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Research goal: “What algorithm to run?”

■ fundamental properties of various algorithms
■ fundamental properties of problems

How to best use available information in a tree search?



Combinatorial Optimization

Introduction

➢Motivation
➢Combinatorial
Optimization

➢Constraint
Satisfaction
➢Types of Search
Problems

➢The Problem

➢The Central Idea

Previous Approaches

Basic BLFS

BLFS with Learning

Wheeler Ruml (PARC) Learning to Search Trees – 4 / 40

Given: set of variables
possible values for each variable
objective function over assignments

Find: assignment that minimizes objective function

One approach: search tree for best leaf
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Given: set of variables
possible values for each variable
set of constraints between variables

Find: complete and feasible assignment

Treat as combinatorial optimization:

variable 1

variable 2

value 1

1

value 1

3

value 2

variable 2

value 2

0

value 1

4

value 2



Types of Search Problems

Introduction

➢Motivation
➢Combinatorial
Optimization

➢Constraint
Satisfaction
➢Types of Search
Problems

➢The Problem

➢The Central Idea

Previous Approaches

Basic BLFS

BLFS with Learning

Wheeler Ruml (PARC) Learning to Search Trees – 6 / 40

Shortest path: find shallowest node that is a goal
eg, shortest plan

Constraint satisfaction: find any leaf node that is a goal
eg, valid configuration

Combinatorial optimization: find best-scoring leaf node
eg, balanced partitioning

Adversarial search: find best-scoring leaf we can surely reach
eg, chess
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Shortest path: find shallowest node that is a goal
eg, shortest plan

Combinatorial optimization: find best-scoring leaf node
eg, balanced partitioning

Adversarial search: find best-scoring leaf we can surely reach
eg, chess
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Shortest path: find shallowest node that is a goal
eg, shortest plan

Adversarial search: find best-scoring leaf we can surely reach
eg, chess
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For large problems or when optimum is recognizable,
search order matters.

Where was the mistake?

Truncated depth-first is not necessarily optimal!
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Where to backtrack first?

Predetermined order = strong assumptions = ad hoc = brittle

Use a model of leaf costs on-line to guide search.

[Ruml, 2001; Boyan, 1998; Baluja, 1996]
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1. Prune provably bad nodes (branch and bound)
2. Sort children left to right using a heuristic ordering function h

Assumes penalty at top is enormous.
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1. Prune provably bad nodes (branch and bound)
2. Sort children left to right using a heuristic ordering function h

Assumes penalty at top is enormous.
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Harvey and Ginsberg (1995): Limited Discrepancy Search
discrepancy: a choice against the heuristic ordering
Explore all paths with k discrepancies before any with k + 1.

Korf (1996): ILDS
Also Walsh (1997), Ginsberg and Harvey (1992), Meseguer
(1997)
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Fixed order ↔ fixed predictions for leaf costs
Want predicted costs to match current problem

Use run-time heuristic information to help make predictions.

Use predictions to guide search:

Rational order: increasing predicted leaf cost = best-first

1.6 2.3 2.1 3.9 1.5 2.6 3.2 4.4
[Ruml, 2002]
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Want to visit leaves in increasing order of predicted cost.

Where are they?

■ f(n) = predicted cost of best leaf at or below n

■ can use any info at n or on path from root
■ want f(n) consistent
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Want to visit leaves in increasing order of predicted cost.

How to keep track of them?

■ don’t — allow slight misordering
■ use iteratively increasing cost bound

Cost bound = 2

f(n) = 1.5
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Want to visit leaves in increasing order of predicted cost.

How to keep track of them?
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■ use iteratively increasing cost bound
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BLFS(root)
Visit a few leaves
Nodes-desired ← number of nodes visited so far
Loop until time runs out:

Double nodes-desired

Estimate cost bound that visits nodes-desired nodes
BLFS-expand(root, bound)

BLFS-expand(node, bound)
If leaf(node), visit(node)
else, for each child of node:

If best-completion(child) ≤ bound

BLFS-expand(child, bound)
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Many domains have a quantitative child ordering heuristic:

h(n) = 1.7

h(n) = 0.9 h = 3.5 h(n) = 3.9

h(n) = 1.8 h(n) = 4.8

Fixed model:

■ Cost of child i = h(child i)− h(child 0)
■ f(leaf) = predicted leaf cost = maximum cost along path

f(n) = maximum cost so far, because child 0 always costs zero
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Start by visiting all leaves with predicted cost 0
Estimate cost bound that yield nodes-desired nodes

1. Assume independence, estimate branching factor at each
level

2. Estimate node cost distributions from costs seen on previous
iteration

3. Simulate growth of tree from level to level
4. Implemented using histograms



Best-Leaf-First Search (BLFS)

Introduction

Previous Approaches

Basic BLFS

➢Indecision Search
➢Choosing the Cost
Bound
➢Best-Leaf-First
Search (BLFS)

➢Test Domains

➢Latin Squares

➢Random Binary
CSPs

BLFS with Learning

Wheeler Ruml (PARC) Learning to Search Trees – 19 / 40

BLFS(root)
Visit a few leaves
Nodes-desired ← number of nodes visited so far
Loop until time runs out:

Double nodes-desired

Estimate cost bound that visits nodes-desired nodes
BLFS-expand(root, bound)

BLFS-expand(node, bound)
If leaf(node), visit(node)
else, for each child of node:

If best-completion(child) ≤ bound

BLFS-expand(child, bound)
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Constraint satisfaction:

1. Latin square completion (Gomes & Selman, . . . )
1 2 3

3 1 2

2 3 1
Structure plus random constraints (30% filled)

2. Binary CSPs (Smith, . . . )
Canonical form
Random with known characteristics
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95th percentile of nodes generated to solve instances of each
class.

n DFS Indec. ILDS DDS Indec / ILDS

11 7,225 188 183 206 1.03
13 888,909 298 303 357 .983
15 ∞ 402 621 642 .647
17 ∞ 648 1,047 1,176 .619
19 ∞ 908 1,609 1,852 .564
21 ∞ 1,242 2,812 3,077 .442
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95th percentile of nodes generated to solve instances of each
class.

〈n, m, p1, p2〉 DFS Indec. ILDS DDS

〈30, 15, .4, .320〉 1,119 884 1,122 1,115
〈30, 15, .4, .347〉 42,025 28,294 30,996 100,387
〈30, 15, .4, .360〉 103,878 536,716 309,848 1,642,806

〈50, 12, .2, .319〉 1,450 984 1,271 1,301
〈50, 12, .2, .347〉 22,852 28,630 52,491 187,856
〈50, 12, .2, .361〉 352,788 387,432 554,036 3,546,588

〈100, 6, .06, .333〉 31,910 3,344 4,012 11,845
〈100, 6, .06, .361〉 208,112 70,664 127,712 2,048,320
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Assume cost of leaf is sum of costs of actions along its path.
Assume cost of k-th child at level d depends only on k and d:

leaf =
∑

d

costk,d

L, 0

L, 1

L, 2 R, 2

R, 1

L, 2 R, 2

R, 0

L, 1

L, 2 R, 2

R, 1

L, 2 R, 2
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Paths form linear equations:

cL,0 + cL,1 + cR,2 = leaf1
cL,0 + cR,1 + cL,2 = leaf2

cR,0 + cL,1 + cL,2 = leaf3

Solve for mean costs of actions via on-line least-squares
regression (Widrow and Hoff, 1960; Murata et al., 1997)

To aid learning, we enforce cL,d < cR,d.

f(n) is sum of actions so far plus best possible in future..
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BLFS(root)
Visit a few leaves
Initialize model
Nodes-desired ← number of nodes visited so far
Loop until time runs out:

Double nodes-desired

Estimate cost bound that visits nodes-desired nodes
Make static copy of current model
BLFS-expand(root, bound)

BLFS-expand(node, bound)
If leaf(node), visit(node) and update model
else, for each child of node:

If best-completion(child) ≤ bound

BLFS-expand(child, bound)
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Must be able to:

1. Predict cost of best leaf in subtree

■ With linear model, can be precomputed and cached

2. Estimate cost bound that yields nodes-desired nodes

■ As before, predict number of nodes for given bound
■ Use binary search over values for bound
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Number Partitioning: Given n numbers w1,. . . , wn.

Find partition into A and B to minimize

∣

∣

∣

∣

∣

∑

w∈A

w −
∑

w∈B

w

∣

∣

∣

∣

∣

1. Basic Representation (Johnson et al, . . . )
branch on placement of largest remaining

2. CKK Representation (Korf, . . . ) A B

branch on type of constraint for two largest remaining
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Competitive or superior in all domains:

1. Constraint satisfaction

(a) Latin square completion: Fixed BLFS superior

(b) Binary CSPs: Fixed BLFS competitive

2. Optimization

(a) Basic number partitioning: Learning BLFS competitive

(b) CKK number partitioning: Learning BLFS superior

3. Related methods (Ruml, 2001)

(a) Harvey-Ginsberg abstract CSP trees
(b) Boolean satisfiability
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Both visit all nodes within an increasing f(n) bound.

BLFS IDA*

f(n) semantics best leaf below n best path through n

f(n) source from user or learned = g(n) + h(n)
g(n) source not necessary from problem
h(n) source not necessary from user

f(n) property consistent non-overestimating
additive model convenient required

updating bound estimation add ǫ

rational optimal
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Best-first tree search using a model of leaf cost

1. Adapts backtracking to current tree
2. Complete
3. Explicit modeling assumptions
4. Easy use of prior knowledge from similar problems
5. Allows investigation of heuristic knowledge

■ Which kinds are most powerful?
■ How can they be combined?

6. Allows comparison of constructive and improvement search

Principles should apply equally well to improvement search
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1. Discrepancy search (Harvey, Ginsberg; Korf; Walsh),
Iterative broadening (Ginsberg, Harvey)

■ assumes ad hoc action costs

2. Randomized restarts (Gomes, Selman, Kautz; Walsh;. . . )

■ randomly reorders children with scores < ǫ

3. GRASP (Feo and Resende,. . . )

■ randomly reorders top k children

4. Heuristic-biased stochastic sampling (Bresina)

■ fixed bias for preferred child

5. Adaptive Probing (Ruml)

■ ad hoc exploration policy
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1. Applications

■ DFS is lousy
■ significant computation per node

2. Visualizers

■ trees with 2100 nodes

3. Models and methods for on-line learning

■ estimation error from on-line regression

4. New problems

■ anytime shortest-path
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Consider cost bound as allowance being spent

■ Compute expected number of affordable branches at each
level (costs are known)

■ Compute expected distribution of remaining allowance
(truncating subtractive convolution):

pnew(x) =







∫

(pchild(y)× pold(x + y))dy if x ≥ 0

0 if x < 0
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best near poor pathological

BLFS 7 3 1
DFS 4 4 2 1
ILDS 9 2
DDS 3 8

No other tree search algorithm is as robust.
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Constructive vs improvement search

■ Often confused with complete vs incomplete
■ What are their fundamental properties?
■ What about designing for incompleteness?

Constructive methods easily exploit knowledge

■ variable and value choice heuristics
■ lower bounds, constraint propagation
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