

Why?

- GAC4 handles *n*-ary constraints
 - \rightarrow good pruning power
 - \rightarrow quite expensive:
 - depends on size and number of all admissible tuples $= \frac{d!}{(d-p)!}$ p: #vars, d: max domain size
- Replace *n*-ary by a set of binary constraints, then use AC-3 or AC-4
 - \rightarrow cheap
 - \rightarrow bad pruning

B.Y. Choueiry

5

November 29, 2005

Example

Definitions

Given a matching M: matching edge: an edge in Mfree edge: an edge not in M

matched vertex: incident to a matching edge
free vertex: otherwise

alternating path (cycle): a path (cycle) whose
edges are alternatively matching and free
length of a path: number of edges in path

 $\mathbf{vital}\ \mathbf{edge:}\ \mathrm{belongs}\ \mathrm{to}\ \mathrm{every}\ \mathrm{maximum}\ \mathrm{matching}$

13

B.Y. Choueiry

14

Indicate:

- matching edges
- free edges
- matched vertices
- a free vertex
- an alternating path, length?
- an alternating cycle, length?
- a vital edge

B.Y. Choueiry

Task:

Given G, and M(G), remove edges that do not belong to <u>any</u> matching covering X_C

Algorithm 2

- Build G_O
- Mark all edges of G_O as unused
- Identify all directed edges that belong to a directed simple path starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_O . Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges,
 if they are in M(G), mark them as vital
 else put them in RE and remove them from G

B.Y. Choueiry

x1x24 x3

Algorithm 2

- Identify all edges starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_O . Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in M(G), mark them as vital else put them in RE and remove them from G

B.Y. Choueiry

20

November 29, 2005

Algorithm 2

- ...
- Identify all edges starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_O . Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in M(G), mark them as vital else put them in RE and remove them from G

B.Y. Choueiry

B.Y. Choueiry

November 29, 2005

B.Y. Choueiry Assume we have C_i , C_j , and C_k involving a given variable Compute $\begin{cases} \operatorname{RE}(C_i), \operatorname{RE}(C_j), \operatorname{RE}(C_k), \\ \operatorname{G=GV}(C_i), \operatorname{M}(\operatorname{G}), \operatorname{etc.} \end{cases}$ Idea 23Consider C_i First remove from G deletions due to C_j , C_k Second, try to extend the remaining edges in M(G) into a matching that covers X_{C_i} Finally, apply Algorithm 2 November 29, 2005 ... iterate B.Y. Choueiry Consider C_i , $G = GV(C_i)$, M(G)ω N Set RE \leftarrow RE (C_i) ER \leftarrow RE $(C_j) \cup$ RE (C_k) end begin filtering % M(G) is a matching which covers X_G % ER is the set of edges to remove from G% RE is the set of edges that will be deleted by the **Igorithm 3:** DIFF-PROPAGATION(G, M(G), ER, RE)the function returns false if there is no solution $compute Matching \leftarrow false$ G is a value graph return true $RE \leftarrow \text{RemoveEdgesFromG}(G, M(G))$ if compute Matching then for each $e \in ER$ do remove e from Gif \neg MATCHINGCOVERINGX(G, M(G), M') then if $e \in M(G)$ then return false $M(G) \leftarrow M'$ else compute Matching \leftarrow true if e is marked as "vital" then return false $M(G) \leftarrow M(G) - \{e\}$ 24November 29, 2005

Example: the Zebra problem

5 houses of different colors 5 inhabitants, different nationalities, different pets, different drinks, different cigarettes

Consider the following facts:

- 1. The Englishman lives in the red house
- 2. The Spaniard has a dog
- 3. Coffee is drunk in the green house
- 4. The Ukrainian drinks tea
- 5. The green house is immediately to the right of the ivory house
- 6. The snail owner smokes Old-Gold

7. etc.

Query: who drinks water? who owns a zebra?

B.Y. Choueiry

November 29, 2005

Zebra: formulation

25

1

	5 house-color C_1, C_2, \ldots, C_5
	5 nationalities N_1, N_2, \ldots, N_5
variables: \langle	5 drinks B_1, B_2, \ldots, B_5
	5 cigarettes T_1, T_2, \ldots, T_5
	5 pets $A_1, A_2,, A_5$

 C_1 red $|B_1$ coffee $|N_1$ Englishman $|T_1$ Old-Gold A1 dog T_2 Chesterfield A_2 snails N_2 Spaniard C_2 green B_2 tea Caivoiry B3 milk N_3 Ukranian T₃Kools A₃ fox C_4 yellow B_4 orange N_4 Norwegian T_4 Lucky-Strike A_4 horse T₅ Parliament A₅ zebra C5 blue B5 water N5 Japanese

Domain of each variable = $\{1, 2, 3, 4, 5\}$ $(\equiv \{h1, h2, h3, h4, h5\})$ Constraints 2–15?

B.Y. Choueiry

26

November 29, 2005

$\mathbf{Results}\;(\mathrm{II})$

a: # of binary constraints

p: size of a cluster

c: # of clusters

d: # of values in a domain

 $\mathcal{O}(ad^2)$: complexity of AC on binary

Formulation 1 solved with AC $\,$

- number of binary constraint added is $\mathcal{O}(cp^2)$
- filtering complexity is $\mathcal{O}((a+cp^2)d^2)$

Formulation 2 solved with GAC-4

- filtering complexity is $\mathcal{O}(\frac{d!}{(d-p)!}p)$

Formulation 3 solved with the new technique

- arc-consistency is $\mathcal{O}(ad^2)$
- all-diff filtering is $\mathcal{O}(cp^2d^2)$
- total filtering is $\mathcal{O}(ad^2+cp^2d^2)$

Extension

Improved bounds by J.-F. Puget (AAAI 99) for ordered domains

e.g., time in scheduling)

Lesson

30

• identifying special structures in the constraint graph We can improve the performance of search by: (e.g., tree, biconnected components, DAG)identifying special types of constraints

(e.g., functional, anti-functional, monotonic, all-diffs)

Improved arc-consistency Van Hentenryck et al. AIJ 92 Functional

A constraint C is functional with respect to a domain D iff for all $v \in D$ (respectively $w \in D$) there exists at most one $w \in D$ (respectively $v \in D$) such that C(v, w).

Anti-functional

A constraint C is anti-functional with respect to a domain D iff $\neg C$ is functional with respect to D.

Monotonic

A constraint C is monotonic with respect to a domain D iff there exists a total ordering on D such that, for all values v and $w \in D$, C(v, w) holds implies C(v', w') holds for all values v' and $w' \in D$ such that $v' \leq v$ and $w' \leq w$.

November 29, 2005

 $\frac{3}{2}$