lo sppeat to define
our random prob-
srocessing reduces
dvantage grows 4

g
this datais dleadly 7

|tobegr°m“

£ CSPs that lend
changeability pre-
: hope to exsmine.

proceuing petform
? Does it's perfor-
a problem sise in-

ing of interchange-
aance in the rest of

that to predict its
CSPs?

the relative petfor-
ithm in comparison

gstency checks cor-
rchangeable values?

scessing be included
m [5] to accomplish
simultaneously with

.erchangeable values
ms. Proc. AAAL-91.

Backtrack program-
965.

3. L. Incressing tree
ligence, 14. PP- 263

atisfaction. Encyclo-
. Shapiro, ed. vol. 1.
k. pp- 205-211. 1987.
in networks of rels-
»p. 99-118. 1971.

faction problems: an
t. pp. $-17. 1986,

faction slgorithms.
.. B, no. 4. PP 188

PR\

Y
Abstrﬁ Al problems can be formulated as Con-
w&. isfaction Problems (CSP). In this paper, we pre-
OB problem-independent heuristics for evaluating decisions
with a clear combinatorial interpretation. As a side-effect,
they support constraint-preprocessing (arc-consistency).
Next, we introduce a dual-viewpoint” approach for a special
(broad) class of CSP. This approach allows suitable exten-
sions to many heuristics, and in particular of the heuristics
presented in this paper. Test results on N-queen problems va-
lidate the usefulness of the concepts presented in this paper.

1. Introduction

Many Al problems can be formulated as Constraint Satis-
faction Problems (CSP, sec [14] fora good overview). A
CSP is represented by a sel of n variables, for cach
variable X; a finite domain Dj (with cardinality a or less),
and a set of e constraints. A constraint R; denotes the
values mutually compatible for variables le.....ijj.
P;is called the arity of R;.
Given a set S of assignments of certain values to certain
variables, we define CONSISTENT(S) to be true iff these
assignments do not violate any constraints. A solution to
the CSP will now be any set :

SOL = {X1=V1, X2=V2, ..., Xa=Vn) (Vi€EDD
for which CONSISTENT(SOL). We can restrict ourselves
o binary CSP (in which all constraints have an arity <2)
without loss of generality [15].

5. "BackTrack" and Forward Checking

We will concentrate on the problem of finding one solu-
tion to a CSP. As a basis for our heuristics, we will use
the BackTrack algorithm ([8],(5],[2]): pick & variable that
has not yet been assigned a value, pick a value forit, and
assign it to the variable. If constraint-violation is then
noticed, go back ("backirack”) and pick an alternative
value. If no alternatives exists, backtrack even further.
Continue until a solution is found or until all possible
sets of assignments have been tried (note that there are
O(s*) such sets!). We furthermore assure node consistency
beforehand [11] by removing from Dj every V; for which
~CONSISTENT((X;=V;}). Finally, whenever an assignment
X;=Vj is made, we re-assure node consistency by remo-
ving all VjeD; for which —CONSISTENT([Xj-V’,X‘-V‘})
@i.c. we perform Forward Checking [9)). For binary CSP,
checking wether two assignments are consistent with each
qther takes O(1) time, so forward checking takes O(an)
time per assignment.

© 1992 PA. Geelen

(]

Dyal® igwiﬂiint Heuristics for
Bip .&QD rz&aﬁﬁatisfaction Problems
jeter Andreas Geelen

“lam, Dept. of Computer Science, Artificial Intelligence Group
slelaan 1081a, 1081 HV Amsterdam, The Netherlands

Of course, we would like BackTrack to select values that
do not cause constraint-violations. Such "perfect” value-
selection is usually impossible, in which case the
sequence in which variables are selected Is often very im-
ant, too. First of all, the success of the value-selec-
tion heuristics may depend on which variable is selected.
Furthermore, variable selection often determines how
soon & constrains-violation is noticed, and thus how much
time is wasted working on & "doomed" attempt (assuming
ordinary backtracking. See [4).[6).{7) on alternative ways
to handle constraint-violations).
In this paper, we will concentrate on heuristics for vari-
able and value-selection specifically suited to find one so-
lution to a CSP. To demonstrate our ideas, we will use
the N-queen problem (the problem of placing N queens on
an N*N chessboard in such a way that they do not attack
each other. A problem that is purely academic: [16]
shows a linear-time algorithm for generating a solution
for any N>3. See [1] for 2 refinement yielding more
solutions.) This problem can be formulated as a CSP
with N variables, each with N values in its domain (i.c.
a=n=N). The assignment X;=k represenis a queen placed
at row i, column k. The constraints are (for i#j):
Xi#X; (no two queens in the same column)
1X;-Xjk#li-jl (no two queens on the same diagonal)
Given a set of assignments S to have been effected, and
X; a future variable (one that is as yet unassigned), we
define DOMg(X;) as the set of museful” values for Xj
(values that, given S, can be assigned to Xj such that no
constraint is violated), i.e.
DOMs(Xy) = (VilVieDi A CONSISTENT(SU{X=V})}

The Forward Checking algorithm keeps track of
DOMg(X;) for every future variable X;. Given somo S,
we next define the number of values that will still be
useful for a future variable X; after assigning
V;eDOMs(X;) to Xj (i#)), as

LEFTs(Xj Xi=V;) = IDOMsu(X;=V]) &
Conversely, we define the number of useful values for X;
that will then not be useful any more as

LOSTs(XjXi=Vy) = |DOMsO(j)l-LBFTs(Xj| Xi=Vi)
For binary CSP, we can easily proof that

LEFTs(Xj Xi=VD =

I(Vj Vie DOMs(Xp A CONSISTENT((X=V;.X;=ViD}!

Thus, determining a LEFT (or LOST) takes Ofa) time.

ECAI 92. {0th European Conference on Artificial Intelligence Edited by B. Neumann

Published in 1992 by John Wilcy & Sons, Ltd

L

PR N .

3.1. Value selection

In order to find one solution to & CSP, it scems a good
heuristic to select the least constraining value for a varia-
ble, i.e. the value "least reducing the possibility to assign
values 1o the other variables”. Since assignments may
reduce (and will certainly never increase) the number of
useful values for other variables, and thus reduce the
chance that these variables are left with at least one useful
value, the concept of "least constraining” may well be
defined in terms of LEFT or LOST. A well-known
formula for determining how “constraining™ a value
Vije DOMs(X}) is fora future variable Xj, comes down to

total-costs(Xj=Vi) =)

T 541, a fusurs variable LOSTS(X; 1 X=Vi)
It represents the number of individual assignments that
we will not be able to make any more after assigning Vj
to Xi (e.g. for the N-queen problem, it represents the total
number of "free squares™ that are lost to other rows if a
queen is placed at row i, column V). Keng&Yun ([10])
present a similar function. LOSTs(XjX;=V}) divided by
DOMs(Xj)! results in the percenzage of uscful values that
are lost to Xj. Slightly paraphrasing their arguments,
they consider this percentage an indication of the “dislike”
of Xj to the assignment X;=Vj. To see how much an
assignment is disliked “in general”, they summarize the
pereentages:

crucialitys(X;=V;) = ‘ (2)
2. - . LOSngZilXFVi)
j#i,Xj a future variable |DOMs(Xj)|

Now, formulae (1) and (2) both reason from the point of
view of what an assignment costs. But to us it seems far
more important that enough useful values will be left
afterwards. Furthermore, summation suffers from the
disadvantage that there is no difference between 0+6 and
343, for instance, even though the distinction is quite
important. Suppose we have variables X X2 and X3,
each having 6 useful values. Suppose a certain
assignment to X3 would leave X3 with 6, and X2 with O
useful values (a doomed situation), while another would
leave them both with 3 useful values. Formulae (1) and
(2) evaluiate such assignments as "equally good”. In fact,
between 6+0 and 2+3, the doomed 6+0 is preferred. We
propose maximizing

promises(X;=Vy) = 1©)]

#1,Xj a future variable LEFTS(XjiXi=V1)

in order to select a value V; for variable X;, which (like
formula (1), and contrary to formula (2)) has a clear inter-
pretation : it represents the number of different seis of
assignments that, after assigning Xj=Vj, can still be made
such that no constraint on X; is violated. It thus repre-
sents an und on the number of different solutions
SOL such that SU{X;=V;}cSOL. Thus the first

assignment in the example above leaves at most 0%6=0
possible solutions, while the second one leaves at most
3#3=9 solutions. The idea underlying the maximization

32 Constraint Satisfaction

of formula (3) is that, assuning every set of assignments

" has an equal chance of being a solution, we have the best

chance of finding one solution if we try o leave as many
chances as possible. As with summation, the product of
large values is larger than the product of small values.
But note that multiplication differentiates far better than
summation: since (a+b)(a-b) = a2.b2, the more two
numbers differ from their average, the less their product
will be. Thus, 0%6 < 1*5 < 2*4 < 3*3. Also note that the
promise is O (minimal) if and only if the situation is
doomed, i.e. some variable would be left without useful
values, Using summation formulae such as (1) or (2), the
best we may hope for in such cases is that the results get
high enough.

3.2. Varlable Selection

A well-known variable-selection heuristic is to select the
most constrained veriable (e.g. the variable with the

. fewest useful values [14]). In [10], Keng&Yun explicitly

use the evaluations of the values of a variable in order to
determine how constrained the variable itself is. The idea
can be demonstrated as follows: supposc that there are no
constraints on a variable A (i.e. any value can be assigned
to A "without cost”), while every useful value for a
variable B heavily constrains all other future variables.
Then the number of useful values is not enough indica-
tion of how constrained a variable is: it depends far more
on how constraining the possible values for the variable
are. The more constrained the useful values of a variable

T ——

are, the less we can afford to posipone choosing one.

Suppose we determine (Figure 1), for every square of 2 4-
Queen problem, the number of squares in other rows that

- are attacked by it (ie. using formula Q).

[=))
(-}

X)
X2

X3

X4‘

O\ O[OV [N
(- .}
-]

- -]
-]
 ENENENE

Figure 1. The number of squarcs attacked in other rows.

Now, X and X3 can be considered more constraining
because their values are more constraining. In this case it
is easily seen, because every value of X2 and X3 costs at
Jeast as much as any value of X and X4. The point, of
course, is how we can combine the evaluations of useful
values into an evaluation of a variable itself in general.
In [10] a formula is maximized that is equivalent with:
criticalityg(Xj) = . @
Tviepomsoe) DO eroeialiysR=VD)
Why the crucialities are combined in exactly this way is
not quite clear. Nor does the result of this formula have
any clear interpretation (except that the lower the value,
the better). We minimize the following formula:

promises(X;) = Lv;e DOMs(Xppromises(Xi=VD (5)

AP e 3 2= FRE S

_T-mne ey

The result of this
sets that can be a:
X;) such that no
represents an up
solutions SOL, ¢c
initial 4-queen p
cach variable (ro
solutions, while

constraints on)
variables more (a
than do those on >
more realistic - res

X¥s
X
Xh8)2]2
Xy

Figure 2

Given the results ¢
assign either 1 or «
we get the situatior
complete solution -
promising variable,
X3=4 is effected. X
Given the set S of
assigned a value, §
number of solutions
the future variables
between X; and oth:
the same way, prom
solutions to an even
where the unary con:
ristic underlying for
assignment that has
promises more solut
could therefore be s
presented in 5] (our
allowing cheap calcu

4. Algorithms us

The simplest algorit
domain"). It selects
values, and uses a f
select its "least co:
algorithms, every us
must be tested agair
value-pairs, and will
one assignment will 1

Yor course, problen
made. For the N-queer
attack more than three
allows us to reduce tim

vy set of assignmens
“»>n, we have the best
Iy 1o leave as many

. -rion, the product of
duct of small values.
ntiates far better than
22-b3, the more two
the less their product
¢3. Also note that the
Wy if the situation is
e leRt without useful
-such as (1) or (2), the
3 is that the results get

euristic is to select the
the variable with the
Keng&Yun explicitly
< g variable in order to
iable itself is. The idea
ppose that there are no
7 value can be assigned
ry useful value for 2
other future variables.
. is not enough indica-
is: it depends far more
values for the variable
ful values of a variable
»stpone choosing one.
for every squarc of a4-
1ares in other rows that

'a (1)).

attacked in other rows.

red more constraining
straining. In this case it
s of X2 and X3 costs at
and X4. The point, of
¢ evaluations of useful

ble itself in general.

& is equivalent with:
Q)

1
Di*erucialitys(Xi=Vy)
1 in exactly this way is
1t of this formula have
at the lower the value,
~ing formula:

sromises(Xj=V)) (5)

The result of this formula is the fotal number of value-
sets that can be assigned to all future variables (including
X;) such that no constraint on X; is violated, and thus
represents an u und for the number of different
solutions SOL to the CSP such that ScSOL.

Consider the promise of the assignments (squares) for the
initial 4-queen problem (Figure 2), and the promise of
each variable (row). Xz provides an upperbound of 20
solutions, while X promises up to 28 solutions. The
constraints on X, appearantly constrain the other
variables more (at least more directly, more noticable)
than do those on X1, leading to a more constrained - and
more realistic - result for Xo.

X1 s g2
X2 2 20
X3 212] 8f20
X4 28
Figure 2 Figure 3

Given the results as shown in Figure 2, we could best
assign either 1 or 4 to either X or X3. Picking X3=1,
we get the situation of Figure 3. It promises at most one
complete solution (X3's promise). Since X3 is the least
promising variable, and "4" is jts most promising value,
X3=4 is effected. X1=3 and X4=2 follow immediately.
Given the set S of variables which have already been
assigned a value, promises(X) actually represents the
number of solutions to a simplified CSP, in which only
the future variables, their useful values, and constraints
between X; and other future variables are considered. In
the same way, promises(X;=V;) represents the number of
solutions to an even simpler (more restricted) CSP (one
where the unary constraint "X;=Vj" is added). So the heu-
ristic underlying formula (3) could be formulated as "an
assignment that has more solutions in a simplified CSP
promises more solutions in the current, difficult CSP". It
could therefore be seen as a variation of the techniques
presented in [5] (our simplification being more drastic but
allowing cheap calculation of the number of solutions).

4. Algorithms using the formulae

The simplest algorithm we will consider is LD ("least-
domain”). It selects the variable with the fewest useful
values, and uses a formula (such as (1), (2), or (3) to
select its "least constraining” useful value. For L
algorithms, every useful value for the selected variable
must be tested against all other future-variable/useful-
value-pairs, and will thus take O(na) time, so making
one assignment will take O(na2) time!.

1 Of course, problem-dependent optimizations might be
made. For the N-queen problem, for instance, no squarc can
attack more than three squares in any other column j. This
allows us to reduce time complexities by a factor .

An algorithm which evaluates all useful values for all
future variables in order to make selections will be called
FE (for "full evaluation”) and will take O(n2a2) time per
assignment. For both LD and FE, space complexity is
O(na), since we must be able to' mark every value for
every variable "useful” or “useless”; .

We extended implementations with the *domino effect”™
when a variable is left with exactly one useful value, we
immediately assign it (skipping the calculations).

4.1. Value pruning and arc consistency

As a side effect of “Full Evaluation™, we can constantly
assure arc-consistency ((11](12]D. If LEFI‘;(Xj!X;:VD:O,
then the assignment Xj=Vj would leave X; without useful
values. We could therefore immediately prune (=mark as
useless) V; for Xj. Of course, LEFTs calculated before
this pruning may get out to date. For instance: if we had
pruned the zero-promise assignments X3=3 and X4=4 in
Figure 3, and then recalculated all promises, Xy=4 would
also have become zero-promise, and the solution would
have been obvious, But recalculation takes O(n2a?) time,
and we might have to do it na times! Pruning some
unpromising values may not be worth this.

However, note that if a value Vj is praned for X;, only Xj
is left with less useful values than before. Now,
CONSISTENT(SU{X;=VX;=V;}) means that V; would be a
useful value for X; after assigning X;=V;. So, pruning Vj,
we only have to decrement LEFTs(XiX;=Vj) by 1 for all
X;=Vj for which CONSISTENT(SU(X;=V,X;=V}}). Should
this cause LEFTg(X;[X;=V;) to become 0, we prune Vj for
X; in the same way. if, during the pruning process, any
variable is left without any useful values, we can break
off and backtrack immediately. Recalculations needed
when pruning a value thus need only O(pa) time. Since
there can't be more than an useful values of future
variables, FP ("full pruning") takes O(nZ2a2) time, just
like FE. The algorithm described here is in fact similar to
the "optimal complexity arc-consistent algorithm AC-4"
presented in (13}, generalized to an algorithm for K-
consistency in [3]). However, if we perform similar decre-
mentations for the values pruned by the Forward Check-
ing algorithm, we never have to recalculate all LEFTs
except when backtracking. In fact, if a solution is found
without backiracking, we calculate the LEFTs exactly
once, in O(n2a2) time; we prune less than na
assignments, updating LEFTs at O(na) time per pruning;
we calculate promises n times at O(n?a) time each. Best
case time-complexity for FP algorithms is thus
O(n212+n3a). or 0(n4) for N-queen problems. The same
can be done for the FE-algorithms. (But note that storing
LEFTs introduces a O(n2a) space complexity).

5. Permutation Problems

In this last section we will show that many heuristics,
and formulac 3 and 5 in particular, can be extended to
solving Permutation Problems (PP). These are CSP for
which n=a, and for which X=X for any i#j. So for PP,

Geelen 33

—_— "—'——-—W:"w—“'r‘ww-—v-—-——"——

every value must be assigned to exactly one variable.
What is interesting about PP is that one could consider
them from an "inverted viewpoint”, where the problem is
to “find a variable for every value”. Everything that can
be calculated, deduced or estimated from this inverted
viewpoint also has validity for the "normal” viewpoint.
In fact, at any moment, in any PP, we can

1 - choose which "viewpoint” to take, and/or

2 - combine the results of our calculations, deductions

or estimates of both viewpoints.

Of course, we would need heuristics, both for deciding
when to take which viewpoint, and for combining the
results. A heuristic for choosing a viewpoint is easy: at
every step of BackTrack, the number of future variables
equals the number of "future values”, i.e. both "versions”
of the PP are always in a comparable situation. Given
any heuristic for determining the most constrained
variable: pick the most constrained variable in the normal
viewpoint, except if the "most constrained value” in the
inverted viewpoint is even more constrained. Consider the
LD-variations, for example. In Figure 3, all future
variables have 2 useful values left. From the inverted
viewpoint, however, value 2 only has one "useful
variable” left. A "dual-viewpoint” LD-variation would
thus concentrate on picking a variable for value 2. The
dual viewpoint also strengthens the "domino”-effect and
the "pruning-power” of FP-algorithms (examples of com-
bining the deductions of both viewpoints). But for for-
mulae 3 and 5, we also have a clear way to combine the
calculations of both viewpoints. Consider the definitions
of the “inverted LEFT™ and "inverted promises™:

LEFTWg(Vj Xj=Vj) =

1{X;! Vje DOMS(X;) A CONSISTENT({X;=V, X;=V;}))!
Promise!®¥g(Vi=X)) = .
1543,V a funure value LEFTIYs(Vj1Vi=X;)

Promise"Yg(X;=V;) represents the number of possibili-

ties left to "assign (other) variables to the other values”
such that no constraints on Vj are violated, after we
assign X;=V;. Since a promise represents an upper-bound
for the number of solutions, we can combine the
promises of both viewpoints as follows:

CPromise(X;=V;)=CPromise"(X;=V;) =
min(Promise(X;=V;),Promisel®(X;=V;))
and evaluate variables and values using
CPromise(Xj) =Xy CPromise(X;=V;)
CPromiseinV(V;) = Y; CPromisei™V(X;=V;)

For the "dual-viewpoint” algorithm, the evaluations for
empty N*N chessboards will now be truly symmetrical
(e.g. in Figure 2, the promises for X»=1, X3=1, Xo=4
and X3=4 would also be 6).

§.1. Partial Permutation Problems

If we drop the requirement a=n (i.e. allow a>n) we get
the class of Partial Permutation Problems (PPP), e.g.

M4 Constraint Satisfaction

resource scheduling problems where resources have a
capacity of one. We lack the space to do more than give
an indication of our work. We present two approaches to
handle PPP. The first is to transform the PPP into a PP
by adding "fake" variables Xp41....Xq, o0t which no
constraints hold except that globally, X;#X; for any i#j.
At first sight this may seem an extreme measure, but
note that all fake variables start out with the same useful
values, and that values pruned for a fake variable can be
pruned for all fake variables. So they always have the
same useful values, LEFTSs, and promises: we only need
to keep track of one of them, and remember there are a-n
of them. Also note that in the normal viewpoint, the real
variables will always be preferred, since they are always
more constrained. In the inverted viewpoint, however, the
most constrained values are those of the fake variables:
the effect of inverted reasoning is that the a-n most
constraining values are “removed” from the domains of
the real variables. Mixing viewpoints, we get the best of
both worlds. ‘

An interesting altemative is to extend formula (3) so it
can handle inverted PPP. Figure 4a shows the inverted
viewpoint on the problem of placing 3 queens on a 3x4
chessboard. In each square, we show the LEFTs for every
other "future value", should a queen be placed in that

square.

x, | gL ng x sl 3| 32| sl

X, 10.2,20,0,2{0,0,210,2,3 X; | 4(4] O(1)) O(1)| 44

% haduafua] g % [saf sy s se)
Figure 4a Figure 4b.

Formula 3 would take the product of those LEFTs, but
this time, the problem is to assign only fwo values to
two other variables, To see in how many ways "p out of
q values” can be assigned to p variables, we need, for
every subset of p values, the product of their LEFTs, The
sum of all these products is the upperbound on the
number of solutions we want. So, in Figure 4a, for
X1=1, the number of ways to place the other wo queens
would be 1*1+1%2+1%2 = 5.

In general, there are g-over-p sets, but we managed an
O(p(q-p))-algorithm for the calculations, of which we
show the formal version without explanation and with
only an indication of the proof:

T(0}=1; T(1]=T(2}=..=T(p}=0;
for j:=0to q-p do
for i := 1 to p do Tli}= T(i] + T[i-1] * Ey,;

Summarizes in T[p) the products of every subset of p
clements out of the set (E,,...Eg). Proof is by induction on j
and i, showing that for every j the algorithm summarizes in
T(i] the products of every subsct of i clements out of the set
{Ej,....E;y). For p=q, it just implements formula 3.

Figure 4b shows the results of the combinatorial
calculations, and between brackets the promises calculated
in the "normal” viewpoint (using the ordinary formula

v

i)

Ce

o

(3)). The mini.
realistic estimat.

6. Test Resy

The following -
queen problems :

LD +formula 1
LD +formula 2

FE +formulac 2&.

FP +formulae 2&.

EP+formulag 385

EE +formulae 3& S
Note that the duz
improvement eve;
of FE35 (using -
section 5) generate
problems tested, ¢
FP24/FP35 algor
since 2FE35 di.
improvement an-
backtracking is in.
time. The number ¢
algorithms for diff
spent on backtrack
Eun-time plot is s

peaks®).

Figure 8. Nr. of

We have presented tv
upperbounds for the
CSP. Efficient algori
formulae. We introdu,
a special (broad) cl:
information to work
own formulae in pa
usefulness of both .

L

ge resources have a
to do more than give
at two approaches to
m the PPP into a PP
1eesXa, On which no
y, Xi#X; for any i#j.
ctreme measure, but
with the same useful
_fake variable can be
hey always have the
)ymises: we only need
member there arc a-n
1l viewpoint, the real
since they are always
swpoint, however, the
»f the fake variables:
s that the a-n most
from the domains of
ts, we get the best of

end formula (3) so it
a shows the inverted
1g 3 queens on a 3x4
v the LEFTs for every
sen be placed in that

L 3] 32 54
ro(n o) 4
EEEE
igure 4b.

of those LEFTs, but
1 only fwo values {0
many ways “p out of
riables, we need, for
t of their LEFTs. The
upperbound on the
o, in Figure 4a, for
the other iwo queens

, but we managed an
lations, of which we
sxplanation and with

1)* By

of every subset of p
sof is by induction on j
\gorithm summarizes in
elements out of the sct
:nts formula 3.

f the combinatorial
1¢ promises calculated
the ordinary formula

N -

(3)). The minimum of these two would be the most
realistic estimate.

6. Test Results and conclusions

The following table shows runtest results for 100 N-
queen problems (4<N<103) for several algorithms:

average nrof back- maximum
number of track-free number of

Algorithm

LD +formula 1 >45000 20 >2500000
LD +formula 2 >33000 15 >2500000
LD tformula 3 1205 3 92379
LD ormulal.dual 216 26 348
FE +formulac 2&4 9.5 71 812
FE +formulac 3&5 5] 68 266
FP +formulac 2&4 5.6 81 497
FP tformulac 3&5 42 68 224
FE +formulac 3&5.dual 0.38 90 _12

Note that the dual-viewpoint approach shows dramatic
improvement even for LD1. The dual-viewpoint version
of FE35 (using the CPromise-formulae discussed in
section 5) generated backtrack-free solutions for almost all
problems tested, and outperforms even the full-pruning
FP24/FP35 algorithms. We did not implement 2FP,
since 2FE35 didn't leave much opportunity for
improvement anyway. As Nudel {15] notes, less
backtracking is interesting only if it means lower run-
time. The number of constraint-checks made by different
algorithms for different N are plotted in Figure 5. Time
spent on backtracking is not visible in this figure (the
run-time plot is similar to Figure 5, but with higher

"peaks”).

Figure 5. Nr. of constraint checks for algorithms

We have presented two heuristic formulae which provide
upperbounds for the number of solutions to a binary
CSP. Efficient algorithms can be constructed using these
formulae. We introduced a "dual-viewpoint" approach for
a special (broad) class of CSP, which provides more
information to work with for many heuristics, and for
own formulae in particular. Test results indicate the
usefulness of both formulae and approach. We are
currently looking into other, less evenly constrained CSP
on which to test the formulae and ideas presented in this
paper.

Acknowledgements.

The research described here is supported partly by SKBS
and partly by NWO. The author is much indebted to
Guszti Eiben, Wojciech Kowalczyk, Zsofia Ruttkay, Jan

Treur and Arnold Wentholt of the Vrije Universiteit -

Amsterdam for their critical proofreading and valuable -

suggestions.
References

(1] B. Abramson, M. Yung. Divide and Conquer under
Global Constraints: A Solution to the N-queens

Problem, Journal of Parallel and Distributed _ :

Computing, 6 (1989), pp.649-662

{2) C.A. Brown, P.W.Jr Purdom. How to search
efficiently, Proc. IJCAI (1981) pp.588-584

[31 M.C. Cooper. An Optimal K-Consistency
Algorithm, Artificial Intelligence 41 (1989) pp.89-95.

[4] R. Dechter. Enhancement Schemes for Constraint

Processing: Backjumping, Learning and Cutset

Decomposition, Artificial Intelligence 41 (1990)
pp-273-312.

[5] R. Dechter, J. Pearl. Network-based Heuristics for
Constraint Satisfaction Problems, Artificial Intelligence
34 (1988), pp.1-38.

(6] J. Gaschnig. Experimental case studies of backtrack
vs. Waltz-type vs. new algorithms for satisficing
assignment problems, Proceedings 2nd National
Conference Canadian Society for Computational Studies
of Intelligence, Toronto, Ontario, 1978.

{7] J. Gaschnig, Performance measurement and analysis
of certain search algorithms, Ph.D. Thesis, Dept.
Computer Science, Camnegie-Mellon University, 1979.

(8] S.W. Golomb, L.D. Baumert. Backtrack Program-
ming, J.ACM 12 (1965) pp.516-524.

[9] R.M. Haralick, G.L. Elliot. Increasing tree search
efficiency for constraint satisfaction problems, Artificial
Intelligence 14 (1980), pp.263-313.

(10] Keng, N. and Yun, D.Y.Y, A Planning/Scheduling
Methodology for the Constrained Resources Problem,
Proc. IJCAI (1989), pp.999-1003.

{11] Mackworth, A.K.Consistency in Networks of
Relations, Artificial Intelligence 8 (1977), pp.99-118.
[12] Mackworth, AK. and Freuder, E.C., The
Complexity of Some Polynomial Network Consistency
Algorithms for Constraint Satisfaction Problems,

Artificial Intelligence 25 (1985) pp.65-74.

[{13] Mohr, R. and Henderson, T.C., Arc and Path
Consistency Revisited, Artificial Intelligence 28 (1986)
pp-225-233

[14] Meseguer, P.,Constraint Satisfaction Problems: An
Overview, AICOM Vol.2 No.l 1989, pp.3-17.

[15] Nudel, B., Consistent Labeling Problems and their
Algorithms: Expected Complexities and Theory-Based
Heuristics, Artificial Intelligence 21 (1983) Pp.135-
178.

{16] Yaglom, AM., and Yaglom, LM, Challenging
Mathematical Problems with Elementary Solutions.
Holden-Day, San Fransisco, 1964.

Geelen 3s

