B.Y. Choueiry

Title: On the Conversion between Non-Binary and Binary

Constraint Satisfaction Problems

Authors: F. Bacchus and P. van Beek

Proc: AAAI 1998

Pages: 310-319

 \vdash

Foundations of Constraint Satisfaction CSCE421/821, Fall 2005

www.cse.unl.edu/~choueiry/F05-421-821/

Instructor's notes November 18, 2005

Berthe Y. Choueiry (Shu-we-ri)
Avery Hall, Room 123B
choueiry@cse.unl.edu, Tel: (402)472-5444

B.Y. Choueiry

Required reading:

On the Conversion between Non-Binary and Binary Constraint Satisfaction Problems, F. Bacchus and P. van Beek (AAAI'98)

2

Recommended reading: n-FC available from course URL

- On forward checking for non-binary constraint satisfaction.
 C. Bessière and P. Meseguer and E.C. Freuder and J. Larrosa,
 Proceedings CP'99, Alexandria VA, pages 88-102.
- Decomposable Constraints.

 Ian Gent, Kostas Stergiou and Toby Walsh.

 Artificial Intelligence, 123 (1-2), 133-156, 2000.

ಲ

Summary

• Studies 2 mappings of non-binary CSPs into a binary representation $\begin{cases} \text{dual graph} \\ \text{hidden variable} \end{cases}$

• Studies performance of BT search in each mapping vs. its performance in non-binary version

- \bullet Considers theoretical & experimental aspects
- Proposes FC⁺, yet lookahead strategy
- Indicates interesting open issues

Instructor's notes November 18, 2005

B.Y. Choueiry

Importance

- \bullet Learn about the mappings
- Do you want to carry out a theoretical study to settle the question?
 - \rightarrow an opportunity for a (research) project

ರ

Facts

- Non-binary constraints useful in the modeling of many applications
- Most research in CSPs is restricted to binary constraints
- Generalizing techniques for binary CSPs to address non-binary constraints is not straightforward
 - .. but sometimes done: FC & MAC
- Projection looses information
- Usual work-around/justification: (correctly) map non-binary constraints into binary ones

Instructor's notes November 18, 2005

B.Y. Choueiry

Ideally

- Modeling: use the most expressive/natural representation
- Solving: use the most 'effective' representation

PS: the 'effectiveness' of a **representation** per se is a new, and difficult, research area. No clear metrics exist, to my knowledge

6

Your options

- Directly apply techniques for non-binary CSP ...too few :—(
- Translate non-binary → binary, then solve
 Techniques for binary CSPs exploit graph/constraint properties
 Does the translation preserve/yield such properties?
 ...will the translation degrade the performance of the techniques developed for binary CSPs?

7

Goal

- Study the effect of the translation on the performance of BT search
- Ultimately, establish properties of the translation to legitimize the restriction of research efforts to binary CSPs

Considers two translation methods

Results

- In most cases, the non-binary representation is most effective
- For tight constraints: binary representation wins

Instructor's notes November 18, 2005

B.Y. Choueiry

 ∞

Example:

3SAT:

$$(X_1 \vee X_2 \vee X_6) \wedge (\bar{X_1} \vee X_3 \vee X_4) \wedge (\bar{X_4} \vee \bar{X_5} \vee X_6) \wedge (X_2 \vee X_5 \vee \bar{X_6})$$

3SAT as a non-binary (ternary) CSP

Variables: X_1, X_2, \ldots, X_6

Domains: $D_{X_i} = \{0, 1\}$

Constraints: $C_{126} = \{(0,0,1), (0,1,0), \dots\}, \text{ except } (0,0,0)$

 $C_{134} = \text{all} - \{(1,0,0)\}$

 $C_{456} = \text{all} - \{(1,1,0)\}$

 $C_{256} = ext{all} - \{(0,0,1)\}$

9

FC for non-binary constraints

- A k-ary constraint is forward-checkable, if
 - (k-1) of its variables are instantiated
 - one variable uninstantiated

• BT-search:

- instantiate one variable
- repeat: for each newly f-checkable constraint, check future variable
- if any domain is empty, backtrack
- Improvements: n-FC, n-FC2, ..., n-FC5

Instructor's notes November 18, 2005

Dual-graph representation

Usually: $\begin{cases} \text{CSP variable} \rightarrow \text{node} \\ \text{constraint} \rightarrow \underline{\text{hyper-arc 'label'}} \end{cases}$

Dual graph: $\begin{cases} \text{constraint} \to \text{node (called c-variable)} \\ \text{CSP variable} \to \underline{\text{arc 'label'}} \end{cases}$

Constraint: X_1 must have the same value in C_{126} and C_{134} Domain of a c-variable: constraint definition

B.Y. Choueiry

10

Hidden-variable representation

B.Y. Choueiry

Variables: CSP variables +

s. Con variables + 1 hidden variable (h-variable) per constraint

Constraints: only between a variable and the h-variables corresponding to its applicable constraints

Constraint: a value of C_{126} correspond to one value of X_1 domain of the c-variable Domain of the h-variable

Two binary representations

• Dual graph

Nodes = only the constraints
(CSP variables are not represented)
Simple arcs between constraints

• Hidden variable

Nodes = CSP variables and constraints Simple arcs constraints \longleftrightarrow variables

 \rightarrow Compare to Freuder's constraint graphs

Theoretical comparison

I – Space requirements (data structures)

Analytical bounds (#nodes, #constraint checks in search)

I- Space requirements

- Binary representations require additional storing of domains for the c/h-variables (allowed k-tuples for each k-ary constraint)
 FC needs storage space proportional to the size of the domains (i.e., reductions)
 → could be substantial
- No space is needed to store constraints in binary representations: simple projection of an instantiation, can be done in constant time assuming domains of c/h-variables are stored extensionally

Instructor's notes

November 18, 2005

B.Y. Choueiry

II– Analytical Bounds

Criteria

- number of visited nodes
- number of checks performed
- Working assumption
- checking k-constraint costs k operations
- checking binary constraint costs 2 operations

Comparison

Dual graph vs. non-binary CSP (I)

- not conclusive (one can always build a case

Result

- hidden-variable vs. non-binary

· dual-graph vs. non-binary

where solving BT+FC has a better performance

experimental evidence needed

in one representation than in another)

Loose constraint \Rightarrow exponentially large domains for c-variables \Rightarrow non-binary is less costly

Example:

n variables: $X_1, X_2, \dots X_n$

n constraints: $X_1, \bar{X_1} \vee X_2, \bar{X_1} \vee \bar{X_2} \vee X_3, \dots, \bar{X_1} \vee \bar{X_1} \vee \dots \times X_n$

Non-binary: n nodes, $\mathcal{O}(n^2)$ consistency checks Dual-graph: n nodes, $\mathcal{O}(2^n)$ consistency checks

Tight constraint $\Rightarrow \ldots \Rightarrow$ dual-graph is less costly

Example:

n variables: $X_1, X_2, \dots X_n$

n constraints: $X_1 \wedge \ldots \wedge X_{n-1}, X_1 \wedge \ldots \wedge X_{n-2} \wedge X_n, \ldots, X_2 \wedge \ldots \wedge X_n$

Non-binary: 2^{n-1} nodes, $\mathcal{O}(n2^n)$ consistency checks Dual-graph: n nodes, $\mathcal{O}(n^2)$ consistency checks

17

Improving FC: FC⁺

- \bullet The constraint in the direction hidden-var \rightarrow CSP-var is functional, but not vice-versa
- Search on hidden-var representation is restricted to the CSP-vars, h-vars used only for propagation
- FC is replaced with FC⁺ to improve propagation
- FC⁺ triggered improvements into nFC0, nFC1, ..., nFC5.

Instructor's notes November 18, 2005

B.Y. Choueiry

18

Experiments

Carried out on random CSPs

Results have predictive power verified by:

- random 3SAT
- crossword puzzles
- → Reference for a good methodology for experiments

Conclusions

Translating non-binary constraints involves overhead.

Translation is **perhaps** worthwhile if constraints are restrictive Translation, as a strategy, is justifiable

19

Many open issues..

- \rightarrow # tuples in constraints a good indicator? probably..
- \rightarrow dual graph vs. hidden-variable ?
- \rightarrow .. we need to study further these translations/reformulations
- \rightarrow to gain insight for designing good algorithms for non-binary constraints