Algorithms: A Brief Introduction

Slides by Christopher M. Bourke
Instructor: Berthe Y. Choueiry

Fall 2007

Computer Science & Engineering 235
Introduction to Discrete Mathematics
Section 3.1 of Rosen
cse235@cse.unl.edu
Real World Computing World
Objects Data Structures, ADTs, Classes
Relations Relations and functions
Actions Operations

Problems are specified by (1) a formulation and (2) a query.

Formulation is a set of objects and a set of relations between them

Query is the information one is trying to extract from the formulation, the question to answer.

Algorithms are methods or procedures that solve instances of a problem.

1″Algorithm” is a distortion of *al-Khwārizmi*, a Persian mathematician.
Algorithms
Formal Definition

Definition
An **algorithm** is a sequence of unambiguous instructions for solving a problem. Algorithms must be

- Finite – must eventually *terminate*.
- Complete – *always* gives a solution when there is one.
- Correct (sound) – *always* gives a “correct” solution.

For an algorithm to be an acceptable solution to a problem, it must also be *effective*. That is, it must give a solution in a “reasonable” amount of time.

There can be many algorithms for the same problem.
There are many broad categories of Algorithms: Randomized algorithms, Monte-Carlo algorithms, Approximation algorithms, Parallel algorithms, et al.

Usually, algorithms are studied corresponding to relevant data structures. Some general styles of algorithms include:

1. Brute Force (enumerative techniques, exhaustive search)
2. Divide & Conquer
3. Transform & Conquer (reformulation)
4. Greedy Techniques
Algorithms are usually presented using some form of *pseudo-code*. Good pseudo-code is a balance between clarity and detail.

Bad pseudo-code gives too many details or is too implementation specific (i.e. actual C++ or Java code or giving every step of a sub-process).

Good pseudo-code abstracts the algorithm, makes good use of mathematical notation and is easy to read.
Good Pseudo-code Example

intersection

Input: Two sets of integers, \(A \) and \(B \)

Output: A set of integers \(C \) such that \(C = A \cap B \)

1. \(C \leftarrow \emptyset \)
2. if \(|A| > |B| \) then
 3. \(\text{swap}(A, B) \)
4. end
5. for every \(x \in A \) do
 6. if \(x \in B \) then
 7. \(C \leftarrow C \cup \{x\} \)
 8. end
9. end
10. output \(C \)

Latex notation: \(\leftarrow \).
Designing An Algorithm

A general approach to designing algorithms is as follows.

1. Understand the problem, assess its difficulty
2. Choose an approach (e.g., exact/approximate, deterministic/probabilistic)
3. (Choose appropriate data structures)
4. Choose a strategy
5. Prove termination
6. Prove correctness
7. Prove completeness
8. Evaluate complexity
9. Implement and test it.
10. Compare to other known approaches and algorithms.
When designing an algorithm, we usually give a formal statement about the problem we wish to solve.

Problem

Given a set $A = \{a_1, a_2, \ldots, a_n\}$ integers.
Output the index i of the maximum integer a_i.

A straightforward idea is to simply store an initial maximum, say a_1 then compare it to every other integer, and update the stored maximum if a new maximum is ever found.
MAX
Pseudo-code

INPUT
A set $A = \{a_1, a_2, \ldots, a_n\}$ of integers.

OUTPUT
An index i such that $a_i = \max\{a_1, a_2, \ldots, a_n\}$

1. $\text{index} \leftarrow 1$
2. FOR $i = 2, \ldots, n$ DO
3. \hspace{1em} IF $a_i > a_{\text{index}}$ THEN
4. \hspace{2em} $\text{index} \leftarrow i$
5. \hspace{1em} END
6. END
7. $\text{output } i$
This is a simple enough algorithm that you should be able to:

- Prove it correct
- Verify that it has the properties of an algorithm.
- Have some intuition as to its cost.

That is, how many “steps” would it take for this algorithm to complete its run? What constitutes a step? How do we measure the complexity of the step?

These questions will be answered in the next few lectures, for now let us just take a look at a couple more examples.
Other examples

Check Bubble Sort and Insertion Sort in your textbooks, which you have seen ad nauseum, in CSE155, CSE156, and will see again in CSE310.

I will be glad to discuss them with any of you if you have not seen them yet.
In many problems, we wish to not only find a solution, but to find the best or *optimal* solution.

A simple technique that works for *some* optimization problems is called the *greedy technique*.

As the name suggests, we solve a problem by being greedy—that is, choosing the best, most immediate solution (i.e. a *local* solution).

However, for some problems, this technique is not guaranteed to produce the best *globally optimal* solution.
Example
Change-Making Problem

For anyone who’s had to work a service job, this is a familiar problem: we want to give change to a customer, but we want to minimize the number of total coins we give them.

Problem

Given An integer \(n \) and a set of coin denominations \((c_1, c_2, \ldots, c_r)\) with \(c_1 > c_2 > \cdots > c_r \)

Output A set of coins \(d_1, d_2, \ldots, d_k \) such that \(\sum_{i=1}^{k} d_i = n \) and \(k \) is minimized.
Example
Change-Making Algorithm

CHANGE

INPUT
: An integer \(n \) and a set of coin denominations \((c_1, c_2, \ldots, c_r)\) with \(c_1 > c_2 > \cdots > c_r \).

OUTPUT
: A set of coins \(d_1, d_2, \ldots, d_k \) such that \(\sum_{i=1}^{k} d_i = n \) and \(k \) is minimized.

1. \(C \leftarrow \emptyset \)
2. FOR \(i = 1, \ldots, r \) DO
3. \hspace{1em} WHILE \(n \geq c_i \) DO
4. \hspace{2em} \(C \leftarrow C \cup \{c_i\} \)
5. \hspace{2em} \(n \leftarrow n - c_i \)
6. \hspace{1em} END
7. END
8. **output** \(C \)
Change-Making Algorithm
Analysis

Will this algorithm *always* produce an optimal answer?

Consider a coinage system:

\[
c_1 = 20, \quad c_2 = 15, \quad c_3 = 7, \quad c_4 = 1
\]

and we want to give 22 "cents" in change.

What will this algorithm produce?
Is it optimal?
It is not optimal since it would give us one \(c_4\) and two \(c_1\), for three coins, while the optimal is one \(c_2\) and one \(c_3\) for two coins.
Change-Making Algorithm
Analysis

Will this algorithm *always* produce an optimal answer?

Consider a coinage system:

- where \(c_1 = 20, c_2 = 15, c_3 = 7, c_4 = 1 \)
- and we want to give 22 “cents” in change.

What will this algorithm produce?

Is it optimal?
Will this algorithm always produce an optimal answer?

Consider a coinage system:

- where \(c_1 = 20, c_2 = 15, c_3 = 7, c_4 = 1 \)
- and we want to give 22 “cents” in change.

What will this algorithm produce?

Is it optimal?

It is not optimal since it would give us one \(c_4 \) and two \(c_1 \), for three coins, while the optimal is one \(c_2 \) and one \(c_3 \) for two coins.
What about the US currency system—is the algorithm correct in this case?

Yes, in fact, we can prove it by contradiction.

For simplicity, let $c_1 = 25, c_2 = 10, c_3 = 5, c_4 = 1$.
Change-Making Algorithm
Proving optimality

Proof.
Proof.

- Let $C = \{d_1, d_2, \ldots, d_k\}$ be the solution given by the greedy algorithm for some integer n. By way of contradiction, assume there is another solution $C' = \{d'_1, d'_2, \ldots, d'_l\}$ with $l < k$.

Consider the case of quarters. Say in C there are q quarters and in C' there are q'. If $q' > q$, the greedy algorithm would have used q'. Since the greedy algorithm uses as many quarters as possible, $n = q(25) + r$ where $r < 25$. Thus if $q' < q$, then in $n = q'(25) + r'$, $r' \geq 25$ and so C' does not provide an optimal solution.

Finally, if $q = q'$, then we continue this argument on dimes and nickels. Eventually we reach a contradiction. Thus, $C = C'$ is our optimal solution.
Proof.

- Let \(C = \{d_1, d_2, \ldots, d_k\} \) be the solution given by the greedy algorithm for some integer \(n \). By way of contradiction, assume there is another solution \(C' = \{d'_1, d'_2, \ldots, d'_l\} \) with \(l < k \).

- Consider the case of quarters. Say in \(C \) there are \(q \) quarters and in \(C' \) there are \(q' \). If \(q' > q \), the greedy algorithm would have used \(q' \).
Proof.

- Let $C = \{d_1, d_2, \ldots, d_k\}$ be the solution given by the greedy algorithm for some integer n. By way of contradiction, assume there is another solution $C' = \{d'_1, d'_2, \ldots, d'_l\}$ with $l < k$.

- Consider the case of quarters. Say in C there are q quarters and in C' there are q'. If $q' > q$, the greedy algorithm would have used q'.

- Since the greedy algorithm uses as many quarters as possible, $n = q(25) + r$ where $r < 25$, thus if $q' < q$, then in $n = q'(25) + r'$, $r' \geq 25$ and so C' does not provide an optimal solution.
Proof.

- Let $C = \{d_1, d_2, \ldots, d_k\}$ be the solution given by the greedy algorithm for some integer n. By way of contradiction, assume there is another solution $C' = \{d'_1, d'_2, \ldots, d'_l\}$ with $l < k$.

- Consider the case of quarters. Say in C there are q quarters and in C' there are q'. If $q' > q$, the greedy algorithm would have used q'.

- Since the greedy algorithm uses as many quarters as possible, $n = q(25) + r$. where $r < 25$, thus if $q' < q$, then in $n = q'(25) + r'$, $r' \geq 25$ and so C' does not provide an optimal solution.

- Finally, if $q = q'$, then we continue this argument on dimes and nickels. Eventually we reach a contradiction.
Proof.

- Let $C = \{d_1, d_2, \ldots, d_k\}$ be the solution given by the greedy algorithm for some integer n. By way of contradiction, assume there is another solution $C' = \{d'_1, d'_2, \ldots, d'_l\}$ with $l < k$.

- Consider the case of quarters. Say in C there are q quarters and in C' there are q'. If $q' > q$, the greedy algorithm would have used q'.

- Since the greedy algorithm uses as many quarters as possible, $n = q(25) + r$. where $r < 25$, thus if $q' < q$, then in $n = q'(25) + r'$, $r' \geq 25$ and so C' does not provide an optimal solution.

- Finally, if $q = q'$, then we continue this argument on dimes and nickels. Eventually we reach a contradiction.

- Thus, $C = C'$ is our optimal solution.
Why (and where) does this proof fail in our previous counter example to the general case?

We need the following lemma:

If \(n \) is a positive integer then \(n \) cents in change using quarters, dimes, nickels, and pennies using the fewest coins possible

1. has at most two dimes, at most one nickel, at most four pennies, and
2. cannot have two dimes and a nickel.

The amount of change in dimes, nickels, and pennies cannot exceed 24 cents.