

P (n, r) =
n!

(n− r)!

In particular,

P (n, n) = n!

Again, note here that order is important. It is necessary to
distinguish in what cases order is important and in which it is
not.
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Permutations
Example I

Example

How many pairs of dance partners can be selected from a
group of 12 women and 20 men?

The first woman can be partnered with any of the 20 men. The
second with any of the remaining 19, etc.

To partner all 12 women, we have

P (20, 12)
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Example

How many pairs of dance partners can be selected from a
group of 12 women and 20 men?

The first woman can be partnered with any of the 20 men. The
second with any of the remaining 19, etc.

To partner all 12 women, we have

P (20, 12)
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Permutations
Example I

Example

How many pairs of dance partners can be selected from a
group of 12 women and 20 men?

The first woman can be partnered with any of the 20 men. The
second with any of the remaining 19, etc.

To partner all 12 women, we have

P (20, 12)
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Permutations
Example II

Example

In how many ways can the English letters be arranged so that
there are exactly ten letters between a and z?

The number of ways of arranging 10 letters between a and z is
P (24, 10). Since we can choose either a or z to come first,
there are 2P (24, 10) arrangements of this 12-letter block.

For the remaining 14 letters, there are P (15, 15) = 15!
arrangements. In all, there are

2P (24, 10) · 15!
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Example

In how many ways can the English letters be arranged so that
there are exactly ten letters between a and z?

The number of ways of arranging 10 letters between a and z is
P (24, 10). Since we can choose either a or z to come first,
there are 2P (24, 10) arrangements of this 12-letter block.

For the remaining 14 letters, there are P (15, 15) = 15!
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Example II

Example

In how many ways can the English letters be arranged so that
there are exactly ten letters between a and z?

The number of ways of arranging 10 letters between a and z is
P (24, 10). Since we can choose either a or z to come first,
there are 2P (24, 10) arrangements of this 12-letter block.

For the remaining 14 letters, there are P (15, 15) = 15!
arrangements. In all, there are

2P (24, 10) · 15!
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Example

How many permutations of the letters a, b, c, d, e, f, g contain
neither the pattern bge nor eaf?

The number of total permutations is P (7, 7) = 7!.

If we fix the pattern bge, then we can consider it as a single
block. Thus, the number of permutations with this pattern is
P (5, 5) = 5!.
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Fixing the pattern eaf we have the same number, 5!.

Thus we have
7!− 2(5!)

Is this correct?

No. We have taken away too many permutations: ones
containing both eaf and bge.

Here there are two cases, when eaf comes first and when bge
comes first.
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eaf cannot come before bge, so this is not a problem.

If bge comes first, it must be the case that we have bgeaf as a
single block and so we have 3 blocks or 3! arrangements.

Altogether we have

7!− 2(5!) + 3! = 4806
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Definition

Whereas permutations consider order, combinations are used
when order does not matter.

Definition

An k-combination of elements of a set is an unordered selection
of k elements from the set. A combination is simply a subset of
cardinality k.
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Combinations II
Definition

Theorem

The number of k-combinations of a set with cardinality n with
0 ≤ k ≤ n is

C(n, k) =
(

n

k

)
=

n!
(n− k)!k!

Note: the notation,
(
n
k

)
is read, “n choose k”. In TEX use {n

choose k} (with the forward slash).
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Combinations III
Definition

A useful fact about combinations is that they are symmetric.(
n

1

)
=

(
n

n− 1

)
(

n

2

)
=

(
n

n− 2

)
etc.
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Combinations IV
Definition

This is formalized in the following corollary.

Corollary

Let n, k be nonnegative integers with k ≤ n, then(
n

k

)
=

(
n

n− k

)
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Example

In the Powerball lottery, you pick five numbers between 1 and
55 and a single “powerball” number between 1 and 42. How
many possible plays are there?

Order here doesn’t matter, so the number of ways of choosing
five regular numbers is (

55
5

)
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We can choose among 42 power ball numbers. These events
are not mutually exclusive, thus we use the product rule.

42
(

55
5

)
= 42

55!
(55− 5)!5!

= 146, 107, 962

So the odds of winning are

1
146, 107, 962

< .000000006845
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Example

In a sequence of 10 coin tosses, how many ways can 3 heads
and 7 tails come up?

The number of ways of choosing 3 heads out of 10 coin tosses
is (

10
3

)
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Example II

However, this is the same as choosing 7 tails out of 10 coin
tosses; (

10
3

)
=

(
10
7

)
= 120

This is a perfect illustration of the previous corollary.
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Example

How many possible committees of five people can be chosen
from 20 men and 12 women if

1 if exactly three men must be on each committee?

2 if at least four women must be on each committee?
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For (1), we must choose 3 men from 20 then two women from
12. These are not mutually exclusive, thus the product rule
applies. (

20
3

)(
12
2

)

52 / 94



Combinatorics

CSE235

Introduction

Counting

PIE

Pigeonhole
Principle

Permutations

Combinations

Binomial
Coefficients

Generalizations

Algorithms

More
Examples

Combinations III
Example III

For (2), we consider two cases; the case where four women are
chosen and the case where five women are chosen. These two
cases are mutually exclusive so we use the addition rule.

For the first case we have(
20
1

)(
12
4

)
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And for the second we have(
20
0

)(
12
5

)

Together we have(
20
1

)(
12
4

)
+

(
20
0

)(
12
5

)
= 10, 692
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Binomial Coefficients I
Introduction

The number of r-combinations,
(
n
r

)
is also called a binomial

coefficient.

They are the coefficients in the expansion of the expression
(multivariate polynomial), (x + y)n. A binomial is a sum of
two terms.
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Binomial Coefficients II
Introduction

Theorem (Binomial Theorem)

Let x, y be variables and let n be a nonnegative integer. Then

(x + y)n =
n∑

j=0

(
n

j

)
xn−jyj
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Binomial Coefficients III
Introduction

Expanding the summation, we have

(x + y)n =
(
n
0

)
xn +

(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + · · ·

+
(

n
n−1

)
xyn−1 +

(
n
n

)
yn

For example,

(x + y)3 = (x + y)(x + y)(x + y)
= (x + y)(x2 + 2xy + y2)
= x3 + 3x2y + 3xy2 + y3
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Example

What is the coefficient of the term x8y12 in the expansion of
(3x + 4y)20?

By the Binomial Theorem, we have

(3x + 4y)n =
20∑

j=0

(
20
j

)
(3x)20−j(4y)j

So when j = 12, we have(
20
12

)
(3x)8(4y)12

so the coefficient is 20!
12!8!3

8412 = 13866187326750720.
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More

Many useful identities and facts come from the Binomial
Theorem.

Corollary

n∑
k=0

(
n

k

)
= 2n

n∑
k=0

(−1)k

(
n

k

)
= 0 n ≥ 1

n∑
k=0

2k

(
n

k

)
= 3n
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Check textbook for proofs, which are based on: 2n=(1 + 1)n,
0 = 0n=((−1) + 1)n, 3n=(1 + 2)n.
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More

Most of these can be proven by either induction or by a
combinatorial argument.

Theorem (Vandermonde’s Identity)

Let m,n, r be nonnegative integers with r not exceeding either
m or n. Then (

m + n

r

)
=

r∑
k=0

(
m

r − k

)(
n

k

)
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More

Taking n = m = r in the Vandermonde’s identity.

Corollary

If n is a nonnegative integer, then(
2n

n

)
=

n∑
k=0

(
n

k

)2

Corollary

Let n, r be nonnegative integers, r ≤ n. Then(
n + 1
r + 1

)
=

n∑
j=r

(
j

r

)
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Binomial Coefficients I
Pascal’s Identity & Triangle

The following is known as Pascal’s Identity which gives a useful
identity for efficiently computing binomial coefficients.

Theorem (Pascal’s Identity)

Let n, k ∈ Z+ with n ≥ k. Then(
n + 1

k

)
=

(
n

k − 1

)
+

(
n

k

)

Pascal’s Identity forms the basis of a geometric object known
as Pascal’s Triangle.
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Pascal’s Triangle

(
0
0

)
(
1
0

) (
1
1

)
(
2
0

) (
2
1

) (
2
2

)
(
3
0

) (
3
1

) (
3
2

) (
3
3

)
(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
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Pascal’s Triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

65 / 94



Combinatorics

CSE235

Introduction

Counting

PIE

Pigeonhole
Principle

Permutations

Combinations

Binomial
Coefficients

Generalizations

Algorithms

More
Examples

Pascal’s Triangle

(
0
0

)
(
1
0

) (
1
1

)
(
2
0
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2
1
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2
2
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(
3
0
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3
1

) (
3
2
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3
3
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(
4
0
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4
1
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4
2
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4
3
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4
4
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(
5
0

) (
5
1
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5
2
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5
3
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5
4

) (
5
5

)

(
3
2

)
+

(
3
3

)
=

(
4
3

)
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Generalized Combinations & Permutations I

Sometimes we are concerned with permutations and
combinations in which repetitions are allowed.

Theorem

The number of r-permutations of a set of n objects with
repetition allowed is nr.

Easily obtained by the product rule.
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Generalized Combinations & Permutations II

Theorem

There are (
n + r − 1

r

)
r-combinations from a set with n elements when repetition of
elements is allowed.
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Generalized Combinations & Permutations III

Example

There are 30 varieties of donuts from which we wish to buy a
dozen. How many possible ways to place your order are there?

Here n = 30 and we wish to choose r = 12. Order does not
matter and repetitions are possible, so we apply the previous
theorem to get that there are(

30 + 12− 1
12

)
possible orders.
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Generalized Combinations & Permutations IV

Theorem

The number of different permutations of n objects where there
are n1 indistinguishable objects of type 1, n2 of type 2, . . ., and
nk of type k is

n!
n1!n2! · · ·nk!

An equivalent way of interpreting this theorem is the number of
ways to distribute n distinguishable objects into k
distinguishable boxes so that ni objects are placed into box i
for i = 1, 2, . . . , k.
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Generalized Combinations & Permutations V

Example

How many permutations of the word “Mississippi” are there?

“Mississippi” contains 4 distinct letters, M , i, s and p; with
1, 4, 4, 2 occurrences respectively.

Therefore there are
11!

1!4!4!2!
permutations.
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Generating Permutations & Combinations I
Introduction

In general, it is inefficient to solve a problem by considering all
permutations or combinations since there are an exponential
number of such arrangements.

Nevertheless, for many problems, no better approach is known.
When exact solutions are needed, back-tracking algorithms are
used.

Generating permutations or combinations are sometimes the
basis of these algorithms.
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Generating Permutations & Combinations II
Introduction

Example (Traveling Sales Person Problem)

Consider a salesman that must visit n different cities. He
wishes to visit them in an order such that his overall distance
traveled is minimized.
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Generating Permutations & Combinations III
Introduction

This problem is one of hundreds of NP-complete problems for
which no known efficient algorithms exist. Indeed, it is believed
that no efficient algorithms exist. (Actually, Euclidean TSP is
not even known to be in NP!)

The only known way of solving this problem exactly is to try all
n! possible routes.

We give several algorithms for generating these combinatorial
objects.
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Generating Combinations I

Recall that combinations are simply all possible subsets of size
r. For our purposes, we will consider generating subsets of

{1, 2, 3, . . . , n}

The algorithm works as follows.

Start with {1, . . . , r}
Assume that we have a1a2 · · · ar, we want the next
combination.

Locate the last element ai such that ai 6= n− r + i.

Replace ai with ai + 1.

Replace aj with ai + j − i for j = i + 1, i + 2, . . . , r.
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Generating Combinations II

The following is pseudocode for this procedure.

Algorithm (Next r-Combination)

Input : A set of n elements and an r-combination, a1 · · · ar.

Output : The next r-combination.

i = r1

while ai = n− r + i do2
i = i− 13

end4

ai = ai + 15

for j = (i + 1) . . . r do6
aj = ai + j − i7

end8
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Generating Combinations III

Example

Find the next 3-combination of the set {1, 2, 3, 4, 5} after
{1, 4, 5}

Here, a1 = 1, a2 = 4, a3 = 5, n = 5, r = 3.

The last i such that ai 6= 5− 3 + i is 1.

Thus, we set
a1 = a1 + 1 = 2
a2 = a1 + 2− 1 = 3
a3 = a1 + 3− 1 = 4

So the next r-combination is {2, 3, 4}.
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Generating Permutations

The text gives an algorithm to generate permutations in
lexicographic order. Essentially the algorithm works as follows.

Given a permutation,

Choose the left-most pair aj , aj+1 where aj < aj+1.

Choose the least item to the right of aj greater than aj .

Swap this item and aj .

Arrange the remaining (to the right) items in order.
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Generating Permutations
Lexicographic Order

Algorithm (Next Permutation (Lexicographic Order))

Input : A set of n elements and an r-permutation, a1 · · · ar.

Output : The next r-permutation.

j = n− 11

while aj > aj+1 do2
j = j − 13

end4

//j is the largest subscript with aj < aj+1

k = n5

while aj > ak do6
k = k − 17

end8

//ak is the smallest integer greater than aj to the right of aj

swap(aj , ak)9

r = n10

s = j + 111

while r > s do12
swap(ar, as)13

r = r − 114

s = s + 115

end16
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Generating Permutations I

Often there is no reason to generate permutations in
lexicographic order. Moreover, even though generating
permutations is inefficient in itself, lexicographic order induces
even more work.

An alternate method is to fix an element, then recursively
permute the n− 1 remaining elements.

Johnson-Trotter algorithm has the following attractive
properties. Not in your textbook, not on the exam, just for
your reference/culture.

It is bottom-up (non-recursive).

It induces a minimal-change between each permutation.
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Generating Permutations II

The algorithm is known as the Johnson-Trotter algorithm.

We associate a direction to each element, for example:

−→
3
←−
2
−→
4
←−
1

A component is mobile if its direction points to an adjacent
component that is smaller than itself. Here 3 and 4 are mobile
and 1 and 2 are not.
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Generating Permutations III

Algorithm (JohnsonTrotter)

Input : An integer n.

Output : All possible permutations of 〈1, 2, . . . n〉.
π =
←−
1
←−
2 . . .←−n1

while There exists a mobile integer k ∈ π do2
k = largest mobile integer3

swap k and the adjacent integer k points to4

reverse direction of all integers > k5

Output π6

end7
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More Examples

As always, the best way to learn new concepts is through
practice and examples.
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Example I I

Example

How many bit strings of length 4 are there such that 11 never
appears as a substring?

We can represent the set of string graphically using a diagram
tree.

See textbook page 343.
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Example I II

00000

00011
0

1000
0

1
0

01000

01011

01
0

00100

10011
0

1010
0

1

01

Therefore, the number of such bit string is 8.
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Example: Counting Functions I I

Example

Let S, T be sets such that |S| = n, |T | = m. How many
functions are there mapping f : S → T? How many of these
functions are one-to-one (injective)?

A function simply maps each si to some tj , thus for each n we
can choose to send it to any of the elements in T .
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Example: Counting Functions I II

Each of these is an independent event, so we apply the
multiplication rule;

m×m× · · · ×m︸ ︷︷ ︸
n times

= mn

If we wish f to be one-to-one (injective), we must have that
n ≤ m, otherwise we can easily answer 0.

Now, each si must be mapped to a unique element in T . For
s1, we have m choices. However, once we have made a
mapping (say tj), we cannot map subsequent elements to tj
again.
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Example: Counting Functions I III

In particular, for the second element, s2, we now have m− 1
choices. Proceeding in this manner, s3 will have m− 2 choices,
etc. Thus we have

m · (m− 1) · (m− 2) · · · · · (m− (n− 2)) · (m− (n− 1))

An alternative way of thinking about this problem is by using
the choose operator: we need to choose n elements from a set
of size m for our mapping;(

m

n

)
=

m!
(m− n)!n!
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Example: Counting Functions I IV

Once we have chosen this set, we now consider all
permutations of the mapping, i.e. n! different mappings for this
set. Thus, the number of such mappings is

m!
(m− n)!n!

· n! =
m!

(m− n)!
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Example: Counting Functions II

Recall this question from the midterm exam:

Example

Let S = {1, 2, 3}, T = {a, b}. How many onto functions are
there mapping S → T? How many one-to-one (injective)
functions are there mapping T → S?

See Theorem 1, page 509.

90 / 94



Combinatorics

CSE235

Introduction

Counting

PIE

Pigeonhole
Principle

Permutations

Combinations

Binomial
Coefficients

Generalizations

Algorithms

More
Examples

Example: Counting Primes I

Example

Give an estimate for how many 70 bit primes there are.

Recall that the number of primes not more than n is about

n

lnn

See slides on Number Theory, page 15.

Using this fact, the number of primes not exceeding 270 is

270

ln 270
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Example: Counting Primes II

However, we have over counted—we’ve counted 69-bit, 68-bit,
etc primes as well.

The number of primes not exceeding 269 is about

269

ln 269

Thus the difference is

270

ln 270
− 269

ln 269
≈ 1.19896× 1019
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Example: More sets I

Example

How many integers in the range 1 ≤ k ≤ 100 are divisible by 2
or 3?

Let
A = {x | 1 ≤ x ≤ 100, 2 | x}
B = {y | 1 ≤ x ≤ 100, 3 | y}

Clearly, |A| = 50, |B| = b100
3 c = 33, so is it true that

|A ∪B| = 50 + 33 = 83?
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Example: More sets II

No; we’ve over counted again—any integer divisible by 6 will
be in both sets. How much did we over count?

The number of integers between 1 and 100 divisible by 6 is
b100

6 c = 16, so the answer to the original question is

|A ∪B| = (50 + 33)− 16 = 67
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