Title: On the Conversion between Non-Binary and Binary Constraint Satisfaction Problems
Authors: F. Bacchus and P. van Beek
Proc: AAAI 1998
Pages: 310-319

Foundations of Constraint Satisfaction

 CSCE421/821, Fall 2005www.cse.unl.edu/~choueiry/F05-421-821/

Berthe Y. Choueiry (Shu-we-ri)
Avery Hall, Room 123B
choueiry@cse.unl.edu, Tel: (402)472-5444

Required reading:

On the Conversion between Non-Binary and Binary Constraint Satisfaction Problems, F. Bacchus and P. van Beek (AAAI'98)

Recommended reading: n-FC available from course URL

- On forward checking for non-binary constraint satisfaction.
C. Bessière and P. Meseguer and E.C. Freuder and J. Larrosa, Proceedings CP'99, Alexandria VA, pages 88-102.
- Decomposable Constraints.

Ian Gent, Kostas Stergiou and Toby Walsh.
Artificial Intelligence, 123 (1-2), 133-156, 2000.

Summary

- Studies 2 mappings of non-binary CSPs into a binary
representation $\left\{\begin{array}{l}\text { dual graph } \\ \text { hidden variable }\end{array}\right.$
- Studies performance of BT search in each mapping vs. its performance in non-binary version
- Considers theoretical \& experimental aspects
- Proposes FC^{+}, yet lookahead strategy
- Indicates interesting open issues

Facts

- Non-binary constraints useful in the modeling of many applications
- Most research in CSPs is restricted to binary constraints
- Generalizing techniques for binary CSPs to address non-binary constraints is not straightforward
.. but sometimes done: FC \& MAC
- Projection looses information
- Usual work-around/justification: (correctly) map non-binary constraints into binary ones

Ideally

- Modeling: use the most expressive/natural representation
- Solving: use the most 'effective' representation

PS: the 'effectiveness' of a representation per se is a new, and difficult, research area. No clear metrics exist, to my knowledge

๑ Your options

- Directly apply techniques for non-binary CSP
...too few :-(
- Translate non-binary \rightarrow binary, then solve

Techniques for binary CSPs exploit graph/constraint properties
Does the translation preserve/yield such properties?
...will the translation degrade the performance of the techniques developed for binary CSPs?

Goal

- Study the effect of the translation on the performance of BT search
- Ultimately, establish properties of the translation to legitimize the restriction of research efforts to binary CSPs
\checkmark Considers two translation methods

Results

- In most cases, the non-binary representation is most effective
- For tight constraints: binary representation wins

Example:

3SAT:
$\left(X_{1} \vee X_{2} \vee X_{6}\right) \wedge\left(\bar{X}_{1} \vee X_{3} \vee X_{4}\right) \wedge\left(\bar{X}_{4} \vee \bar{X}_{5} \vee X_{6}\right) \wedge\left(X_{2} \vee X_{5} \vee \bar{X}_{6}\right)$

3SAT as a non-binary (ternary) CSP
Variables: $\quad X_{1}, X_{2}, \ldots, X_{6}$
Domains: $\quad D_{X_{i}}=\{0,1\}$
Constraints: $C_{126}=\{(0,0,1),(0,1,0), \ldots\}$, except $(0,0,0)$
$C_{134}=$ all $-\{(1,0,0)\}$
$C_{456}=$ all $-\{(1,1,0)\}$
$C_{256}=$ all $-\{(0,0,1)\}$

FC for non-binary constraints

- A k-ary constraint is forward-checkable, if
- $(k-1)$ of its variables are instantiated
- one variable uninstantiated
- BT-search:
- instantiate one variable
- repeat: for each newly f-checkable constraint, check future variable
- if any domain is empty, backtrack
- Improvements: n-FC, n-FC2, \ldots, n-FC5

Constraint: X_{1} must have the same value in C_{126} and C_{134}
Domain of a c-variable: constraint definition

Two binary representations

- Dual graph

Nodes = only the constraints
(CSP variables are not represented)
Simple arcs between constraints

- Hidden variable

Nodes $=$ CSP variables and constraints Simple arcs constraints \longleftrightarrow variables

\longrightarrow Compare to Freuder's constraint graphs
B.Y. Choueiry

12

I- Space requirements

- Binary representations require additional storing of domains for the c / h-variables (allowed k-tuples for each k-ary constraint) FC needs storage space proportional to the size of the domains (i.e., reductions) \rightarrow could be substantial
- No space is needed to store constraints in binary representations: simple projection of an instantiation, can be done in constant time assuming domains of c / h-variables are stored extensionally

Dual graph vs. non-binary CSP (I)

Loose constraint \Rightarrow exponentially large domains for c-variables \Rightarrow non-binary is less costly

Example:
n variables: $X_{1}, X_{2}, \ldots X_{n}$
n constraints: $X_{1}, \bar{X}_{1} \vee X_{2}, \bar{X}_{1} \vee \bar{X}_{2} \vee X_{3}, \ldots, \bar{X}_{1} \vee \bar{X}_{1} \vee \ldots X_{n}$
Non-binary: n nodes, $\mathcal{O}\left(n^{2}\right)$ consistency checks
$\stackrel{\rightharpoonup}{\sigma}$ Dual-graph: n nodes, $\mathcal{O}\left(2^{n}\right)$ consistency checks

Tight constraint $\Rightarrow \ldots \Rightarrow$ dual-graph is less costly
Example:
n variables: $X_{1}, X_{2}, \ldots X_{n}$
n constraints: $X_{1} \wedge \ldots \wedge X_{n-1}, X_{1} \wedge \ldots \wedge X_{n-2} \wedge X_{n}, \ldots, X_{2} \wedge \ldots \wedge X_{n}$
Non-binary: 2^{n-1} nodes, $\mathcal{O}\left(n 2^{n}\right)$ consistency checks
Dual-graph: n nodes, $\mathcal{O}\left(n^{2}\right)$ consistency checks

Improving FC: FC $^{+}$

- The constraint in the direction hidden-var $\rightarrow \mathrm{CSP}-\mathrm{var}$ is functional, but not vice-versa
- Search on hidden-var representation is restricted to the

CSP-vars, h-vars used only for propagation

- FC is replaced with FC^{+}to improve propagation
- FC^{+}triggered improvements into $\mathrm{nFC} 0, \mathrm{nFC} 1, \ldots, \mathrm{nFC} 5$.

Experiments

Carried out on random CSPs
Results have predictive power verified by:

- random 3SAT
- crossword puzzles
\longrightarrow Reference for a good methodology for experiments

Conclusions

Translating non-binary constraints involves overhead.
Translation is perhaps worthwhile if constraints are restrictive Translation, as a strategy, is justifiable

Many open issues..
\rightarrow \# tuples in constraints a good indicator? probably..
\rightarrow dual graph vs. hidden-variable?
\rightarrow.. we need to study further these translations/reformulations
\rightarrow to gain insight for designing good algorithms for
gooz'81 xəquiənon
sə7ou s، xozonxqsuI non-binary constraints

