Fully interchangeable (FI) values (I)

A value b for a CSP variable V is fully interchangeable with a value c for V iff:

1. Every solution to the CSP that contains b remains a solution when c is substituted for b.
2. Every solution to the CSP that contains c remains a solution when b is substituted for c.

[Diagram of CSP variables and values]
Full interchangeability (II)

FI partition the domain of a CSP variable into sets of equivalent values

We can replace a set of FI values with a single representative of the set without effectively losing any solutions.

Also, we need not retain equivalent values: solutions involving the representative can be transformed into solutions involving any other value in the set.

Examples

X—red
Y—green, maroon, purple, white, yellow
Z—blue

\[\begin{align*}
V_1 & \leftrightarrow \{ a, b, d \} \\
V_2 & \leftrightarrow \{ c, e, f \}
\end{align*} \]
Advantages

- Eliminating interchangeable values can prune a great deal of effort from a backtrack search tree.
- If we are seeking all solutions, interchangeability allows us to find a family of similar solutions and avoid duplication of effort.
- Basis for explanation, concept formation and problem decomposition.

Contents of paper

- Introduces interchangeability: symmetry between solutions (across variables) ♠ ♠ ♠.
- Introduces the simplest symmetry, full interchangeability (FI), as a symmetry among the values of one CSP variable.
- Approximation:
 - Neighborhood (NI), k-interchangeability (from global to local).
 - Extended:
 * Substitutability, partial interchangeability (PI), subproblem interchangeability (from strong to weak).
 * Meta interchangeability.
 * Dynamic interchangeability.
Neighborhood interchangeability (NI)

Two values, \(a\) and \(b\) for a CSP variable \(V\) are NI iff for every \(C\) on \(V\):

\[
\{i \mid (a, i) \text{ satisfies } C\} = \{i \mid (b, i) \text{ satisfies } C\}
\]

NI is restricted to \(\text{Neigh}(V)\)

Theorem 1: NI \(\Rightarrow\) FI

Neighborhood interchangeability is a sufficient, but not a necessary condition for full interchangeability

Proof:

If two values are NI, there is no way they could fail to be interchangeable in any complete solution since there is not constraint that one could satisfy and not the other

But, FI values may not be NI: previous example, insoluble problem
NI as an approximation for FI

NI considers only constraints in neighborhood of the variable
FI considers the effects of all constraints in the problem on the variable

\[NI \Rightarrow FI \]

For each NI-set \(s_i \) there is an FI-set \(s_j \) such that \(s_i \subseteq s_j \)

Finding the NI-partition only needs polynomial time
Finding FI-partition may require finding all solutions to problem.

Computing NI: discrimination tree (DT)

Algorithm DT for \(V_i \) \((D_{V_i}, \text{Neigh}(V_i))\)
Create the root of the discrimination tree
Repeat for each value \(v_i \in D_{V_i} \):
 Repeat for each variable \(V_j \in \text{Neigh}(V_i) \):
 Repeat for each \(v_j \in D_{V_j} \) consistent with \(v_i \) for \(V_i \):
 Move to if present, construct and move to if not,
 a child node in the tree corresponding to \(V_j = v_j \).
 Add \(V_i, \{v_i\} \) to annotation of the node (or root),
 Go back to the root of the discrimination tree.

The annotations in the tree give the NI-sets for \(V_i \)

Example: on board.
Time complexity:...
Space complexity:...
K-interchangeability

Two values, a and b for a CSP variable V are k-interchangeable iff a and b are fully interchangeable in **every** subproblem of the CSP induced by V and $(k - 1)$ other variables.

- $\text{NI} = x$-interchangeability, $x = ?$
- $\text{FI} = x$-interchangeability, $x = ?$
- When $k < n$, k-interchangeability is local
- **Theorem 2**: $\forall i < j$, i-interchangeability \Rightarrow j-inter.
- Algorithm: generalization of DT, requires solving subproblems of size $k - 1$
- Complexity: $O(n^kd^k)$, $n = \#\text{variables}$ and $d = \text{domain size}$

Interchangeability types

From local to global: NI \rightarrow k-interchangeability \rightarrow FI

Extended interchangeability:

- Weak Interchangeability: valid in some solutions to the CSP, not all
 - Substitutability
 - Partial interchangeability
 - Subproblem interchangeability
- Meta-interchangeability
- Dynamic interchangeability
- Functional interchangeability (the real thing)
Substitutability: One-way interchangeability

Given two values, a and b for a CSP variable V, a is substitutable for b iff substituting a in any solution involving b yields a solution

\[\{ a, b, c \} \not\Rightarrow \{ b, c, d \} \]

Note:

- a is substitutable for $b \not\Rightarrow b$ is substitutable for a
- One can define neighborhood substitutability

Partial Interchangeability (PI)

The values for variables may differ among themselves, but be fully interchangeable with respect to the rest of the world

Idea: define a boundary to confine change

Two values are partially interchangeable with respect to a subset S of variables, iff any solution involving one implies a solution involving the other with possibly different values for variables in S

When S is empty, what do we have??
PI: example

PI values for V_1 given the boundary $S = \{V_2\}$

One can define neighborhood partial interchangeability (NPI)

Subproblem interchangeability

Two values are subproblem interchangeable with respect to a subset of variables S iff they are fully interchangeable with respect to the solution of the subproblem of the CSP induced by S
Subproblem interchangeability vs. PI

Theorem 5: Given S, and $S' = V - S$

PI WRT S' \Rightarrow Subproblem interchangeability WRT S

Subproblem interchangeability WRT S \nRightarrow PI WRT S'

Proof: the key idea is that a solution to a subproblem may fail to appear as a portion of any solution to the complete problem

Note: Theorem is inverted in paper, proof is correct.

Meta-interchangeability

By grouping:
- variables into meta-variables or
- values into meta-values

we can introduce interchangeability into a higher level representation of the original CSP.

Variables \rightarrow meta-variables
Values \rightarrow meta-values
CSP \rightarrow meta-CSP

Yellow and brown for Y become fully interchangeable
Dynamic interchangeability

Interchangeability can be recalculated after choices are made for variables values during backtrack search

Functional interchangeability

Notation: $S_{v|V}$ be the set of solutions with $V \leftarrow v$.

Two values a for variable V and b for variable W are functionally interchangeable iff there exist functions f_a and f_b such that:

$$f_a(S_{a|V}) = S_{b|W} \quad \text{and} \quad f_b(S_{b|W}) = S_{a|V}$$

Special case: $V = W$

In general, find all solutions, define your mappings:—
Isomorphic interchangeability

Two values a and b for a CSP variable are isomorphically interchangeable iff there exists a 1-1 function f such that:

1. $b = f(a)$
2. for any solution S involving a, $\{f(v)|v \in S\}$ is a solution
3. for any solution S involving b, $\{f^{-1}(v)|v \in S\}$ is a solution

Example: 8-queens

- For each row, values in col are isomorphically inter.
 $f : i \rightarrow (9 - i)$
- Also, $f : (i, j) \rightarrow (9 - i, 9 - j)$ double-check

Types of interchangeability: summary

- Most general: Functional interchangeability
- Restricting the function: Isomorphic interchangeability
- Restricting to one variable:

 \[
 \text{Full Interchangeability} \quad \Rightarrow \quad \text{Local} \quad \Rightarrow \quad \text{Substitutability}
 \]

 \[
 \text{K-interchangeability} \quad \Rightarrow \quad \text{Meta-interchangeability}
 \]
Lattice of some interchangeability relations

NI → FI

NPI is 'tunable'

Summary

- Formalizes interchangeability in CSPs
- Introduces many types of interchangeability relations and show some relations among them
- Provides an algorithm for computing NI and k-interchangeability
- Recent developments:
 - NI$_C$ and bundling: Haselboeck, IJCAI'93
 - CDI: Weigel, Faltings, Choueiry ECAI'96
 - NPI: Choueiry, Noubir, AAAI'98
 - Dynamic bundling (DynBundl): Beckwith, Choueiry, AusJCAI'01
 - Bundling for join query computation: Lal, Choueiry, CDB'04
 - DynBundl for non-binary CSPs: Lal, Choueiry, Freuder AAAI'05
 - etc.