$E C L^{i} P S^{e}$

A Tutorial Introduction

Andrew M. Cheadle Andrew Eremin Warwick Harvey Andrew J. Sadler Joachim Schimpf Kish Shen Mark G. Wallace

IC-PARC
Centre for Planning and Resource Control
William Penney Laboratory
Imperial College London
London
SW7 2AZ

(c) Imperial College London 2003

Contents

Contents i
1 Introduction 1
2 Getting started with $\mathbf{E C L}^{i} \mathbf{P S}^{e}$ 3
2.1 How do I install the $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ svstem? 3
2.2 How do I read the online documentation? 3
2.3 How do I run my ECL ${ }^{i} \mathrm{PS}^{e}$ programs? 3
2.4 How do I use tkeclipse? 3
2.4.1 Getting started 3
2.5 How do I write an $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ program? 4
2.5.1 Compiling a program 5
2.5.2 Executing a query 5
2.5.3 Editing a file 5
2.5.4 Debugging a program 6
2.5.5 File menu 6
2.5.6 Getting help 7
2.5.7 Other tools 8
2.6 How do I make things happen at compile time? 9
2.7 How do I use $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ libraries in my programs? 10
2.8 Other tips 10
2.8.1 Recommended file names 10
3 Prolog Introduction 11
3.1 Terms and their data types 11
3.1.1 Numbers 11
3.1.2 Strings 12
3.1.3 Atoms 12
3.1.4 Lists 12
3.1.5 Structures 13
3.2 Predicates, Goals and Queries 14
3.2.1 Coniunction and Disiunction 15
3.3 Unification and Logical Variables 15
3.3.1 Svmbolic Equality 15
3.3.2 Logical Variables 16
3.3.3 Unification 17
3.4 Defining Your Own Predicates 17
3.4.1 Comments 17
3.4.2 Clauses and Predicates 18
3.5 Execution Scheme 19
3.5.1 Resolution 19
3.6 Partial data structures 22
3.7 More control structures 22
3.7.1 Disiunction 22
3.7.2 Conditional 23
3.7.3 Call 23
3.7.4 All Solutions 23
3.8 Using Cut 24
3.8.1 Commit to current clause 24
3.8.2 Prune alternative solutions 24
3.9 Common Pitfalls 25
3.9.1 Unification works both ways 25
3.9.2 Unexpected backtracking 26
3.10 Exercises 27
4 ECL $^{i} \mathbf{P S}^{e}$ Programming 29
4.1 Structure Notation 29
4.2 Loops 30
4.3 Working with Arravs of Items 32
4.4 Storing Information Across Backtracking 32
4.4.1 Bags 33
4.4.2 Shelves 33
4.5 Input and Output 34
4.5.1 Printing ECL ${ }^{i}$ PS e Terms 34
4.5.2 Reading ECL ${ }^{i} \mathrm{PS}^{e}$ Terms 35
4.5.3 Formatted Output 35
4.5.4 Streams 36
4.6 Matching 37
4.7 List processing 38
4.8 String processing 39
4.9 Term processing 39
4.10 Module System 40
4.10.1 Overview 40
4.10.2 Making a Module 40
4.10.3 Using a Module 40
4.10.4 Qualified Goals 41
4.10.5 Exporting items other than Predicates 42
4.11 Exception Handling 42
4.12 Time and Memory 43
4.12.1 Timing 43
4.13 Exercises 44
5 A Tutorial Tour of Debugging in TkECL $^{i} \mathbf{P S}$ 45
5.1 The Buggy Program 46
5.2 Running the Program 47
5.3 Debugging the Program 47
5.4 Summary 55
5.4.1 $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$ toplevel 55
5.4.2 Predicate Browser 56
5.4.3 Delayed Goals Viewer 56
5.4.4 Tracer 57
5.4.5 Tracer Filter 58
5.4.6 Term Inspector 58
6 Program Analysis 59
6.1 What tools are available? 59
6.2 Profiler 59
6.3 Line coverage 62
6.3.1 Compilation 63
6.3.2 Results 63
7 An Overview of the Constraint Libraries 67
7.1 Introduction 67
7.2 Implementations of Domains and Constraints 67
7.2.1 Suspended Goals: suspend 67
7.2.2 Interval Solver: ic 67
7.2.3 Global Constraints: ic_globai 68
7.2.4 Scheduling Constraints: ic_cumulative, ic_edge_finder 68
7.2.5 Finite Integer Sets: ic_sets 68
7.2.6 Linear Constraints: eplex 68
7.2.7 Constraints over symbols: ic_symbolic 69
7.3 User-Defined Constraints 69
7.3.1 Generalised Propagation: propia 69
7.3.2 Constraint Handling Rules: ech 69
7.4 Search and Optimisation Support 69
7.4.1 Tree Search Methods: ic_search 69
7.4.2 Optimisation: branch_and_bound 69
7.5 Hybridisation Support 69
7.5.1 Repair and Local Search: repair 69
7.5.2 Hybrid: ic_probing_for_scheduling 70
7.6 Other Libraries 70
8 Getting started with Interval Constraints 71
8.1 Using the Interval Constraints Library 71
8.2 Structure of a Constraint Program 71
8.3 Modelling 72
8.4 Built-in Constraints 73
8.5 Global constraints 79
8.5.1 Different strengths of propagation 80
8.6 Simple User-defined Constraints 81
8.6.1 Using Reified Constraints 81
8.6.2 Using Propia 82
8.6.3 Using the element Constraint 82
8.7 Searching for Feasible Solutions 83
8.8 Bin Packing 83
8.8.1 Problem Definition 83
8.8.2 Problem Model - Using Structures 84
8.8.3 Handling an Unknown Number of Bins 85
8.8.4 Constraints on a Single Bin 86
8.8.5 Symmetry Constraints 88
8.8.6 Search 88
8.9 Exercises 89
9 Working with real numbers and variables 91
9.1 Real number basics 91
9.2 Issues to be aware of when using bounded reals 92
9.3 IC as a solver for real variables 95
9.4 Finding solutions of real constraints 96
9.5 A larger example 98
9.6 Exercise 100
10 The Integer Sets Library 101
10.1 Why Sets 101
10.2 Finite Sets of Integers 101
10.3 Set Variables 101
10.4 Constraints 102
10.5 Search Support 104
10.6 Example 105
10.7 Weight Constraints 106
10.8 Exercises 107
11 Problem Modelling 109
11.1 Constraint Logic Programming 109
11.2 Issues in Problem Modelling 109
11.3 Modelling with CLP and ECL ${ }^{i} \mathrm{PS}^{e}$ 110
11.4 Same Problem - Different Model 111
11.5 Rules for Modelling Code 112
11.5.1 Disiunctions 112
11.5.2 Conditionals 113
11.6 Symmetries 114
12 Tree Search Methods 117
12.1 Introduction 117
12.1.1 Overview of Search Methods 118
12.1.2 Optimisation and Search 120
12.1.3 Heuristics 120
12.2 Complete Tree Search with Heuristics 121
12.2.1 Search Trees 121
12.2.2 Variable Selection 122
12.2.3 Value Selection 123
12.2.4 Example 123
12.2.5 Counting Backtracks 126
12.3 Incomplete Tree Search 127
12.3.1 First Solution 128
12.3.2 Bounded Backtrack Search 128
12.3.3 Depth Bounded Search 129
12.3.4 Credit Search 130
12.3.5 Timeout 131
12.3.6 Limited Discrepancy Search 132
12.4 Exercises 133
13 Repair and Local Search 135
13.1 Motivation 135
13.2 Syntax 135
13.2.1 Setting and Getting Tentative Values 135
13.2.2 Building and Accessing Conflict Sets 136
13.2.3 Propagating Conflicts 137
13.3 Repairing Conflicts 138
13.3.1 Combining Repair with IC Propagation 139
13.4 Introduction to Local Search 141
13.4.1 Changing Tentative Values 141
13.4.2 Hill Climbing 142
13.5 More Advanced Local Search Methods 143
13.5.1 The Knapsack Example 144
13.5.2 Search Code Schema 145
13.5.3 Random walk 145
13.5.4 Simulated Annealing 146
13.5.5 Tabu Search 147
13.6 Repair Exercise 149
14 Implementing Constraints 151
14.1 What is a Constraint in Logic Programming? 151
14.2 Background: Constraint Satisfaction Problems 152
14.3 Constraint Behaviours 153
14.3.1 Consistency Check 153
14.3.2 Forward Checking 154
14.3.3 Domain (Arc) Consistency 154
14.3.4 Bounds Consistency 155
14.4 Programming Basic Behaviours 156
14.4.1 Consistency Check 156
14.4.2 Forward Checking 156
14.5 Basic Suspension Facility 158
14.6 A Bounds-Consistent IC constraint 158
14.7 Using a Demon 159
14.8 Exercises 160
15 Propia and CHR 163
15.1 Two Wavs of Specifying Constraint Behaviours 163
15.2 The Role of Propia and CHR in Problem Modelling 164
15.3 Propia 166
15.3.1 How to Use Propia 166
15.3.2 Propia Implementation 167
15.3.3 Propia and Related Techniques 169
15.4 CHR 170
15.4.1 How to Use CHR 170
15.4.2 Multiple Heads 171
15.5 A Complete Example of a CHR File 172
15.5.1 CHR Implementation 173
15.6 Global Reasoning 174
15.7 Propia and CHR Exercise 174
16 The Eplex Library 177
16.1 Introduction 177
16.1.1 What is Mathematical Programming? 177
16.1.2 Why interface to Mathematical Programming solvers? 178
16.1.3 Example formulation of an MP Problem 178
16.2 How to load the library 179
16.3 Modelling MP problems in $\mathrm{ECL}^{i} \mathrm{PS}{ }^{e}$ 180
16.3.1 Eplex instance 180
16.3.2 Example modelling of an MP problem in $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ 180
16.3.3 Getting more solution information from the solver 182
16.3.4 Adding integrality constraints 182
16.4 Repeated Solving of an Eplex Problem 184
16.5 Exercise 189
17 Building Hybrid Algorithms 191
17.1 Combining Domains and Linear Constraints 191
17.2 Reasons for Combining Solvers 191
17.3 A Simple Example 192
17.3.1 Problem Definition 192
17.3.2 Program to Determine Satisfiability 193
17.3.3 Program Performing Optimisation 194
17.4 Sending Constraints to Multiple Solvers 195
17.4.1 Svntax and Motivation 195
17.4.2 Handling Booleans with Linear Constraints 196
17.4.3 Handling Disiunctions 198
17.4.4 A More Realistic Example 201
17.5 Using Values Returned from the Linear Optimum 203
17.5.1 Reduced Costs 203
17.5.2 Probing 205
17.5.3 Probing for Scheduling 205
17.6 Other Hybridisation Forms 206
17.7 References 207
17.8 Hybrid Exercise 207
18 The Colgen Library 209
18.1 The LP Model 209
18.2 The Hybrid Colgen Model 211
Bibliography 215
Index 218

Chapter 1

Introduction

This tutorial provides an introduction to programming in ECLiPSe. It assumes a broad understanding of constrained optimisation problems, some background in mathematical logic and in programming languages. The tutorial tries to cover most of the basic aspects of using $\mathrm{ECL}^{i} \mathrm{PS}^{e}$: underlying concepts, the programming language, library functionality and interaction with the system.
A few topics have been left out of this tutorial and are covered elsewhere: The Embedding Manual explains how to embed $E C L^{i} \mathrm{PS}{ }^{e}$ applications into other software environments, and the Visualisation Manual describes the use of the constraint visualisation facilities. All the features described in this tutorial are documented in more detail in the ECL ${ }^{i} \mathrm{PS}^{e}$ User Manual, Constraint Library Manual and in particular the Reference Manual. A methodology for developing large scale applications with $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ is presented in the document Developing Applications with $E C L^{i} P S^{e}$ by Simonis.
For an informal introduction to combinatorial optimisation and constraint programming see the article Constraint Programming by Wallace. The most closely related books on the subject are the textbook Programming with Constraints by Marriott and Stuckey [17] (which contains $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ examples), and the seminal book Constraint Satisfaction in Logic Programming [27] by Van Hentenryck.
A small selection of textbooks on related subjects includes: Foundations of Constraint Satisfaction by Tsang [25], Model Building in Mathematical Programming by Williams [30] and Prolog Programming for Artificial Intelligence by Bratko [6].
\odot References to more detailed documentation are marked like this.
\otimes Notes that can be skipped on first reading are marked like this.

[^0]
Chapter 2

Getting started with $\mathrm{ECL}^{i} \mathbf{P S}{ }^{e}$

2.1 How do I install the $\mathrm{ECL}^{i} \mathbf{P S}^{e}$ system?

Please see the installation notes that came with $\mathrm{ECL}^{i} \mathrm{PS}^{e}$. For Unix/Linux systems, these are in the file README_UNIX. For Windows, they are in the file README_WIN. TXT. For Mac OS X, they are in the file README_MACOSX.
Please note that choices made at installation time can affect which options are available in the installed system.

2.2 How do I read the online documentation?

Under Unix and Mac OS X, use any HTML browser to open the file doc/index.html in the ECL ${ }^{i} \mathrm{PS}^{e}$ installation directory. Under Windows, select the menu entry Start/Programs/ECLiPSe/Documen

2.3 How do I run my $\mathrm{ECL}^{i} \mathbf{P S}^{e}$ programs?

There are two ways of running ECL ${ }^{i} \mathrm{PS}^{e}$ programs. The first is using tkeclipse, which provides an interactive graphical user interface to the $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ compiler and system. The second is using eclipse, which provides a more traditional command-line interface. We recommend you use $\mathrm{TkECL}{ }^{i} \mathrm{PS}^{e}$ unless you have some reason to prefer a command-line interface.

2.4 How do I use tkeclipse?

2.4.1 Getting started

To start TkECL ${ }^{i} \mathrm{PS}^{e}$, either type the command tkeclipse at an operating system commandline prompt, or select $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$ from the program menu on Windows. This will bring up the $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$ top-level, which is shown in Figure 2.1.
Note that help on $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$ and its component tools is available from the Help menu in the top-level window.

Figure 2.1: $\mathrm{TkECL}^{i}{ }^{i} \mathrm{PS}^{e}$ top-level

2.5 How do I write an $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ program?

You need to use an editor to write your programs. $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ does not come with an editor, but any editor that can save plain text files can be used. Save your program as a plain text file, and you can then compile the program into $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ and run it.
Extra support for editing ECL ${ }^{i}$ PS ${ }^{e}$ programs with common editors are available. An eclipse mode for the GNU emacs editor is bundled with the $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ package. This mode provides syntax highlighting, automatic indentation and many other features. To use this mode, you need to load the eclipse.el file into emacs. This is done by adding the following line to your .emacs file:

```
(autoload 'eclipse-mode "<eclipsedir>/lib_public/eclipse.el" "ECLIPSE editing mode" t)
```

where <eclipsedir> is the path to your ECL ${ }^{i} \mathrm{PS}^{e}$ installation directory.
With $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$, you can specify the editor you want to use, and this editor will be started by $\mathrm{TkECL}^{i} \mathrm{PS}$ e , e.g. when you select a file in the 'Edit' option under the File menu. The default values are the value of the VISUAL environment variable under Unix, or Wordpad under Windows. This can be changed with the Preference Editor under the Tools menu.

2.5.1 Compiling a program

From the File menu, select the Compile ... option. This will bring up a file selection dialogue. Select the file you wish to compile, and click on the Open button. This will compile the file and any others it depends on. Messages indicating which files have been compiled and describing any errors encountered will be displayed in the bottom portion of the $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$ window (Output and Error Messages).
If a file has been modified since it was compiled, it may be recompiled by clicking on the make button. This recompiles any files which have become out-of-date.
\odot For more information on program compilation and the compiler, please see The Compiler chapter in the user manual.

2.5.2 Executing a query

To execute a query, first enter it into the Query Entry text field. You will also need to specify which module the query should be run from, by selecting the appropriate entry from the dropdown list to the left of the Query Entry field. Normally, the default selection of eclipse will be fine; this will allow access to all $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ built-ins and all predicates that have not explicitly been compiled into a different module. Selecting another module for the query is only needed if you wish to call a predicate which is not visible from the eclipse module, in which case you need to select that module.
\odot For more information about the module system, please see the Module System chapter in the user manual.

To actually execute the query, either hit the Enter key while editing the query, or click on the run button. TkECL ${ }^{i} \mathrm{PS}^{e}$ maintains a history of commands entered during the session, and these may be recalled either by using the drop-down list to the right of the Query Entry field, or by using the up and down arrow keys while editing the Query Entry field.
If $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ cannot find a solution to the query, it will print No in the Results section of the TkECL ${ }^{i} \mathrm{PS}^{e}$ window. If it finds a solution and knows there are no more, it will print it in the Results section, and then print Yes. If it finds a solution and there may be more, it will print the solution found as before, print More, and enable the more button. Clicking on the more button tells ECL ${ }^{i} \mathrm{PS}^{e}$ to try to find another solution. In all cases it also prints the total time taken to execute the query.
From Query menu, you can run the query with various analysis tools (see chapter (6): Time Profile option will run the query with the profiler tool; Port Profile option will run the query with the port profiler tool.
Note that a query can be interrupted during execution by clicking on the interrupt button.

2.5.3 Editing a file

If you wish to edit a file (e.g. a program source file), then you may do so by selecting the Edit . . . option from the File menu (or use the Edit new . . . option if the file does not yet exist). This will bring up a file selection dialogue. Select the file you wish to edit, and click on the Open button.

When you have finished editing the file, save it. After you've saved it, if you wish to update the version compiled into $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ (assuming it had been compiled previously), simply click on the make button.
You can change which program is used to edit your file by using the TkECL ${ }^{i} \mathrm{PS}^{e}$ Preference Editor, available from the Tools menu. Alternatively you can use your editor separately from ECL ${ }^{i} \mathrm{PS}^{e}$.

2.5.4 Debugging a program

To help diagnose problems in ECL ${ }^{i} \mathrm{PS}^{e}$ programs, $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$ provides the tracer. It is activated by selecting the Tracer option from the Tools menu. The next time a goal is executed, the tracer window will become active, allowing you to step through the program's execution and examine the program's state as it executes. A full example is given in chapter 5.

2.5.5 File menu

The File menu of TkECL ${ }^{i} \mathrm{PS}^{e}$ provides various options to manipulate files:

Compile

Allows the user to select a file to compile into $\mathrm{ECL}^{i} \mathrm{PS}^{e}$.

Use module

Allows the user to select and load an $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ module file into $\mathrm{ECL}^{i} \mathrm{PS}^{e}$.

Edit

Allows the user to select a file to edit using the default text editor
\odot See section 2.5 .3 for more information on editors.

Edit new

Allows the user to specify a new file that will be opened with the default text editor.

Cross referencer

Allows the user to select an $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ source file and produce a cross reference over it, and display the resulting graph in a new window.

Change directory

Allows the user to change the current working directory.

Change to example directory

Change the current working directory to the example directory in the $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ distribution.

New module

Allows the user to specify a new module that will be created. The new module becomes the current toplevel module.

Clear toplevel module

Allows the user to clear the current toplevel module, i.e. to erase it and start with a fresh, empty module.

Exit

Leave $\mathrm{ECL}^{i} \mathrm{PS}^{e}$

2.5.6 Getting help

More detailed help than is provided here can be obtained online for all the features of $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$. Simply select the entry from the Help menu on $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$'s top-level window which corresponds to the topic or tool you are interested in.
Detailed documentation about all the predicates in the $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ libraries can be obtained through the Library Browser and Help tool. This tool allows you to browse the online help for the $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ libraries. On the left is a tree display of the libraries available and the predicates they provide.

- Double clicking on a node in this tree either expands it or collapses it again.
- Clicking on an entry displays help for that entry to the right.
- Double clicking on a word in the right-hand pane searches for help entries containing that string.

You can also enter a search string or a predicate specification manually in the text entry box at the top right. If there is only one match, detailed help for that predicate is displayed. If there are multiple matches, only very brief help is displayed for each; to get detailed help, try specifying the module and/or the arity of the predicate in the text field.
Alternatively, you can call the help/1 predicate in the query window (which contains the same information as the HTML Reference Manual). It has two modes of operation. First, when a fragment of a built-in name is specified, a list of short descriptions of all built-ins whose name contains the specified string is printed. For example,

```
?- help(write).
```

will print one-line descriptions about write/1, writeclause/2, etc. When a unique specification is given, the full description of the specified built-in is displayed, e.g. in

```
?- help(write/1).
```

or

```
?- help(ic:alldifferent/1).
```


2.5.7 Other tools

TkECL ${ }^{i} \mathrm{PS}^{e}$ comes with a number of useful tools. Some have been mentioned above, but here is a more complete list. Note that we only provide brief descriptions here; for more details, please see the online help for the tool in question.

Compile scratch-pad

This tool allows you to enter small amounts of program code and have it compiled. This is useful for quick experimentation, but not for larger examples or programs you wish to keep, since the source code is lost when the session is exited.

Source File Manager

This tool allows you to keep track of and manage which source files have been compiled in the current $\mathrm{ECL}^{i} \mathrm{PS}{ }^{e}$ session. You can select files to edit them, or compile them individually, as well as adding new files.

Predicate Browser

This tool allows you to browse through the modules and predicates which have been compiled in the current session. It also lets you alter some properties of compiled predicates.

Source Viewer

This tool attempts to display the source code for predicates selected in other tools.

Delayed Goals

This tool displays the current delayed goals, as well as allowing a spy point to be placed on the predicate and the source code viewed.

Inspector

This tool provides a graphical browser for inspecting terms. Goals and data terms are displayed as a tree structure. Sub-trees can be collapsed and expanded by double-clicking. A navigation panel can be launched which provides arrow buttons as an alternative way to navigate the tree. Note that while the inspector window is open, interaction with other $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$ windows is disallowed. This prevents the term from changing while being inspected. To continue $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$, the inspector window must be closed.

Visualisation Client

This starts a new Java visualisation client that allows $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ programs to be visualised with the visualisation tools. See the Visualisation manual for details on the visualisation tools.

Global Settings

This tool allows the setting of some global flags governing the way $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ behaves. See also the documentation for the set_flag/2 and get_flag/2 predicates.

Statistics

This tool displays some statistics about memory and CPU usage of the $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ system, updated at regular intervals. See also the documentation for the statistics/0 and statistics/2 predicates.

Preference Editor

This tool allows you to edit and set various user preferences. This include parameters for how TkECL ${ }^{i} \mathrm{PS}^{e}$ will start up, e.g. the amount of memory it will be able to use, and a initial query to execute; and parameters which affects the appearance of $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$, such as the fonts TkECL ${ }^{i} \mathrm{PS}^{e}$ uses and which editor it launches.

2.6 How do I make things happen at compile time?

A file being compiled may contain queries. These are goals preceded by either the symbol "?-" or the symbol ":-". As soon as a query or command is encountered in the compilation of a file, the $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ system will try to satisfy it. Thus by inserting goals in this fashion, things can be made to happen at compile time.
In particular, a file can contain a directive to the system to compile another file, and so large programs can be split between files, while still only requiring a single simple command to compile them. When this happens, ECL ${ }^{i} \mathrm{PS}^{e}$ interprets the pathnames of the nested compiled files relative to the directory of the parent compiled file; if, for example, the user calls

```
[eclipse 1]: compile('src/pl/prog').
```

and the file $\mathrm{src} / \mathrm{pl} / \mathrm{prog} . \mathrm{pl}$ contains a query

```
:- [part1, part2].
```

then the system searches for the files part1. pl and part2. pl in the directory src/pl and not in the current directory. Usually larger $E C L^{i} \mathrm{PS}{ }^{e}$ programs have one main file which contains only commands to compile all the subfiles. In $\mathrm{ECL}^{i} \mathrm{PS}{ }^{e}$ it is possible to compile this main file from any directory. (Note that if your program is large enough to warrant breaking into multiple files (let alone multiple directories), it is probably worth turning the constituent components into modules.)See section 4.10 for more information about modules.

2.7 How do I use $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ libraries in my programs?

A number of files containing library predicates are supplied with the $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ system. They are usually installed in an $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ library directory. These predicates are either loaded automatically by $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ or may be loaded "by hand".
During the execution of an $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ program, the system may dynamically load files containing library predicates. When this happens, the user is informed by a compilation or loading message. It is possible to explicitly force this loading to occur by use of the lib/1 or use_module/ $\mathbf{1}$ predicates. E.g. to load the library called lists, use one of the following goals:

```
:- lib(lists)
:- use_module(library(lists))
```

This will load the library file unless it has been already loaded. In particular, a program can ensure that a given library is loaded when it is compiled, by including an appropriate directive in the source, e.g. :- lib(lists).

2.8 Other tips

2.8.1 Recommended file names

It is recommended programming practice to give the Prolog source programs the suffix .pl, or .ecl if it contains $E C L^{i} \mathrm{PS}^{e}$ specific code. It is not enforced by the system, but it simplifies managing the source programs. The compile/1 predicate automatically adds the suffix to the filename, so that it does not need to be specified; if the literal filename can not be found, the system tries appending each of the valid suffixes in turn and tries to find the resulting filename.

Chapter 3

Prolog Introduction

3.1 Terms and their data types

Prolog data (terms) and programs are built from a small set of simple data-types. In this section, we introduce these data types together with their syntax (their textual representations). For the full syntax see the User Manual appendix on Syntax.

3.1.1 Numbers

Numbers come in several flavours. The ones that are familiar from other programming languages are integers and floating point numbers. Integers in $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ can be as large as fits into the machine's memory:

```
123 0 - -27 3492374892749289174
```

Floating point numbers (represented as IEEE double floats) are written as

```
0.0 3.141592653589793 6.02e23 -35e-12 -1.0Inf
```

ECL ${ }^{i} \mathrm{PS}^{e}$ provides two additional numeric types, rationals and bounded reals. $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ can do arithmetic with all these numeric types.
Note that performing arithmetic requires the use of the is $/ \mathbf{2}$ predicate:

```
?- X is 3 + 4.
X = 7
Yes
```

If one just uses $=/ \mathbf{2}, \mathrm{ECL}^{i} \mathrm{PS}^{e}$ will simply construct a term corresponding to the arithmetic expression, and will not evaluate it:

```
?- X = 3 + 4.
X = 3 + 4
Yes
```

\odot For more details on numeric types and arithmetic in general see the User Manual chapter on Arithmetic.For more information on the bounded real numeric type, see Chapter 9 .

3.1.2 Strings

Strings are a representation for arbitrary sequences of bytes and are written with double quotes:

```
"hello"
"I am a string!"
"string with a newline \n and a null \000 character"
```

Strings can be constructed and partitioned in various ways using $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ primitives.

3.1.3 Atoms

Atoms are simple symbolic constants, similar to enumeration type constants in other languages. No special meaning is attached to them by the language. Syntactically, all words starting with a lower case letter are atoms, sequences of symbols are atoms, and anything in single quotes is an atom:

```
atom quark i486 -*- ??? 'Atom' 'an atom'
```


3.1.4 Lists

A list is an ordered sequence of (any number of) elements, each of which is itself a term. Lists are delimited by square brackets ([]), and elements are separated by a comma. Thus, the following are lists:

```
[1,2,3]
[london, cardiff, edinburgh, belfast]
["hello", 23, [1,2,3], london]
```

A special case is the empty list (sometimes called nil), which is written as
[]
A list is actually composed of head-and-tail pairs, where the head contains one list element, and the tail is itself a list (possibly the empty list). Lists can be written as a [Head|Tail] pair, with the head separated from the tail by the vertical bar. Thus the list $[1,2,3]$ can be written in any of the following equivalent ways:

```
[1,2,3]
[1|[2,3]]
[1|[2| [3]]]
[1|[2|[3|[]]]]
```

The last line shows that the list actually consists of 3 [Head|Tail] pairs, where the tail of the last pair is the empty list. The usefulness of this notation is that the tail can be a variable (introduced below): [1|Tail], which leaves the tail unspecified for the moment.

3.1.5 Structures

Structures correspond to structs or records in other languages. A structure is an aggregate of a fixed number of components, called its arguments. Each argument is itself a term. Moreover, a structure always has a name (which looks like an atom). The canonical syntax for structures is

$$
<n a m e>\left(<a r g>_1, \ldots<a r g>_n\right)
$$

Valid examples of structures are:

```
date(december, 25, "Christmas")
element(hydrogen, composition(1,0))
flight(london, new_york, 12.05, 17.55)
```

The number of arguments of a structure is called its arity. The name and arity of a structure are together called its functor and is often written as name/arity. The last example above therefore has the functor flight/4.
\odot See section 4.1 for information about defining structures with named fields.

Operator Syntax

As a syntactic convenience, unary (1-argument) structures can also be written in prefix or postfix notation, and binary (2-argument) structures can be written in prefix or infix notation, if the programmer has made an appropriate declaration (called an operator declaration) about its functor. For example if plus/2 were declared to be an infix operator, we could write:

1 plus 100
instead of

$$
\text { plus }(1,100)
$$

It is worth keeping in mind that the data term represented by the two notations is the same, we have just two ways of writing the same thing. Various logical and arithmetic functors are automatically declared to allow operator syntax, for example $+/ 2$, not/1 etc.

Parentheses

When prefix, infix and postfix notation is used, it is sometimes necessary to write extra parentheses to make clear what the structure of the written term is meant to be. For example to write the following nested structure

```
+(*(3,4), 5)
```

we can alternatively write

```
3*4 + 5
```

because the star binds stronger than the plus sign. But to write the following differently nested structure

Numbers $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ has integers, floats, rationals and bounded reals.
Strings Character sequences in double quotes.
Atoms Symbolic constants, usually lower case or in single quotes.
Lists Lists are constructed from cells that have an arbitrary head and a tail which is again a list.

Structures Structures have a name and a certain number (arity) of arbitrary arguments. This characteristic is called the functor, and written name/arity.

Figure 3.1: Summary of Data Types

$$
*(3,+(4,5))
$$

in infix-notation, we need extra parentheses:

```
3* (4 + 5)
```

A full table of the predefined prefix, infix and postfix operators with their relative precedences can be found in the appendix of the User Manual.

3.2 Predicates, Goals and Queries

Where other programming languages have procedures and functions, Prolog and $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ have predicates. A predicate is something that has a truth value, so it is similar to a function with a boolean result. A predicate definition simply defines what is true. A predicate invocation (or call) checks whether something is true or false. A simple example is the predicate integer/1, which has a built-in definition. It can be called to check whether something is an integer:

```
integer(123) is true
integer(atom) is false
integer([1,2]) is false
```

A predicate call like the above is also called a goal. A starting goal that the user of a program provides is called a query. To show queries and their results, we will from now on use the following notation:

```
?- integer(123).
Yes.
?- integer(atom).
No.
?- integer([1,2]).
No.
```

A query can simply be typed at the eclipse prompt, or entered into the query field in a tkeclipse window. Note that it is not necessary to enter the ?- prefix. On a console input, is however
necessary to terminate the query with a full-stop (a dot followed by a newline). After executing the query, the system will print one of the answers Yes or No.

3.2.1 Conjunction and Disjunction

Goals can be combined to form conjunctions (AND) or disjunctions (OR). Because this is so common, Prolog uses the comma for AND and the semicolon for OR. The following shows two examples of conjunction, the first one is true because both conjuncts are true, the second is false:

```
?- integer(5), integer(7).
Yes.
?- integer(5), integer(hello).
No.
```

In contrast, a disjunction is only false if both disjuncts are false:

```
?- ( integer(hello) ; integer(5) ).
Yes.
?- ( integer(hello) ; integer(world) ).
No.
```

As in this example, it is advisable to always surround disjunctions with parentheses. While not strictly necessary in this example, they are often required to clarify the structure.
In practice, when answering queries with disjunctions, the system will actually give a separate Yes answer for every way in which the query can be satisfied (i.e. proven to be true). For example, the following disjunction can be satisfied in two ways, therefore system will give two Yes answers:

```
?- ( integer(5) ; integer(7) ).
Yes (0.00s cpu, solution 1, maybe more)
Yes (0.02s cpu, solution 2)
```

The second answer will only be given after the user has explicitely asked for more solutions. Sometimes the system cannot decide whether an answer is the last one. In that case, asking for more solutions may lead to an alternative No answer, like in the following example:

```
?- ( integer(5) ; integer(hello) ).
Yes (0.00s cpu, solution 1, maybe more)
No (0.02s cpu)
```

Of course, as long as there was at least one Yes answer, the query as a whole was true.

3.3 Unification and Logical Variables

3.3.1 Symbolic Equality

Prolog has a particularly simple idea of equality, namely structural equality by pattern matching. This means that two terms are equal if and only if they have exactly the same structure. No evaluation of any kind is perfomed on them:

```
?- 3 = 3.
Yes.
?- 3 = 4.
No.
?- hello = hello.
Yes.
?- hello = 3.
No.
?- foo(a,2) = foo(a,2).
Yes.
?- foo(a,2) = foo(b,2).
No.
?- foo(a,2) = foo(a,2,c).
No.
?- foo(3,4) = 7.
No.
?- +(3,4) = 7.
No.
?- 3 + 4 = 7.
No.
```

Note in particular the last two examples (which are equivalent): there is no automatic arithmetic evaluation. The term $+(3,4)$ is simply a data structure with two arguments, and therefore of course different from any number.
Note also that we have used the built-in predicate $=/ 2$, which exactly implements this idea of equality.

3.3.2 Logical Variables

So far we have only performed tests, giving only Yes/No results. How can we compute more interesting results? The solution is to introduce Logical Variables. It is very important to understand that Logical Variables are variables in the mathematical sense, not in the usual programming language sense. Logical Variables are simply placeholders for values which are not yet known, like in mathematics. In conventional programming languages on the other hand, variables are labels for storage locations. The important difference is that the value of a logical variables is typically unknown at the beginning, and only becomes known in the course of the computation. Once it is known, the variable is just an alias for the value, i.e. it refers to a term. Once a value has be assigned to a logical variable, it remains fixed and cannot be assigned a different value.
Logical Variables are written beginning with an upper-case letter or an underscore, for example
X Var Quark _123 R2D2

If the same name occurs repeatedly in the same input term (e.g. the same query or clause), it denotes the same variable.

Predicate Something that is true or false, depending on its definition and its arguments. Defines a relationship between its arguments.

Goal A logical formula whose truth value we want to know. A goal can be a conjunction or disjunction of other (sub-)goals.

Query The initial Goal given to a computation.
Unification An extension of pattern matching which can bind logical variables (placeholders) in the matched terms to make them equal.

Clause One alternative definition for when a predicate is true. A clause is logically an implication rule.

Figure 3.2: Basic Terminology

3.3.3 Unification

With logical variables, the above equality tests become much more interesting, resulting in the concept of Unification. Unification is an extension of the idea of pattern matching of two terms. In addition to matching, unification also causes the binding (instantiation, aliasing) of variables in the two terms. Unification instantiates variables such that the two unified terms become equal. For example

```
X = 7 is true with X instantiated to 7
X = Y is true with X aliased to Y (or vice versa)
foo(X) = foo(7) is true with X instantiated to 7
foo(X,Y) = foo(3,4) is true with X instantiated to 3 and Y to 4
foo(X,4) = foo(3,Y) is true with X instantiated to 3 and Y to 4
foo(X) = foo(Y) is true with X aliased to Y (or vice versa)
foo(X,X) = foo(3,4) is false because there is no possible value for X
foo(X,4)= foo(3,X) is false because there is no possible value for X
```


3.4 Defining Your Own Predicates

3.4.1 Comments

Since we will annotate some of our programs, we first introduce the syntax for comments. There are two types:

Block comment The comment is enclosed between the delimiters /* and */. Such comments can span multiple lines, and may be conveniently used to comment out unused code.

Line comment Anything following and including \% \% in a line is taken as a comment (unless the $\%$ \% character is part of a quoted atom or string).

3.4.2 Clauses and Predicates

Prolog programs are built from valid Prolog data-structures. A program is a collection of predicates, and a predicate is a collection of clauses.
The idea of a clause is to define that something is true. The simplest form of a clause is the fact. For example, the following two are facts:

```
capital(london, england).
```

brother(fred, jane).

Syntactically, a fact is just a structure (or an atom) terminated by a full stop.
Generally, a clause has the form
Head :- Body.
where Head is a structure (or atom) and Body is a Goal, possibly with conjunctions and disjunctions like in the queries discussed above. The following is a clause

```
uncle(X,Z) :- brother(X,Y), parent(Y,Z).
```

Logically, this can be read as a reverse implication

$$
\operatorname{uncle}(X, Z) \longleftarrow \operatorname{brother}(X, Y) \wedge \operatorname{parent}(Y, Z)
$$

or, more precisely

$$
\forall X \forall Z: \operatorname{uncle}(X, Z) \longleftarrow \exists Y: \operatorname{brother}(X, Y) \wedge \operatorname{parent}(Y, Z)
$$

stating that uncle (X, Z) is true if $\operatorname{brother}(\mathrm{X}, \mathrm{Y})$ and parent (Y, Z) are true. Note that a fact is equivalent to a clause where the body is true:

```
brother(fred, jane) :- true.
```

One or multiple clauses with the same head functor (same name and number of arguments) together form the definition of a predicate. Logically, multiple clauses are read as a disjunction, i.e. they define alternative ways in which the predicate can be true. The simplest case is a collection of alternative facts:

```
parent(abe, homer).
parent(abe, herbert).
parent(homer, bart).
parent(marge, bart).
```

The following defines the ancestor/2 predicate by giving two alternative clauses (rules):

```
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(Z,Y), ancestor(X,Z).
```

Remember that a clause can be read logically, with the :- taking the meaning of implication, and the comma separating goals read as a conjunction. The logical reading for several clauses of the same predicate is disjunction between the clauses. So the first ancestor rule above states that if X is a parent of Y, then this implies that X is an ancestor of Y. The second rule, which specifies another way X can be an ancestor of Y states that if some other person, Z, is the parent of Y , and X is an ancestor of Z , then this implies that X is also an ancestor of Y .
\otimes It is also important to remember that the scope of a variable name only extends over the clause in which it is in, so any variables with the same name in the same clause refer to the same variable, but variables which occur in different clauses are different even if they have been written with the same name.

3.5 Execution Scheme

3.5.1 Resolution

Resolution is the computation rule used by Prolog. Given a set of facts and rules as a program, execution begins with a query, which is an initial goal that is to be resolved. The set of goals that still have to be resolved is called the resolvent.
Consider again the ancestor/2 and parent/2 predicate shown above.

```
ancestor(X,Y) :- parent(X,Y). % clause 1
ancestor(X,Y) :- parent(Z,Y), ancestor(X,Z). % clause 2
parent(abe, homer). % clause 3
parent(abe, herbert). % clause 4
parent(homer, bart). % clause 5
parent(marge, bart). % clause 6
```

Program execution is started by issuing a query, for example

```
?- ancestor(X, bart).
```

This is our initial resolvent. The execution mechanism is now as follows: In our example, the Prolog system would attempt to unify ancestor (X, bart) with the program's clause heads. Both clauses of the ancestor/2 predicate can unify with the goal, but the textually first clause, clause 1 , is selected first, and successfully unified with the goal:

1. Pick one (usually the leftmost) goal from the resolvent. If the resolvent is empty, stop.
2. Find all clauses whose head successfully unifies with this goal. If there is no such clause, go to step 6 .
3. Select the first of these clause. If there are more, remember the remaining ones. This is called a choice point.
4. Unify the goal with the head of the selected clause. (this may instantiate variables both in the goal and in the clause's body).
5. Prefix this clause body to the resolvent and go to 1 .
6. Backtrack: Reset the whole computation state to how it was when the most recent choice point was created. Take the clauses remembered in this choice point and go to 3 .

Figure 3.3: Execution Algorithm

```
Goal (Query): ancestor(X,bart)
Selected: clause 1
Unifying: ancestor(X,bart) = ancestor(X1,Y1)
results in: X=X1, Y1=bart
New resolvent: parent(X, bart)
More choices: clause 2
```

The body goal of clause 1 parent (X , bart) is added to the resolvent, and the system remembers that there is an untried alternative - this is referred to as a choice-point.
In the same way, parent (X , bart) is next selected for unification. Clauses 5 and 6 are possible matches for this goal, with clause 5 selected first. There are no body goals to add, and the resolvent is now empty:

```
Goal: parent(X, bart)
Selected: clause 5
Unifying: parent(X,bart) = parent(homer,bart)
results in: X = homer
New resolvent:
More choices: clause 6, then clause 2
```

The execution of a program completes successfully when there is an empty resolvent. The program has thus found the first solution to the query, in the form of instantiations to the original Query's variables, in this case $\mathrm{X}=$ homer. $\mathrm{ECL}^{i} \mathrm{PS}{ }^{e}$ returns this solution, and also asks if we want more solutions:

```
?- ancestor(X,bart).
X = homer More? (;)
```

Responding with ';' will cause $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ to try to find alternative solutions by backtracking to the most recent choice-point, i.e. to seek an alternative to parent/2. Any bindings done during and after the selection of clause 5 are undone, i.e. the binding of X to homer is undone. Clause 6 is now unified with the goal parent (X, Y), which again produces a solution:

```
Goal: parent(X, bart)
Selected: clause 6
Unifying: parent(X,bart) = parent(marge,bart)
results in: X = marge
New resolvent:
More choices: clause 2
```

If yet further solutions are needed, then $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ would again backtrack. This time, parent/2 no longer has any alternatives left to unify, so the next older choice-point, the one made for ancestor $/ 2$, is the one that would be considered. The computation is returned to the state it was in just before clause 1 was selected, and clause 2 is unified with the query goal:

```
Goal: ancestor(X,bart)
Selected: clause 2
Unifying: ancestor(X,bart) = ancestor(X1,Y1)
results in: Y1 = bart, X1 = X
New resolvent: parent(Z1, bart), ancestor(X1, Z1)
More choices:
```

For the first time, there are more than one goal in the resolvent, the leftmost one, parent (Z1,bart) is then selected for unification. Again, clauses 5 and 6 are candidates, and a new choice-point is created, and clause 5 tried first.

```
Goal: parent(Z1, bart)
Selected: clause 5
Unifying: parent(Z1, bart) = parent(homer, bart)
results in: Z1 = homer
New resolvent: ancestor(X1, homer)
More choices: clause 6
```

Eventually, after a few more steps (via finding the ancestor of homer), this leads to a new solution, with abe returned as an ancestor of bart:

```
?- ancestor(X,bart).
X = abe More? (;)
```

If yet more solutions are requested, then because only one parent for homer is given by the program, $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ would backtrack to the only remaining choice-point, unifying clause 6 is unified with the goal, binding Z 1 to marge. However, no ancestor for marge can be found, because no parent of marge is specified in the program. No more choice-points remains to be tried, so the execution terminates.

3.6 Partial data structures

Logical variables can occur anywhere, not only as arguments of clause heads and goals, but also within data structures. A data structure which contains variables is called a partial data structure, because it will eventually be completed by substituting the variable with an actual data term. The most common case of a partial data structure is a list whose tail is not yet instantiated.
Consider first an example where no partial lists occur. In the following query, a list is built incrementally, starting from its end:

```
?- L1 = [], L2 = [c|L1], L3 = [b|L2], L4 = [a|L3].
L1 = []
L2 = [c]
L3 = [b, c]
L4 = [a, b, c]
```

Whenever a new head/tail cell is created, the tail is already instantiated to a complete list. But is is also possible to build the list from the front. The following code, in which the goals have been reordered, gives the same final result as the code above:

```
?- L4 = [a|L3], L3 = [b|L2], L2 = [c|L1], L1 = [].
L1 = []
L2 = [c]
L3 = [b, c]
L4 = [a, b, c]
```

However, in the course of the computation, variables get instantiated to "partial lists", i.e. lists whose head is known, but whose tail is not. This is perfectly legal: due to the nature of the logical variable, the tail can be filled in later by instantiating the variable.

3.7 More control structures

3.7.1 Disjunction

Disjunction is normally specified in Prolog by different clauses of a predicate, but it can also be specified within a single clause by the use of ;/2. For example,

```
atomic_particle(X) :- (X = proton ; X = neutron ; X = electron).
```

This is logically equivalent to:

```
atomic_particle(proton).
atomic_particle(neutron).
atomic_particle(electron).
```


3.7.2 Conditional

Conditionals can be specified using the $->/ 2$ operator. In combination with ; / 2 , a conditional similar to 'if-then-else' constructs of conventional language can be constructed: $\mathrm{X}-\mathrm{PY} ; \mathrm{Z}$, where X, Y and Z can be one or more goals, means that if X is true, then Y will be executed, otherwise Z. Only the first solution of X is explored, so that on backtracking, no new solutions for X will be tried. In addition, if X succeeds, then the 'else' part, Z will never be tried. If X fails, then the 'then' part, Y, will never be tried. An example of 'if-then-else' is:

```
max(X,Y, Max) :-
    number(X), number(Y),
    (X > Y -> Max = X ; Max = Y).
```

where Max is the bigger of the numbers X or Y. Note the use of the brackets to make the scope of the if-then-else clear and correct.

3.7.3 Call

One feature of Prolog is the equivalence of programs and data - both are represented as terms. The predicate call allows program terms (i.e. data) to be treated as goals: call(X) will cause X to be treated as a goal and executed. Although at the time when the predicate is executed, X has to be instantiated, it does not need to be instantiated (or even known) at compile time. For example, it would in principle be possible to define disjunction (;) as follows:

```
X ; Y :- call(X).
X ; Y :- call(Y).
```


3.7.4 All Solutions

In the pure computational model of Prolog, alternative solutions are computed one-by-one on backtracking. Only one solution is available at any time, while previous solutions disappear on backtracking:

```
?- weekday(X).
X = mo
More
X = tu
More
X = we
More
```

Sometimes it is useful to have all solution together in a list. This can be achieved by using one of the all-solutions predicates findall $/ 3$, setof $/ 3$ or bagof $/ 3$:

```
?- findall(X, weekday(X), List).
X = X
List = [mo, tu, we, th, fr, sa, su]
Yes
```

\odot
For the differences between findall/3, setof/3 and bagof/3 see the ECL ${ }^{i} \mathrm{PS}^{e}$ Reference Manual.

3.8 Using Cut

Cut (written as !) prunes away part of the Prolog search-space. This can be a very powerful mechanism for improving the performance of programs, and even the suppression of unwanted solutions. However, it can also be easily misused and over-used.
Cut does two things:
commit Disregard any later clauses for the predicate.
prune Throw away all alternative solutions to the goals to the left of the cut.

3.8.1 Commit to current clause

Consider the following encoding of the "minimum" predicate:

```
min(X,Y, Min) :- X <Y, Min = X.
min(X,Y, Min) :- Y=<X, Min = Y.
```

Whilst logically correct, the behaviour of this encoding is non-optimal for two reasons. Consider the goal :- min $(2,3, M)$. Although the first clause succeeds, correctly instantiating M to 2 , Prolog leaves an open choice point. If these clauses and goal occur as part of a larger program and goal, a failure might occur later, causing backtracking. Prolog would then, vainly, try to find another minimum using the second clause for min. Firstly the open choice point costs space, and the secondly the unsuccessful evaluation of the second clause costs execution time.
To achieve the same logic, but more efficient behaviour, the programmer can introduce a cut. For example min is typically encoded as follows:

```
min(X,Y, Min) :- X<Y, !, Min = X.
min}(X,Y,Y)
```

The cut removes the unnecessary choice point and makes the second test redundant.

3.8.2 Prune alternative solutions

A cut may occur anywhere where a goal may occur, consider the following:

```
first_prime(X, P) :-
    prime(X,P), !.
```

where first_prime returns the first prime number smaller than X. In this case, it calls a predicate prime $/ 2$, which generates prime numbers smaller than X, starting from the largest one. The effect of the cut here is to prune away all the remaining solutions to prime (X, P) once the first one is generated, so that on backtracking, prime (X, P) is not tried for alternative solutions. The cut will also commit the execution to this clause for first_prime/2, but as there is only one clause, this has no visible effect.

3.9 Common Pitfalls

Prolog is different from conventional programming languages, and a common problem is to program Prolog like a conventional language. Here are some points to note:

- Unification is more powerful than normal case discrimination (see section 3.9.1);
- Prolog procedure calls are more powerful than conventional procedure calls. In particular, backtracking is possible (see section 3.9.2);

3.9.1 Unification works both ways

One common problem is to write a predicate expecting certain instantiation patterns for the arguments, and then get unexpected results when the arguments do not conform to the expected pattern. An example is the member relation, intended to check if an item Item is a member of a list or not. This might be written as:

```
member(Item, [Iteml_]).
member(Item, [_|List]) :- member(Item, List).
```

The expected usage assumes both Item and the list are ground. In such cases, the above predicate does indeed check if Item occurs in the list given as a second argument. However, if either of the arguments are not ground, then potentially unexpected behaviour might occur. Consider the case where Item is a variable, then the above predicate will enumerate the elements of the list successively through backtracking. On the other hand, if any of the list elements of the list is a variable, they would be unified with Item. Other instantiation patterns for either arguments can produce even more complex results.
If the intended meaning is simply to check if Item is a member of a list, this can be done by:

```
% is_member(+Element, +List)
% check if Element is an element that occurs in a List of
```

```
    % ground elements
is_member(Item, [Element|_]) :- Item == Element.
is_member(Item, [_|List]) :- nonvar(List), is_member(Item, List).
```

Note the use of comments to make clear the intention of the use of the predicate. The convention used is that ' + ' indicates that an argument should be instantiated (i.e. not a variable), '-' for an argument that should be an uninstantiated variable, and '?' indicates that there is no restrictions on the mode of the argument.

3.9.2 Unexpected backtracking

Remember that when coding in Prolog, any predicate may be backtracked into. So correctness in Prolog requires:

- Predicate returns the correct answer when first called.
- Predicate behaves correctly when backtracked into.

Recall that backtracking causes alternative choices to be explored, if there are any. Typically another choice corresponds to another clause in the poredicate definition, but alternative choices may come from disjunction (see above) or built-in predicates with multiple (alternative) solutions. The programmer should make sure that a predicate will only produce those solutions that are wanted. Excess alternatives can be removed by coding the program not to produce them, or by the cut, or the conditional.
For example, to return only the first member, in the is_member/2 example, the predicate can be coded using the cut, as follows:

```
is_member(Item, [Element|_]) :- Item == Element, !.
is_member(Item, [_|List]) :- nonvar(List), is_member(Item, List).
```


Using conditional

Another way to remove excess choice points is the conditional:

```
is_member(Item, [Element|List]) :-
    ( Item == Element ->
        true
    ;
        nonvar(List), is_member(Item, List)
    ).
```


3.10 Exercises

1. Consider again the "family tree" example (see Section 3.4.2). As well as the parent/2 predicate, suppose we have a male/1 predicate as follows:
```
male(abe).
male(homer).
male(herbert).
male(bart).
```

Define a brother/2 predicate, expressed just in terms of parent/2 and male/1. Make sure Homer is not considered his own brother.
2. Consider the following alternative definition of ancestor/2:

```
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y).
```

What is wrong with this code? What happens if you use it to find out who Bart is an ancestor of?

Chapter 4

ECL ${ }^{i}{ }^{\mathbf{P}}{ }^{e}$ Programming

4.1 Structure Notation

In $\mathrm{ECL}^{i} \mathrm{PS}^{e}$, structure fields can be given names. This makes it possible to write structures in a more readable and maintainable way. Such structures first need to be declared by specifying a template like:

```
:- local struct( book(author, title, year, publisher) ).
```

Structures with the functor book/4 can then be written as

```
book{}
book{title:'tom sawyer'}
book{title:'tom sawyer', year:1876, author:twain}
```

which, in canonical syntax, correspond to the following:

```
book(_, _, _, _)
book(_, 'tom sawyer', _, _)
book(twain, 'tom sawyer', 1876, _)
```

There is absolutely no semantic difference between the two syntactical forms. The special structsyntax with names has the advantage that

- the arguments can be written in any order
- "dummy" arguments with anonymous variables do not need to be written
- the arity of the structure is not implied (and can be changed by changing the declaration and recompiling the program)

Sometimes it is necessary to refer to the numerical position of a structure field within the structure, e.g. in the arg/3 predicate:

```
arg(3, B, Y)
```

When the structure has been declared as above, we can write instead:

```
arg(year of book, B, Y)
```

Declared structures help readability, and make programs easier to modify. In order not to lose these benefits, one should always use curly-bracket and of-syntax when working with them, and never write them in canonical syntax or referring to argument positions numerically.
\odot See also the update_struct/4 built-in predicate.

4.2 Loops

To reduce the need for auxiliary recursive predicates, $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ allows the use of an iteration construct

```
( IterationSpecs do Goals )
```

Typical applications are: Iteration over a list

```
?- ( foreach(X,[1,2,3]) do writeln(X) )
1
2
3
Yes (0.00s cpu)
```

Process all elements of one list and construct another:

```
?- ( foreach(X,[1,2,3]), foreach(Y,List) do Y is X+3 ).
List = [4, 5, 6]
Yes (0.00s cpu)
```

Process a list to compute the sum of its elements:

```
?- ( foreach(X,[1,2,3]), fromto(0,In,Out,Sum) do Out is In+X ).
Sum = 6
Yes (0.00s cpu)
```

Note that the variables X, Y, In and Out are local variables in the loop, while the input list and Sum are shared with the context.
If a parameter remains constant across all loop iterations it must be specified explicitly (via param), for example when iterating over an array:

```
?- Array = [] (4,3,6,7,8),
    (
        for(I,1,5),
        fromto(0,In,Out,Sum),
        param(Array)
    do
        Out is In + Array[I]
    ).
```

\odot For details and more examples see the description of the do/2 built-in predicate. Additional background can be found in [24].

fromto(First,In,Out,Last)

iterate Goals starting with In=First until Out=Last.
foreach(X,List)
iterate Goals with X ranging over all elements of List.

foreacharg(X,StructOrArray)

iterate Goals with X ranging over all arguments of StructOrArray.

foreacharg(X,StructOrArray,Idx)

same as before, but Idx is set to the argument position of X in StructOrArray.

foreachelem(X,Array)

like foreacharg/2, but iterates over all elements of an array of arbitrary dimension.
foreachelem(X,Array,Idx)
same as before, but Idx is set to the index position of X in Array.

foreachindex(Idx,Array)

like foreachelem/3, but returns just the index position and not the element.
for(I,MinExpr,MaxExpr)
iterate Goals with I ranging over integers from MinExpr to MaxExpr.
for(I,MinExpr,MaxExpr,Increment)
same as before, but Increment can be specified (it defaults to 1).
multifor(List,MinList,MaxList)
like for $/ 3$, but allows iteration over multiple indices (saves writing nested loops).
multifor(List,MinList,MaxList,IncrementList)
same as before, but IncrementList can be specified (i.e. how much to increment each element of List by).
count(I,Min,Max)
iterate Goals with I ranging over integers from Min up to Max.
param(Var1,Var2,...)
for declaring variables in Goals global, i.e. shared with the context.

Figure 4.1: Iteration Specifiers for Loops

- Arrays are just structures
- The functor is not important
- Declare or query array size with $\operatorname{dim} / \mathbf{2}$
- Access elements in expressions by specifying their index list (e.g. A[7], m[2,3])
- Indices start at 1

Figure 4.2: Array notation

4.3 Working with Arrays of Items

For convenience, $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ has some features for facilitating working with arrays of items. Arrays can be of any dimension, and can be declared with the dim/2 predicate:

```
?- dim(M, [3,4]).
M = []([](_131, _132, _133, _134),
    [](_126, _127, _128, _129),
    [](_121, _122, _123, _124))
yes.
```

$\operatorname{dim} / \mathbf{2}$ can also be used to query the dimensions of an array:

```
?- dim(M, [3,4]), dim(M,D).
D = [3,4]
yes.
```

\otimes Note that arrays are just structures, and that the functor is not important.
To access a specific element of an array in an expression, specify the index list of the desired element, e.g.

```
?- M = []([] (2, 3, 5),
    [](1, 4, 7)), X is M[1, 2] + M[2, 3].
X = 10
M = []([](2, 3, 5), [](1, 4, 7))
yes.
```

\odot For further details see the Array Notation section of the User Manual.

4.4 Storing Information Across Backtracking

In pure logic programming, the complete state of a computation is reset to an earlier state on backtracking. The all-solutions predicates introduced in section 3.7.4 provide a way to collect solutions across backtracking.

The following section presents $\mathrm{ECL}^{i} \mathrm{PS}^{e}$'s lower-level primitives for storing information across failures: bags and shelves. Both bags and shelves are referred to by handle, not by name, so they make it easy to write robust, reentrant code. Bags and shelves disappear when the system backtracks over their creation, when the handle gets garbage collected, or when they are destroyed explicitly.

4.4.1 Bags

A bag is an anonymous object which can be used to store information across failures. A typical application is the collection of alternative solutions.
A bag is an unordered collection, referred to by a handle. A bag is created using bag_create/1, terms can be added to a bag using bag_enter/2, and the whole contents of the bag can be retrieved using bag_retrieve/2 or bag_dissolve/2. A simple version of the findall $/ 3$ predicate from section 3.7.4 can be implemented like:

```
simple_findall(Goal, Solutions) :-
    bag_create(Bag),
    (
            call(Goal),
            bag_enter(Bag, Goal),
            fail
    ;
            bag_dissolve(Bag, Solutions)
    ).
```


4.4.2 Shelves

A shelf is an anonymous object which can be used to store information across failures. A typical application is counting of solutions, keeping track of the best solution, aggregating information across multiple solutions etc.
A shelf is an object with multiple slots whose contents survive backtracking. The content of each slot can be set and retrieved individually, or the whole shelf can be retrieved as a term. Shelves are referred to by a handle.
A shelf is initialized using shelf_create / 2 or shelf_create / 3. Data is stored in the slots (or the shelf as a whole) with shelf_set / 3 and retrieved with shelf_get / 3 .
For example, here is a meta-predicate to count the number of solutions to a goal:

```
count_solutions(Goal, Total) :-
    shelf_create(count(0), Shelf),
    (
        call(Goal),
        shelf_get(Shelf, 1, Old),
        New is Old + 1,
```

```
write(+Stream, ?Term)
    write one term in a default format.
write_term(+Stream, ?Term, +Options)
    write one term, format options can be selected.
printf(+Stream, +Format, +ArgList)
    write a string with embedded terms, according to a format string.
writeq(+Stream, ?Term), write_canonical(+Stream, ?Term)
    write one term so that it can be read back.
put(+Stream, +Char)
    write one character.
```

Figure 4.3: Builtins for writing

```
        shelf_set(Shelf, 1, New),
        fail
;
    shelf_get(Shelf, 1, Total)
),
shelf_abolish(Shelf).
```


4.5 Input and Output

4.5.1 Printing $\mathrm{ECL}^{i}{ }^{\mathbf{P}}{ }^{e}$ Terms

The predicates of the write-group are generic in the sense that they can print any ECL ${ }^{i} \mathrm{PS}^{e}$ data structure. The different predicates print slightly different formats. The write/1 predicate is intended to be most human-readable, while writeq/1 is designed so that the printed data can be read back by the predicates of the read-family. If we print the structured term foo(3+4, [1,2], X, 'a b', "string") the results are as follows:

```
write: foo(3 + 4, [1, 2], X, a b, string)
writeq: foo(3 + 4, [1, 2], _102, 'a b', "string")
```

The write-format is the shortest, but some information is missing, e.g. that the sequence a b is an atomic unit and that string is a string and not an atom. The writeq-format quotes items properly, moreover, the variables are printed with unique numbers, so different variables are printed differently and identical ones identically.
Single characters, encoded in ascii, can be output using put/1, for example:

```
[eclipse: 1] put(97).
a
yes.
```

```
read(+Stream, -Term)
    read one fullstop-terminated ECL }\mp@subsup{}{}{i}\mp@subsup{\textrm{PS}}{}{e}\mathrm{ term.
read_term(+Stream, -Term, +Options)
    read one fullstop-terminated ECL }\mp@subsup{}{}{i}\mp@subsup{\textrm{PS}}{}{e}\mathrm{ term.
get(+Stream, -Char)
    read one character.
read_string(+Stream, +Terminator, -Length, -String)
    read a string up to a certain terminator character.
read_token(+Stream, -Token, -Class)
    read one syntactic token (e.g. a number, an atom, a bracket, etc).
```

Figure 4.4: Builtins for reading

4.5.2 Reading $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ Terms

If the data to be read is in Prolog syntax, it can be read using read(?Term). This predicate reads one fullstop-terminated $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ term from stream Stream. A fullstop is defined as a dot followed by a layout character like blank space or newline. Examples:

```
[eclipse 4]: read(X).
    123,a.
X = 123, a
yes.
[eclipse 6]: read(X).
    [3,X,foo(bar),Y].
X = [3, X, foo(bar), Y]
yes.
```

Single characters can be input using get/1, which gets their ascii encoding, for example:

```
[eclipse: 1] get(X).
a
X=97
yes.
```


4.5.3 Formatted Output

The printf-predicate is similar to the printf-function in C, with some $\mathrm{ECL}^{i} \mathrm{PS}^{e}$-specific format extensions. Here are some examples of printing numbers:

```
?- printf("%d", [123]).
```

```
123
yes.
?- printf("%5d,%05d", [123,456]).
    123,00456
yes.
?- printf("%6.2f", [123]).
type error in printf("%6.2f", [123])
?- printf("%6.2f", [123.4]).
123.40
yes.
?- printf("%6.2f", [12.3]).
    12.30
yes.
```

The most important $\mathrm{ECL}^{i} \mathrm{PS}^{e}$-specific format option is $\% \mathrm{w}$, which allows to print like the predicates of the write-family:

```
?- printf("%w", [foo(3+4, [1,2], X, 'a b', "string")]).
foo(3 + 4, [1, 2], X, a b, string)
```

The $\% \mathrm{w}$ format allows a number of modifiers in order to access all the existing options for the printing of $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ terms.

For details see the write_term/2 and printf/2 predicates.

4.5.4 Streams

$\mathrm{ECL}^{i} \mathrm{PS}{ }^{e} \mathrm{I} / \mathrm{O}$ is done from and to named channels called streams. The following streams are always opened when $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ is running: input (used by the input predicates that do not have an explicit stream argument, e.g. read/1), output (used by the output predicates that do not have an explicit stream argument, e.g. write/1), error (output for error messages and all messages about exceptional states), warning_output (used by the system to output warning messages), log_output (used by the system to output log messages, e.g. messages about garbage collection activity), null (a dummy stream, output to it is discarded, on input it always gives end of file).
Data can be read from a specific stream using read(+Stream, ?Term), and written to a specific stream using write(+Stream, ?Term). If no particular stream is specified, input predicates read from input and output predicates write to output.
New streams may be opened onto various I/O devices, see figure 4.5.
All types of streams are closed using close (+ Stream $)$.
See the complete description of the stream-related built-in predicates in the Reference Manual
For network communication over sockets, there is a full set of predicates modelled after the BSD socket interface: socket $/ 3$, accept $/ 3$, bind $/ 2$, listen $/ 2$, select $/ 3$. See the reference manual for details.
Output in $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ is usually buffered, i.e. printed text goes into a buffer and may not immediately appear on the screen, in a file, or be sent via a network connection. Use flush(+Stream) to empty the buffer and write all data to the underlying device.

I/O device	How to open
tty	implicit (stdin,stdout,stderr) or open/3 of a device file
file	open(FileName, Mode, Stream)
string	open(string(String), Mode, Stream)
queue	open(queue(String), Mode, Stream)
pipe	exec/2, exec/3 and exec_group/3
socket	socket/3 and accept/3
null	implicit (null stream)

Figure 4.5: How to open streams onto the different I/O devices

4.6 Matching

In ECL ${ }^{i} \mathrm{PS}^{e}$ you can write clauses that use matching (or one-way unification) instead of head unification. Such clauses are written with the ?- functor instead of :-. Matching has the property that no variables in the caller will be bound. For example

```
p(f(a,X)) ?- writeln(X).
```

will fail for the following calls:

```
?- p(F).
?- p(f(A,B)).
?- p(f(A,b)).
```

and succeed (printing b) for

$$
\text { ?- } p(f(a, b)) .
$$

Moreover, the clause

$$
\mathrm{q}(\mathrm{X}, \mathrm{X}) \text { ?- true. }
$$

will fail for the calls

$$
\begin{aligned}
& ?-q(a, b) . \\
& ?-q(a, B) . \\
& ?-q(A, b) . \\
& ?-q(A, B) .
\end{aligned}
$$

and succeed for

$$
\begin{aligned}
& ?-\mathrm{q}(\mathrm{a}, \mathrm{a}) \text {. } \\
& \text { ?- } \mathrm{q}(\mathrm{~A}, \mathrm{~A}) .
\end{aligned}
$$

4.7 List processing

Lists are probably the most heavily used data structure in Prolog and $\mathrm{ECL}^{i}{ }^{\mathrm{P}}{ }^{e}$. Apart from unification/matching, the most commonly used list processing predicates are: append $/ 3$, length $/ 2$, member $/ 2$ and sort $/ 2$. The append $/ 3$ predicate can be used to append lists or to split lists:

```
?- append([1, 2], [3, 4], L).
L = [1, 2, 3, 4]
Yes (0.00s cpu)
?- append(A, [3, 4], [1, 2, 3, 4]).
A = [1, 2]
More (0.00s cpu)
No (0.01s cpu)
?- append([1, 2], B, [1, 2, 3, 4]).
B = [3, 4]
Yes (0.00s cpu)
```

The length/2 predicate can be used to compute the length of a list or to construct a list of a given length:

```
?- length([1, 2, 3, 4], N).
N = 4
Yes (0.00s cpu)
?- length(List, 4).
List = [_1693, _1695, _1697, _1699]
Yes (0.00s cpu)
```

The member/2 predicate can be used to check membership in a list (but memberchk/2 should be preferred for that purpose), or to backtrack over all list members:

```
?- memberchk(2, [1, 2, 3]).
Yes (0.00s cpu)
?- member(X, [1, 2, 3]).
X = 1
More (0.00s cpu)
X = 2
More (0.01s cpu)
X = 3
Yes (0.01s cpu)
```

The sort/2 predicate can sort any list and remove duplicates:

```
?- sort([5, 3, 4, 3, 2], Sorted).
Sorted = [2, 3, 4, 5]
Yes (0.00s cpu)
```

\odot For more list processing utilities, see the documentation for library(lists).

4.8 String processing

$E C L^{i} \mathrm{PS}^{e}$ (unlike many Prolog systems) provides a string data type and the corresponding string manipulation predicates, e.g. string_length $/ 2$, concat_string $/ 2$, split_string $/ 4$, substring $/ 4$, and conversion from and to other data types, e.g. string_list/2, atom_string/2, number_string $/ 2$, term_string/2.

```
?- string_length("hello", N).
N = 5
Yes (0.00s cpu)
?- concat_string([abc, 34, d], S).
S = "abc34d"
Yes (0.00s cpu)
?- string_list("hello", L).
L = [104, 101, 108, 108, 111]
Yes (0.00s cpu)
?- term_string(foo(3, bar), S).
S = "foo(3, bar)"
Yes (0.00s cpu)
```


4.9 Term processing

Apart from unification/matching, there are a number of generic built-in predicates that work on arbitrary data terms. The $=\ldots$ predicate converts structures into lists and vice versa:

```
?- foo(a, b, c) =.. List.
List = [foo, a, b, c]
Yes (0.00s cpu)
?- Struct =.. [foo, a, b, c].
Struct = foo(a, b, c)
Yes (0.00s cpu)
```

The arg/3 predicate extracts an argument from a structure:

```
?- arg(2, foo(a, b, c), X).
X = b
Yes (0.00s cpu)
```

The functor $/ 3$ predicate extracts functor name and arity from a structured term, or, conversely, creates a structured term with a given functor name and arity:

```
?- functor(foo(a, b, c), N, A).
N = foo
A = 3
Yes (0.00s cpu)
?- functor(F, foo, 3).
F = foo(_1696, _1697, _1698)
Yes (0.00s cpu)
```

The term_variables/2 predicate extracts all variables from an arbitrarily complex term:

```
?- term_variables(foo(X, 3, Y, X), Vars).
Vars = [Y, X]
```

The copy_term/2 predicate creates a copy of a term with fresh variables:

```
?- copy_term(foo(3, X), Copy).
Copy = foo(3, _864)
Yes (0.00s cpu)
```


4.10 Module System

4.10.1 Overview

The $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ module system controls the visibility of predicate names, syntax settings (structures, operators, options, macros), and non-logical store names (records, global variables). Predicates and syntax items can be declared local or they can be exported and imported. Store names are always local.

4.10.2 Making a Module

A source file can be turned into a module by starting it with a module directive. A simple module is:

```
:- module(greeting).
:- export hello/0.
hello :-
    who(X),
    printf("Hello %w!%n", [X]).
who(world).
who(friend).
```

This is a module which contains two predicates. One of them, hello/0 is exported and can be used by other modules. The other, who $/ 1$ is local and not accessible outside the module.

4.10.3 Using a Module

There are 3 ways to use hello/ 0 from another module. The first possibility is to import the whole "greeting" module. This makes everything available that is exported from "greeting":

```
:- module(main).
:- import greeting.
```

```
main :-
    hello.
```

The second possibility is to selectively only import the hello/0 predicate:

```
:- module(main).
:- import hello/O from greeting.
main :-
    hello.
```

The third way is not to import, but to module-qualify the call to hello/0:

```
:- module(main).
main :-
    greeting:hello.
```


4.10.4 Qualified Goals

The module-qualification using :/2 is also used to resolve name conflicts, i.e. in the case where a predicate of the same name is defined in more than one imported module. In this case, none of the conflicting predicates is imported - an attempt to call the unqualified predicate raises an error. The solution is to qualify every reference with the module name:

```
:- lib(ic). % exports $>= / 2
:- lib(eplex). % exports $>= / 2
..., ic:(X $>= Y), ...
..., eplex:(X $>= Y), ...
```

A more unusual feature, which is however very appropriate for constraint programming, is the possibility to call several versions of the same predicate by specifying several lookup modules:

```
..., [ic,eplex]:(X $>= Y), ...
```

which has exactly the same meaning as

```
..., ic:(X $>= Y), eplex:(X $>= Y), ...
```

Note that the modules do not have to be known at compile time, i.e. it is allowed to write code like

```
after(X, Y, Solver) :-
    Solver:(X $>= Y).
```

This is however likely to be less efficient because it prevents compile-time optimizations.

block(Goal, BTag, Recovery)

like call(Goal), except that in addition a Recovery goal is set up, which can be called by exit_block from anywhere inside the call to Goal. When exit_block(ETag) is called, then if ETag unifies with a BTag from an enclosing block, the recovery goal associated with that block is called, with the system immediately failing back to where the block was called. In addition, ETag can be used to pass information to the recovery goal, if BTag occurs as an argument of Recovery.

```
exit_block(ETag)
```

will transfer control to the innermost enclosing block/3 whose BTag argument unifies with ETag.

Figure 4.6: Exception Handling

4.10.5 Exporting items other than Predicates

The most commonly exported items, apart from predicates, are structure and operator declarations. This is done as follows:

```
:- module(data).
:- export struct(employee(name,age,salary)).
:- export op(500, xfx, reports_to).
...
```

Such declarations can only be imported by importing the whole module which exports them, i.e. using import data..
\odot For more details see the User Manual chapter on Modules.

4.11 Exception Handling

It is sometimes necessary to exit prematurely from an executing procedure, for example because some situation was detected which makes continuing impossible. In this situation, one wants to return to some defined state and perform some kind of recovery action. This functionality is provided by block $/ 3$ and exit_block $/ 1$. By wrapping a predicate call into block $/ 3$, any irregular termination can be caught and handled, e.g.

```
protected_main(X,Y,Z) :-
    block(
        main(X,Y,Z),
        Problem,
        printf("Execution of main/3 aborted with %w%n", [Problem])
    ).
```

```
main(X,Y,Z) :-
    ( test(...) -> ... ; exit_block(test_failed) ),
    ...,
```

When built-in predicates raise errors, this results in the predicate being exited with the tag abort, which can also be caught:

```
?- block(X is 1//0, T, true).
arithmetic exception in //(1, 0, X)
X = X
T = abort
Yes (0.00s cpu)
```

Note that timeouts and stack overflows also lead to exits and can be caught this way.

4.12 Time and Memory

4.12.1 Timing

Timings are available via the built-in predicates cputime/1nd statistics/2 To obtain the CPU time consumption of a (succeeding) goal, use the scheme

```
cputime(StartTime),
my_goal,
TimeUsed is cputime-StartTime,
printf("Goal took %.2f seconds%n", [TimeUsed]).
```

The statistics/2 and statistics/0 commands can also be used to obtain memory usage information. The memory areas used by ECL ${ }^{i}$ PS ${ }^{e}$ are:

Shared and private heap for compiled code, non-logical store (bags and shelves, findall) dictionary of functors, various tables and buffers.

Global stack for most $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ data like lists, structures, suspensions. This is likely to be the largest consumer of memory.

Local stack for predicate call nesting and local variables.
Control and trail stack for data needed on backtracking.
Automatic garbage collection is done on the global and trail stack, and on the dictionary. Garbage collection parameters can be set using set_flag/2 and an explicit collection can be requested using garbage_collect/0.

4.13 Exercises

1. Using a do loop, write a predicate which, when given a 1-d array, returns a list containing the elements of the array in reverse order.
2. Write a predicate transpose(Matrix, Transpose) to transpose a 2 -d array.

Can you make it work backwards? (i.e. if Transpose is specified, can you make it return a suitable Matrix?)

Chapter 5

A Tutorial Tour of Debugging in TkECL ${ }^{i} \mathbf{P S}{ }^{e}$

This chapter demonstrates a sample debugging session using $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$, showing how some of the development tools can be used. We are by no means using all the tools or all the functionalities of any tool, but hopefully this will give you a flavor of the tools so that you will explore them on your own. You can get more information on the tools from the Help menu, and from the popup balloons which appear when your mouse cursor stops over a feature for a few seconds.

In the tutorial tour, we will assume that you have some knowledge of $\mathrm{ECL}^{i} \mathrm{PS}^{e}$. It is helpful if you also have some knowledge of traditional Prolog debugging, although this is not necessary.

This chapter is designed for you to follow while running $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$. To keep things simple, the program is run with a very small data set, but it should be sufficient to see how the techniques described can be applied to real programs.

At the end of the chapter, there is a summary of the main features of the main development tools.

This chapter also contains many screen-shots, some of which are best viewed in colour, or in looking at the actual screen as you follow along.

Balloon help A short description of a feature will popup in a 'balloon' when the mouse cursor stops over the feature for a few seconds.

Help file Help files are available for all the tools and toplevel. They provide more detailed information on the tools, and can be obtained from the Help menu, and by typing Alt-h (Alt and h keys together) in the tool.

Figure 5.1: Getting Help

5.1 The Buggy Program

The program we will be debugging is a map colouring problem. The task is to colour a 'map' of countries with four colours such that no two neighbours have the same colour. Our program colours a map of four countries, but has a bug and can colour two neighbours the same colour. The map is displayed graphically as shown:

Map Displays of Program
The countries are identified by numbers displayed within each country. On the left, the map has not yet been coloured. On the right, it has been coloured incorrectly by the program (countries 3 and 4 have the same colour).
This program uses code from the map colouring demo program, and is designed to use the GUI to display a map. Most of this is not relevant to our debugging session, and although we will see some of this code during the debugging, it is not necessary to understand it. You can think of this debugging session as debugging someone else's code, not all of which needs to be understood. The program used here is included with your $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ distribution. You should find it under the Examples/tutorial directory. You can change to the Examples directory in $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$ using the Change to example directory option from the File menu.
The final step in this debug tutorial is to edit the buggy program and correct it. If you want to do this, you should copy the distributed version of the program elsewhere so that you don't edit the original. You need to copy the following files from Examples/tutorial to another directory:

```
debugdemo.ecl mapcolour.ecl mapdebugdemo.tcl buggy_data.map
```

To load the program, start $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$. After start up, switch the working directory to where you have the programs - if you are using a UNIX system, and have started TkECL ${ }^{i} \mathrm{PS}^{e}$ in the directory of the programs, you are already there. Otherwise, go to the File menu of TkECL ${ }^{i} \mathrm{PS}^{e}$, and select the Change directory option. Use the directory browser to find the directory containing your programs and select it. This will change your working directory to the selected directory.
Next, compile debugdemo.ecl. You can do this by selecting the Compile option from the File menu (you can also compile the file with the query [debugdemo] from the query entry window). When the program is compiled, the map display window should appear, and the program is ready to run.

5.2 Running the Program

To start the program, the query 'colour' is run: type colour into $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$'s query entry window, followed by the return key. The program should run, colouring the map, arriving at the incorrect solution as shown previously. The program uses the standard 'generate-and-test' method, so you will see colour flashing in the countries as the program tries different colours for them.
The map display has two buttons: pressing More will cause the program to find an alternate way of colouring the map. Pressing Done will end the program and return control to ECL ${ }^{i} \mathrm{PS}^{e}$. You can press More to get more solutions and see that the program returns more solutions that colour countries 3 and 4 to the same colour (along with some that are correct).
Press Done to finish the execution. We will now debug this program.

5.3 Debugging the Program

First type in the query clear to clear the map to its initial state.
The main tool to debug a program is the tracer tool. The tracer is one of the development tools, all of which can be accessed from the Tools menu of TkECL ${ }^{i}{ }^{i} S^{e}$. Select Tracer from the menu as shown below, and a new window for the tracer tool should appear.

Starting the Tracer Tool

Run the query colour again. To save you from typing in the query, you can use the up-arrow on your keyboard to step back to a previous query. Type return when colour appears in the query window again.
The tracer tool traces the execution of the program, like the traditional Prolog debugger, it stops at 'debug ports' of predicates that are executed.See the Debugging chapter in the User Manual for more details on the model used in Prolog debuggers.

Figure 5.2: The Tracer Tool

The trace lines displayed by the tracer has the following:

```
+(22) 14 *EXIT<3> inform_colour(1, 1)
1 2 3 4 5 6 7
```

1. A ' + ' displayed here shows that the procedure has a spy point set.
2. The invocation number of this goal, which uniquely identifies it. The 'To Invoc:' button can be used to jump to the next port with the specified invocation number.
3. The depth of the goal, i.e. the number of its ancestors. The 'To Depth:' button can be used to jump to the next port within the specified depth range.
4. An asterisk before an EXIT means that this procedure is nondeterministic and that it might be resatisfied.
5. The type of the port. The 'To Port:' button can be used to select the type of port to jump to.
6. This only appears if the goal is executing at a different priority than 12 , the normal priority. The number is the priority that the goal is executed at.
7. The goal is printed according to the current instantiations of its variables.

Figure 5.3: Debugger Trace Line

Currently, it is stopped at the call port of the query colour. The buttons in the middle of the tool are for debugger commands. Try pressing Creep several times, and you should observe something similar to Figure 5.2, Unlike the traditional debugger, the execution trace is shown on two text windows: the bottom 'Trace Log' window, which shows a log of the debugger ports much as a traditional debugger does; and the top 'Call Stack' window, showing the ancestors ('call stack') of the current goal, which is updated at each debug port. The goals are displayed with different colours: blue for a call port, green (success) for an exit port. Red (failure) for a fail port. Note that in the call stack, the ancestor goals are displayed in black: this indicates that the goal is not 'current', i.e. the bindings shown are as they were when the goal was called, and not necessarily what they are now. We will show how these bindings can be 'refreshed' later on.
To avoid stepping through the whole program, we will add a spy-point to a predicate that may be causing the problem. Spy-points can be added in the traditional way, using the spy/1 predicate. However, we can also use the predicate browser tool: start the Predicate Browser tool from the Tools menu of $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$. This tool allows you to observe and change various properties of the predicates in your program. A list of predicates are displayed on the left hand side, and a list of properties on the right. Currently the predicate list is showing all the predicates defined in our program (i.e. in the eclipse module). Looking at this list, not_same_colour/3's name suggests that it checks that neighbouring countries do not have the same colour. Select it by clicking on it, and now the right hand side should display the properties of this predicate:

The Predicate Browser Tool

We can now view the source code for the predicate by clicking on the Show source button, which opens a source display window to show the source of the selected predicate. The code for the predicate is:

```
not_same_colour(Solver, C1-C2, Countries) :-
    % get the colours for the countries C1 and C2
    arg(C1, Countries, Colour1),
    arg(C2, Countries, Colour2),
    % send constraint to either the fd or ic solver
    Solver: (Colour1 #\= Colour2).
```

The code does indeed check that the countries C1 and C2 do not have the same colour.

Figure 5.4: The Tracer Filter Tool
\otimes For our example program, the list is not very long, but some programs may have many predicates, and it could be difficult to find the predicate you want. The predicate list has a search facility: typing in part of the name of the predicate in the predicate list will search for the predicate you want. You can try typing in not_same_colour / 3 to see how this works.

The predicate browser allows us to change some of the properties of a predicate. We can add a spy-point to the predicate by clicking on the radio button for spy:

Setting Spy Property to On

With $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$, we can do more than just place a spy point on a predicate: we can specify further conditions for when the tracer should stop at a spy point, using the filter tool.
Start the filter tool by selecting Configure filter from the Options menu of the tracer tool:

Starting the Filter Tool from the Tracer

The filter tool opens in a new window, as shown in Figure 55.4. This tool allows us to specify a 'filter' for the debug ports so that the tracer will only stop at a port with the properties specified by the tool. In our case, we want to see not_same_colour/3 only when countries 3 and 4 are involved. This can be done with the "Predicate specification" facility, enabled by the

Specific predicate instance: radio button. Pressing this button will allow us to specify a condition in Prolog syntax which will be checked at each debug port. For our purpose, we enter the following:

Setting Conditions for Specific Predicate Instances

This specifies that the filter should stop at a not_same_colour/3 goal, when one of the countries in the pair $\mathrm{X}-\mathrm{Y}$ is country 4: the Goal template is used to specify the template the debug port goal should match, and the Condition: can be any $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ goal, perhaps with variables from the Goal template, as in our case. The test is done by unifying the goal with the template, and then executing the condition. Note that any bindings are undone after the test.
Note that we have also deselected the exit port in the filter condition. You can do this by clicking on the exit radio button. This means that the tracer does not stop at any exit port.
Press Go on the filter tool to start the tracer running with the filter. You can also press the Filter command button on the tracer to do the same thing. We see that the tracer has jumped to a not_same_colour/3 goal involving country 4 as expected. However, there is a gap in the call stack as we skipped over the tracing of some ancestor goals. We can see these goals by refreshing the goal stack. This can be done by pressing and holding down the right mouse button while the mouse cursor is over a goal in the call stack, which will popup a menu for the goal:

Popup Menu for a Goal in Tracer's Call Stack

In this case, we have opened the menu over not_same_colour/3, and the options are for this goal. Various options are available, but for now we choose the Refresh goal stack option. This will result in the following goal stack display:

Refreshed Call Stack

Notice that the colour of the goals in the goal stack are now all blue, indicating that the bindings shown are current.
Press Filter on the tracer several times to jump to other ports involving country 4. You will see that none of them involve countries 3 and 4. So perhaps countries 3 and 4 are not checked by not_same_colour/3, i.e. 3-4 or 4-3 are never passed to not_same_colour/3. Looking at the call stack, we can see that the country pair in not_same_colour/3 seem to appear as an element in a list of country pairs, as far back as colouring(...). Unfortunately, the debugger does not display the whole list. We see something like:

```
do_colouring(prolog, input_order, indomain, [4 - 2, 4 - 1, ...
```

due to the 'print depth' feature, which shortens the printing of large terms. We can examine the whole list by using the inspector to examine the goal. To do this, we double click on the do_colouring (. . .) goal to 'open' it for inspection.
This will launch the Inspector tool on the do_colouring goal. The inspector displays the term in a hierarchical fashion as a tree, which allows us to navigate the term. The initial display is shown on the left panel below. We are interested in examining the full list. We can look at this list by double clicking on it to expand the node, which results in the display in the right panel below. You may need to scroll down to see the whole list:

Using the Inspector

The inspector shows that this list does not contain the pair 4-3 or $3-4$, which should be there so that not_same_colour can check that these two countries are not assigned the same colour. The inspector tool is modal - when it is open, the rest of $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$ is inaccessible. Close the Inspector by clicking on its Close button, go back to the tracer, and see where the country pair list comes from. It first appears in the ancestor goals do_colouring (prolog, ...), as the next parent colouring (prolog,...) does not have this list. So the list is created in a body goal of colouring(...) before do_colouring(...) is called. We can look at the source of colouring(...) to see how this list is created. To do this, we can select Display source option from the popup menu for the colouring (. . .) goal:

Displaying Source for a Goal in the Call Stack

The code for this predicate is quite long, but for our purposes we are only interested in the country-pair list that is passed to do_colouring:

```
colouring1(Type, Select, Choice0, N, Backtracks) :-
    findall(C1-C2, (neighbour(C1,C2), C1=<N,C2=<N), Neighbours),
    do_colouring(Type, Select, Choice, Neighbours, Countries,
        CountryList, Backtracks),
```

Looking at this source and the Call stack goal, we can see that the country pair list is constructed from neighbour $/ 2$ calls. Let's look at the source for neighbour $/ 2$. We can do this from the predicate browser, by selecting neighbour/2 and pushing the Show source button. We see the following:

```
neighbour / 2 in file buggy_data.map, line 2:
%neighbour(4, 3).
neighbour(4, 2).
neighbour(4, 1).
neighbour(4, 2).
neighbour(3, 1).
neighbour(3, 2).
neighbour(1, 2).
```

So neighbour $(4,3)$ was indeed missing (it is commented out). Another way to check neighbour/2, without looking at the source, would be using the Simple Query tool. This tool is again started from TkECL ${ }^{i} \mathrm{PS}^{e}$'s Tools menu. It can be used to send simple queries to $\mathrm{ECL}^{i} \mathrm{PS}^{e}$, even while another query is being executed (as we are here, executing the colour query). We can use this tool to check if neighbour $(4,3)$ or neighbour $(3,4)$ are defined or not:

In $\operatorname{TkECL}{ }^{i} \mathrm{PS}^{e}$, you can usually perform these operations on an object while the mouse cursor is over it:
left-click selects the object.
double (left)-click 'opens' the object. This can mean expanding it (e.g. in the inspector), or calling the inspector on it (e.g. on a goal in the call stack).

Right-click and hold Opens a menu which gives further option/information on the object.

Right-mouse button functionality are alternatively available through the left-mouse button with the control key pressed.

Figure 5.5: Mouse Button Operations on Objects

The Simple Query Tool

To send a query, simply type it in the entry window and press return, and the reply will be sent to the reply window. In the example above, we have tried neighbour (4,3), followed by neighbour $(3,4)$, and both failed, indicating that there is no neighbour relationship defined between countries 3 and 4 .

We can fix the program by editing the file buggy_data.map and adding the neighbour $(4,3)$ line back. First, we end our current debugging session by closing the tracer window. You can see from the map display that the execution continues until a solution is produced. Pressing Done on the map display will return control to $\mathrm{ECL}^{i} \mathrm{PS}^{e}$. Alternatively, if continuing the execution is undesirable, press the Abort command button in the tracer, which would abort the execution.

Once we have made the correction to the program and saved it, we compile it by pressing the Make button on $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$. This recompiles any files that have been updated since $\mathrm{ECL}^{i} \mathrm{PS}{ }^{e}$ last compiled the file.

Running the program again will show that the bug is indeed fixed.

Compile scratch pad allow simple programs to be written and compiled. Equivalent to [user] in command line $\mathrm{ECL}^{i} \mathrm{PS}^{e}$.

Source file manager manage source files for this $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ session.
Predicate browser view/change properties of predicates.
Delayed goals view delayed goals.
Tracer debugger for $\mathrm{ECL}^{i} \mathrm{PS}{ }^{e}$ programs.
Inspector term inspector. Useful for viewing large terms.
Visualisation client start a visualisation client.
Global settings view/change global ECL ${ }^{i} \mathrm{PS}^{e}$ settings.
Statistics show statistics. Information is updated dynamically.
Simple query send simple queries to $\mathrm{ECL}^{i} \mathrm{PS}^{e}$.
Library browser and help interface to $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ documentation.
TkECLiPSe preference editor view/change TkECL ${ }^{i} \mathrm{PS}^{e}$ settings.

Figure 5.6: Available Development tools

5.4 Summary

5.4.1 $\mathrm{TkECL}^{i} \mathrm{PS}^{e}$ toplevel

error output in red

Query entry window
Type in query here
History mechanism

1. up/down arrow key
2. press arrow box for history list
3. right-click for history list (with duplicates)

Interrupt button
Press to interrupt program execution
(Disabled if no program is running)
Make button
Press to recompile changed programs
Query status window
Displays status of last query
Current module
Shows current module for query entry Change module by pressing down arrow box and select from list (new module must be created from 'New module' option of File menu

Results window
Query, bindings to query, execution status of query

- older queries in black

5.4.2 Predicate Browser

5.4.3 Delayed Goals Viewer

Goal filter
select types of delayed goals shown:

- traced only: show goals that can be traced
- spied only: show goals that have spy points
- scheduled only: show scheduled goals.
- Select from triggers: show goals that are delayed on the symbolic trigger selected from the combobox
-Suspended goals
Scheduled goals
scheduled (but not yet executed)
goal shown in green
Delayed goal popup menu
(menu options when tracer is active) Hold right-mouse button while over goal
- summary information for goal
- display source (if available)
- inspect goal with inspector
- observe goal for change with
display matrix
Refresh button
press button to update display
(updated at every trace line by default)

5.4.4 Tracer

Options menu options:
Configure filter Starts the tracer filter window, to allow the filter to be configured.
Change print options Changes the way the tracelines are printed.

Analyse failure Get the invocation number of the most recent failure so that a new run of the query can jump to its call port.

Refresh goal stack now Refreshes the Call Stack's display.
Refresh goal stack at every trace line Select check box to allow the call stack to be refreshed automatically every time the tracer stops

Refresh delay goals at every trace line Select check box to allow the Delayed goals viewer to be automatically refreshed every time the tracer stops.

Raise tracer window at every tracer line Select check box to allow the tracer window to be raised (uncovered) automatically every time the tracer stops.

5.4.5 Tracer Filter

5.4.6 Term Inspector

Chapter 6

Program Analysis

This chapter describes some of the tools provided by $\mathrm{ECL}^{i} \mathrm{PS}{ }^{e}$ to analyse the runtime behaviour of a program.

6.1 What tools are available?

$E C L^{i} \mathrm{PS}^{e}$ provides a number of different tools to help the programmer understand their how their program behaves at runtime.

Debugger Provides a low level view of program activity.
\odot See chapter 5 and the Debugging section in the user manual for a comprehensive look at debugging $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ programs

Profiler Samples the running program at regular intervals to give a statistical summary of where the execution time is spent.

Port Profiler Collects statistics about program execution in terms of the box model of execution. See library(port_profiler) or use the Port Profile option from the tkeclipse Run menu.

Coverage Records the number of times various parts of the program are executed.
Visualisation framework \bigodot See the Visualisation Tools Manual for more information
Available Program Analysis tools
This section focuses on two complementary tools

1. The profiler
2. The coverage library

6.2 Profiler

The profiling tool helps to find hot spots in a program that are worth optimising. It can be used any time with any compiled Prolog code, it is not necessary to use a special compilation mode or set any flags. Note however that it is not available on Windows. When

```
?- profile(Goal).
```

is called, the profiler executes the Goal in the profiling mode, which means that every 100th of a second the execution is interrupted and the profiler records the currently executing procedure. Consider the following n-queens code.

```
queen(Data, Out) :-
    qperm(Data, Out),
    safe(Out).
qperm([], []).
qperm([X|Y], [U|V]) :-
    qdelete(U, X, Y, Z),
    qperm(Z, V).
qdelete(A, A, L, L).
qdelete(X, A, [H|T], [A|R]) :-
    qdelete(X, H, T, R).
safe([]).
safe([N|L]) :-
    nodiag(L, N, 1),
    safe(L).
nodiag([], _, _).
nodiag([N|L], B, D) :-
    D =\= N - B,
    D =\= B - N,
    D1 is D + 1,
    nodiag(L, B, D1).
```

Issuing the following query will result in the profiler recording the currently executing goal 100 times a second.

```
?- profile(queen([1,2,3,4,5,6,7,8,9],Out)).
goal succeeded
```

PROFILING STATISTICS

```
Goal: queen([1, 2, 3, 4, 5, 6, 7, 8, 9], Out)
```

Total user time: 0.03s
Predicate Module \%Time Time \%Cum

qdelete	/4	eclipse	50.0\%	0.01 s	50.0\%
nodiag	/3	eclipse	50.0\%	0.01 s	100.0\%

From the above result we can see how the profiler output contains four important areas of information:

1. The first line of output indicates whether the specified goal succeeded, failed or aborted. The profile/1 predicate itself always succeeds.
2. The line beginning Goal: shows the goal which was profiled.
3. The next line shows the time spent executing the goal.
4. Finally the predicates which were being executed when the profiler sampled, ranked in decreasing sample count order are shown.

The problem with the results displayed above is that the sampling frequency is too low when compared to the total user time spent executing the goal. In fact in the above example the profiler was only able to take two samples before the goal terminated.
The frequency at which the profiler samples is fixed, so in order to obtain more representative results one should have an auxiliary predicate which calls the goal a number of times, and compile and profile a call to this auxiliary predicate. eg.

```
queen_100 :-
    (for(_,1,100,1) do queen([1,2,3,4,5,6,7,8,9],_Out)).
```

Note that, when compiled, the above do/2 loop would be efficiently implemented and not cause overhead that would distort the measurement.
\odot See section 4.2 for more information on logical loops

```
?- profile(queen_100).
goal succeeded
```

PROFILING STATISTICS

Goal: queen_100
Total user time: 3.19s
Predicate Module \%Time Time \%Cum

```
nodiag /3 eclipse 52.2% 1.67s 52.2%
qdelete /4 eclipse 27.4% 0.87s 79.6%
qperm /2 eclipse 17.0% 0.54s 96.5%
safe /1 eclipse 2.8% 0.09s 99.4%
queen /2 eclipse 0.6% 0.02s 100.0%
Yes (3.33s cpu)
```

In the above example, the profiler takes over three hundred samples resulting in a more accurate view of where the time is being spent in the program. In this instance we can see that more than half of the time is spent in the nodiag/3 predicate, making it an ideal candidate for optimisation. This is left as an exercise for the reader.

6.3 Line coverage

The line coverage library provides a means to ascertain exactly how many times individual clauses are called during the evaluation of a query.
The library works by placing coverage counters at strategic points throughout the code being analysed. These counters are incremented each time the evaluation of a query passes them. There are three locations in which coverage counters can be inserted.

1. At the beginning of a code block.
2. Between predicate calls within a code block.
3. At the end of a code block.

Locations where coverage counters can be placed
A code block is defined to be a conjunction of predicate calls. ie. a sequence of goals separated by commas.
As previously mentioned, by default, code coverage counters are inserted before and after every subgoal in the code. For instance, in the clause

```
p:-q,r,s.
```

four counters would be inserted: before the call to q, between q and r, between r and s, and after s:

```
p :- point(1), q, point(2), r, point(3), s, point(4).
```

This is the most precise form provided. The counter values do not only show whether all code points were reached but also whether subgoals failed or aborted (in which case the counter before a subgoal will have a higher value than the counter after it). For example, the result of running the above code is:

which indicates that q was called 43 times, but succeeded only 25 times, r was called 25 times and succeeded always, and s was called 25 times and never succeeded. Coverage counts of zero are displayed in red (the final box) because they indicate unreached code. The format of the display is explained in the next section.

6.3.1 Compilation

In order to add the coverage counters to code, it must be compiled with the ccompile/ $\mathbf{1}$ predicate which can be found in the coverage library.
The predicate ccompile/1 (note the initial ' c ' stands for coverage) can be used in place of the normal compile/1 predicate to compile a file with coverage counters.
Here we see the results of compiling the \mathbf{n}-queens example given in the previous section.

```
?- coverage:ccompile(queens).
coverage: inserted 22 coverage counters into module eclipse
foo.ecl compiled traceable }5744\mathrm{ bytes in 0.00 seconds
Yes (0.00s cpu)
```

Once compiled, predicates can be called as usual and will (by default) have no visible side effects. Internally however, the counters will be incremented as the execution progresses. To see this in action, consider issuing the following query having compiled the previously defined code using ccompile/1.

```
?- queens([1,2,3,4,5,6,7,8,9], Out).
```

The default behaviour of the compile/1 predicate is to place coverage counters as explained above, however such a level of detail may be unnecessary. If one is interested in reachability analysis the two argument predicate ccompile/2 can take a list of name: value pairs which can be used to control the exact manner in which coverage counters are inserted.
\odot See ccompile/2 for a full list of the available flags.
In particular by specifying the option blocks_only:on, counters will only be inserted at the beginning and end of code blocks. Reusing the above example this would result in counters at point(1) and point(4).

```
p :- 43 q, r, s 0.
```

This can be useful in tracking down unexpected failures by looking for exit counters which differ from entry counters, for example.

6.3.2 Results

To generate an html file containing the coverage counter results issue the following query.

```
?- coverage:result(queens).
```

	File	Edit	View	G0	Bookn	arks	Tools	Window	Help			
	$\frac{1}{B a c k}$		Fonward		$\frac{3}{\text { Reload }}$	$\begin{aligned} & \text { S⿳亠丷厂彡} \\ & \text { Stop } \end{aligned}$		Tile：$/ /$	2 Search	Print	－	$\square 10$
	角 Home		Bookmarks									

File：／a／breeze／extra5／ajs2／foo．ecl

```
go(Out) :
    1 queen([1, 2, 3, 4, 5, 6, 7, 8, 9], Out) 1
queen(Data, Out) :-
    1 gperm(Data, Out)
    7686 safe(Out) 1.
qperm([], [])}7686
qperm([X|Y], [U|V])
    20896 gperm(Z, V) 69174.
qdelete(A, A, L, L) 20896
qdelete(X, A, [H|T], [A|R])
    7685 gdelete(X,H, T, R) 10434.
safe([]) 1 
safe([N|L]) :
    9023 nodiag(L, N, 1)
    1338 safe(L) 9.
nodiag([], 5917, _5918) 1338.
nodiag([N|L], B, D) :-
    25683 D =\=N - E,
    17998 D1 is - N,
    17998 nodiaq(L, B', D1) 10314.
```

Figure 6．1：Results of running queens（［1，2，3，4，5，6，7，8，9］，＿）
result/0 Creates results for all files which have been compiled with coverage counters.
result/1 This predicate takes a single argument which is the name of the file to print the coverage counters for.
result/ $\mathbf{2}$ The result predicate has a two argument form, the second argument defining a number of flags which control (amongst other things)

- The directory in which to create the results file. Default: coverage.
- The format of the results file (html or text). Default: html.

See coverage library and pretty_printer library for more details

Figure 6.2: Result generating commands

This will create the result file coverage/queens.html which can be viewed using any browser. It contains a pretty-printed form of the source, annotated with the values of the code coverage counters as described above. An example is shown in figure 6.1.
For extra convenience the predicate result/0 is provided which will create results for all files which have been compiled with coverage counters.
Having generated and viewed results for one run, the coverage counters can be reset by calling

```
?- coverage:reset_counters.
Yes (0.00s cpu)
```


Chapter 7

An Overview of the Constraint Libraries

7.1 Introduction

In this section we shall briefly summarize the constraint solving libraries of $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ which will be discussed in the rest of this tutorial.

7.2 Implementations of Domains and Constraints

7.2.1 Suspended Goals: suspend

The constraint solvers of $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ are all implemented using suspended goals. The simplest implementation of any constraint is to suspend it until all its variables are sufficiently instantiated, and then test it.
The suspend solver implements this behaviour for all the mathematical constraints of $\mathrm{ECL}^{i} \mathrm{PS}^{e}$, $>=,>,=:=,=\backslash=,=<$ and $<$.

7.2.2 Interval Solver: ic

The standard constraint solver offered by most constraint programming systems is the finite domain solver, which applies constraint propagation techniques developed in the AI community [27]. $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ supports finite domain constraints via the $i c$ library ${ }^{1}$. The library implements finite domains of integers, together with a basic set of constraints.
In addition, ic also allows continuous domains (in the form of numeric intervals), and constraints (equations and inequations) between expressions involving variables with continuous domains. These expressions can contain non-linear functions such as sin and built-in constants such as pi. Integrality is treated as a constraint, and it is possible to mix continuous and integral variables in the same constraint. Specialised search techniques (splitting [26] and squashing [15]) support the solving of problems with continuous variables.

[^1]Most constraints are also available in reified form, providing a convenient way of combining several primitive constraints.
Note that the ic library itself implements only a standard, basic set of arithmetic constraints. Many more finite domain constraints can be defined, which have uses in specific applications. The behaviour of these constraints is to prune the finite domains of their variables, in just the same way as the standard constraints. ECL ${ }^{i} \mathrm{PS}^{e}$ offers several further libraries which implement such constraints using the underlying domain of the ic library.

7.2.3 Global Constraints: ic_global

One such library is ic_global. It supports a variety of constraints, each of which takes as an argument a list of finite domain variables, of unspecified length. Such constraints are called "global" constraints [2]. Examples of such constraints, available from the $i c _g l o b a l ~ l i b r a r y ~ a r e ~$ alldifferent $/ 1$, maxlist/2, occurrences $/ 3$ and sorted/2. For more details see section 8.5 in chapter 8 .

7.2.4 Scheduling Constraints: ic_cumulative, ic_edge_finder

There are several $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ libraries implementing global constraints for scheduling applications. The constraints take a list of tasks (start times, durations and resource needs), and a maximum resource level. They reduce the finite domains of the task start times by reasoning on resource bottlenecks [13]. Three $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ libraries implementing scheduling constraints are $i c _c u m u l a t i v e$, ic_edge_finder and ic_edge_finder3. They implement the same constraints declaratively, but with different time complexity and strength of propagation. For more details see the library documentation in the Reference Manual.

7.2.5 Finite Integer Sets: ic_sets

The ic_sets library implements constraints over the domain of finite sets of integers ${ }^{2}$. The constraints are the usual relations over sets, e.g. membership, inclusion, intersection, union, disjointness. In addition, there are constraints between sets and integers, e.g. cardinality and weight constraints. For those, the ic_sets library cooperates with the ic library. For more details see chapter 10,

7.2.6 Linear Constraints: eplex

eplex supports a tight integration [4 between an external linear programming (LP) / mixed integer programming (MIP) solver (XPRESS [20] or CPLEX [11) and ECL ${ }^{i} \mathrm{PS}^{e}$. Constraints as well as variables can be handled by the external LP/MIP solver, by a propagation solver like $i c$, or by both. Optimal solutions and other solution porperties can be returned to ECL ${ }^{i} \mathrm{PS}^{e}$ as required. Search can be carried out either in $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ or in the external solver. For more details see chapter 16,

[^2]
7.2.7 Constraints over symbols: ic_symbolic

The ic_symbolic library supports variables ranging over ordered symbolic domains (e.g. the names of products, the names of the weekdays), and constraints over such variables. It is implemented by mapping such variables and constraints to variables over integers and ic-constraints.

7.3 User-Defined Constraints

7.3.1 Generalised Propagation: propia

The predicate infers takes as one argument any user-defined predicate, and as a second argument a form of propagation to be applied to that predicate.
This functionality enables the user to turn any predicate into a constraint [14]. The forms of propagation include finite domains and intervals. For more details see chapter 15 ,

7.3.2 Constraint Handling Rules: ech

The user can also specify predicates using rules with guards [9]. They delay until the guard is entailed or disentailed, and then execute or terminate accordingly.
This functionality enables the user to implement constraints in a way that is clearer than directly using the underlying suspend library. For more details see chapter 15.

7.4 Search and Optimisation Support

7.4.1 Tree Search Methods: ic_search

$\mathrm{ECL}^{i} \mathrm{PS}^{e}$ has built-in backtracking and is therefore well suited for performing depth-first tree search. With combinatorial problems, naive depth-first search is usually not good enough, even in the presence of constraint propagation. It is usually necessary to apply heuristics, and if the problems are large, one may even need to resort to incomplete search. The ic_search contains a collection of predefined, easy-to-use search heuristics as well as incomplete tree search strategies, applicable to problems involving $i c$ variables. For more details see chapter 12 .

7.4.2 Optimisation: branch_and_bound

Solvers that are based on constraint propagation are typically only concerned with satisfiability, i.e. with finding some or all solutions to a problems. The branch-and-bound method is a general technique to build optimisation on top of a satisfiability solver. The $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ branch_and_bound library is a solver-independent implementation of the branch-and-bound method, and provides a number of options and variants of the basic technique.

7.5 Hybridisation Support

7.5.1 Repair and Local Search: repair

The repair library allows a tentative value to be associated with any variable [28]. This tentative value may violate constraints on the variable, in which case the constraint is recorded in a list
of violated constraints. The repair library also supports propagation invariants [18]. Using invariants, if a variable's tentative value is changed, the consequences of this change can be propagated to any variables whose tentative values depend on the changed one. The use of tentative values in search is illustrated in chapter 13.

7.5.2 Hybrid: ic_probing_for_scheduling

For scheduling applications where the cost is dependent on each start time, a combination of solvers can be very powerful. For example, we can use finite domain propagation to reason on resources and linear constraint solving to reason on cost [7]. The probing_for_scheduling library supports such a combination, via a similar user interface to the cumulative constraint mentioned above in section 7.2.3. For more details see chapter 17 .

7.6 Other Libraries

The solvers described above are just a few of the many libraries available in ECLiPSe and listed in the $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ library directory. Any $\mathrm{ECL}^{i} \mathrm{PS}^{e}$ user who has implemented a constraint solver is encouraged to make it available to the user community and publicise it via the eclipseusers@icparc.ic.ac.uk mailing list! Comments and suggestions on the existing libraries are also welcome!

Chapter 8

Getting started with Interval Constraints

The Interval Constraints (IC) library provides a constraint solver which works with both integer and real interval variables. This chapter provides a general introduction to the library, and then focusses on its support for integer constraints. For more detail on IC's real variables and constraints, please see Chapter 9 .

8.1 Using the Interval Constraints Library

To use the Interval Constraints Library, load the library using either of:

```
:- lib(ic).
:- use_module(library(ic)).
```

Specify this at the beginning of your program.

8.2 Structure of a Constraint Program

The typical top-level structure of a constraint program is

```
solve(Variables) :-
    read_data(Data),
    setup_constraints(Data, Variables),
    labeling(Variables).
```

where setup_constraints/ 2 contains the problem model. It creates the variables and the constraints over the variables. This is often, but not necessarily, deterministic. The labeling/1 predicate is the search part of the program that attempts to find solutions by trying all instantiations for the variables. This search is constantly pruned by constraint propagation.

The above program will find all solutions. If the best solution is wanted, a branch-and-bound procedure can be wrapped around the search component of the program:

```
solve(Variables) :-
    read_data(Data),
    setup_constraints(Data, Variables, Objective),
    branch_and_bound:minimize(labeling(Variables), Objective).
```The branch_and_bound library provides generic predicates that support optimization in conjunction with any \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) solver. Section 12.1.2 discusses these predicates.

\subsection*{8.3 Modelling}

The problem modelling code must:
- Create the variables with their initial domains
- Setup the constraints between the variables

A simple example is the "crypt-arithmetic" puzzle, SEND+MORE = MONEY. The idea is to associate a digit (0-9) with each letter so that the equation is true. The \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) code is as follows:
```

:- lib(ic).
sendmore(Digits) :-
Digits = [S,E,N,D,M,O,R,Y],
% Assign a finite domain with each letter - S, E, N, D, M, O, R, Y -
% in the list Digits
Digits :: [0..9],
% Constraints
alldifferent(Digits),
S \#\= 0,
M \#\=0,
1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
\#= 10000*M + 1000*O + 100*N + 10*E + Y,
% Search
labeling(Digits).

```

Vars :: Domain Constrains Vars to take only integer or real values from the domain specified by Domain. Vars may be a variable, a list, or a submatrix (e.g. M[1..4, 3..6]); for a list or a submatrix, the domain is applied recursively so that one can apply a domain to, for instance, a list of lists of variables. Domain can be specified as a simple range Lo .. Hi, or as a list of subranges and/or individual elements (integer variables only). The type of the bounds determines the type of the variable (real or integer). Also allowed are the (untyped) symbolic bound values inf, +inf and -inf.

Vars \(\$:\) : Domain Like : :/2, but for declaring real variables (i.e. it never imposes integrality, regardless of the types of the bounds).

Vars \#:: Domain Like ::/2, but for declaring integer variables.
reals(Vars) Declares that the variables are IC variables (like declaring Vars :: inf..inf).
integers(Vars) Constrains the given variables to take integer values only.

Figure 8.1: Domain constraints

\subsection*{8.4 Built-in Constraints}

The following section summarises the built-in constraint predicates of the ic library. The most common way to declare an IC variable is to use the ::/2 predicate (or \(\$:: / \mathbf{2}\) or \#::/2) to give it an initial domain:
```

?- X :: -10 .. 10.
X = X{-10 .. 10}
Yes
?- X :: -10.0 .. 10.0.
X = X{-10.0 .. 10.0}
Yes
?- X \#:: -10 .. 10.
X = X{-10 .. 10}
Yes
?- X \$:: -10 .. 10.
X = X{-10.0 .. 10.0}
Yes
?- X :: 0 .. 1.OInf.
X = X{0 .. 1.OInf}
Yes

```

ExprX \#= ExprY ExprX is equal to ExprY. ExprX and ExprY are integer expressions, and the variables and subexpressions are constrained to be integers.

ExprX \#>= ExprY ExprX is greater than or equal to ExprY. ExprX and ExprY are integer expressions, and the variables and subexpressions are constrained to be integers.

ExprX \#=< ExprY ExprX is less than or equal to ExprY. ExprX and ExprY are integer expressions, and the variables and subexpressions are constrained to be integers.

ExprX \# \(>\) ExprY ExprX is greater than ExprY. ExprX and ExprY are integer expressions, and the variables and subexpressions are constrained to be integers.

ExprX \#< ExprY ExprX is less than ExprY. ExprX and ExprY are integer expressions, and the variables and subexpressions are constrained to be integers.
\(\operatorname{Expr} \mathbf{X} \# \backslash=\) ExprY ExprX is not equal to ExprY. ExprX and ExprY are integer expressions, and the variables are constrained to be integers.
ac_eq(X, Y, C) Arc-consistent implementation of \(\mathbf{X} \#=\mathbf{Y}+\mathbf{C} . \mathrm{X}\) and Y are constrained to be integer variables and to have "reasonable" bounds. C must be an integer.

Figure 8.2: Integral Arithmetic constraints
```

?- X :: 0.0 .. 1.0Inf.
X = X{0.0 .. 1.0Inf}
Yes
?- X :: [1, 4 .. 6, 9, 10].
X = X{[1, 4 .. 6, 9, 10]}
Yes

```

Note that for ::/ \(\mathbf{2}\) the type of the bounds defines the type of the variable (integer or real) but that infinities are considered type-neutral. To just declare the type of a variable without restricting the domain at all, one can use the integers \(/ \mathbf{1}\) and reals/1.
The final way to declare that a variable is an IC variable is to just use it in an IC constraint: this performs an implicit declaration.
The basic IC relational constraints come in two forms. The first form is for integer-only constraints, and is summarised in Figure 8.2. All of these constraints contain \# in their name, which indicates that all numbers appearing in them must be integers, and all variables and subexpressions will be constrained to be integral. It is important to note that subexpressions are constrained to be integral, because it means, for instance, that \(\mathbf{X} / \mathbf{2}+\mathbf{Y} / \mathbf{2} \#=\mathbf{1}\) and \(\mathbf{X}\) \(+\mathrm{Y} \#=\mathbf{2}\) are different constraints, since the former constrains X and Y to be even.
The second form is the general form of the constraints, and is summarised in Figure 8.3. These constraints can be used with either integer or real variables and numbers. With the exception

ExprX \$= ExprY ExprX is equal to ExprY. ExprX and ExprY are general expressions.
ExprX \(\$>=\) ExprY ExprX is greater than or equal to ExprY. ExprX and ExprY are general expressions.
\(\operatorname{Expr} \mathbf{X} \$=<\) ExprY ExprX is less than or equal to ExprY. ExprX and ExprY are general expressions.

ExprX \(\$>\) ExprY ExprX is greater than ExprY. ExprX and ExprY are general expressions.

ExprX \(\$<\) ExprY ExprX is less than ExprY. ExprX and ExprY are general expressions.
\(\operatorname{Expr} \mathbf{X} \$ \backslash=\mathbf{E x p r} \mathbf{Y}\) ExprX is not equal to ExprY. ExprX and ExprY are general expressions.

Figure 8.3: Non-Integral Arithmetic Constraints
of integrality issues, the two versions of each constraint are equivalent. Thus if the constants are integers and the variables and subexpressions are integral, the two forms may be used interchangeably.
Most of the basic constraints operate by propagating bound information (performing interval reasoning). The exceptions are the disequality (not equals) constraints and the ac_eq/3 constraint, which perform domain reasoning (arc consistency). An example:
```

?- [X, Y] :: 0 .. 10, X \#>= Y + 2.
X = X{2 .. 10}
Y = Y{0 .. 8}
There is 1 delayed goal.
Yes

```

In the above example, since the lower bound of Y is 0 and X must be at least 2 greater, the lower bound of \(X\) has been updated to 2 . Similarly, the upper bound of \(Y\) has been reduced to 8 . The delayed goal indicates that the constraint is still active: there are still some combinations of values for X and Y which violate the constraint, so the constraint remains until it is sure that no such violation is possible.
Note that if a domain ever becomes empty as the result of propagation (no value for the variable is feasible) then the constraint must necessarily have been violated, and the computation backtracks.
For a disequality constraint, no deductions can be made until there is only one variable left, at which point (if it is an integer variable) the variable's domain can be updated to exclude the relevant value:
```

?- X :: 0 .. 10, x \#\= 3.
X = X{[0 .. 2, 4 .. 10]}
Yes

```
```

?- [X, Y] :: 0 .. 10, X - Y \#\= 3.
X = X{0 .. 10}
Y = Y{0 . . 10}
There is 1 delayed goal.
Yes
?- [X, Y] :: 0 .. 10, X - Y \#\= 3, Y = 2.
X = X{[0 .. 4, 6 .. 10]}
Y = 2
Yes

```

For the ac_eq/ \(\mathbf{3}\) constraint, "holes" in the domain of one variable are propagated to the other:
```

?- [X, Y] :: 0 .. 10, ac_eq(X, Y, 3).
X = X{3 .. 10}
Y = Y{0 . . 7}
There is 1 delayed goal.
Yes
?- [X, Y] :: 0 .. 10, ac_eq(X, Y, 3), Y \#\= 4.
X = X{[3 .. 6, 8 .. 10]}
Y = Y{[0 . . 3, 5 . 7]}
There is 1 delayed goal.
Yes

```

Compare with the corresponding bounds consistency constraint:
```

?- [X, Y] :: 0 .. 10, X \#= Y + 3, Y \#\= 4.
X = X{3 .. 10}
Y = Y{[0 .. 3, 5 .. 7]}
There is 1 delayed goal.
Yes

```

IC supports a range of mathematical operators beyond the basic \(+/ 2,-/ 2, * / 2\), etc. See the IC chapter in the Constraint Library Manual for full details.
\(\otimes\) If one wishes to construct an expression to use in an IC constraint at run time, then one must wrap it in eval/1:
?- [X, Y] : : 0..10, Expr = X + Y, Sum \#= Expr.
number expected in set_up_ic_con(7, 1, [0 * 1, \(1 * \operatorname{Sum}\{-1.0 \operatorname{Inf} . .1 .0 \operatorname{Inf}\},-\) 1 * (X\{0 .. 10\} + Y\{0 .. 10\})])
Abort
?- [X, Y] : : 0..10, Expr = X + Y, Sum \#= eval(Expr).
```

X = X{0 .. 10}
Y = Y{0 . . 10}
Sum = Sum{0 .. 20}
Expr = X{0 . . 10} + Y{0 .. 10}
There is 1 delayed goal.
Yes

```

Reification provides access to the logical truth of a constraint expression and can be used by:
- The \(\mathrm{ECL}^{i}{ }^{\mathrm{PS}}{ }^{e}\) system to infer the truth value, reflecting the value into a variable.
- The programmer to enforce the constraint or its negation by giving a value to the truth variable.

This logical truth value is a boolean variable (domain \(0 . .1\)), where the value 1 means the constraint is or is required to be true, and the value 0 means the constraint is or is required to be false.
When constraints appear in an expression context, they evaluate to their reified truth value. Practically, this means that the constraints are posted in a passive check but do not propagate mode. In this mode no variable domains are modified but checks are made to determine whether the constraint has become entailed (necessarily true) or disentailed (necessarily false).
The simplest and arguably most natural way to reify a constraint is to place it in an expression context (i.e. on either side of a \(\$=, \#=\), etc.) and assign its truth value to a variable. For example:
```

?- X :: 0 .. 10, TruthValue \$= (X \$> 4).
TruthValue = TruthValue{[0, 1]}
X = X{0 . . 10}
There is 1 delayed goal.
Yes
?- X :: 6 .. 10, TruthValue \$= (X \$> 4).
TruthValue = 1
X = X{6 . . 10}
Yes
?- X :: 0 .. 4, TruthValue \$= (X \$> 4).
TruthValue = 0
X = X{0 . . 4}
Yes

```

All the basic relational constraint predicates also come in a three-argument form where the third argument is the reified truth value, and this form can also be used to reify a constraint directly. For example:
```

?- X :: 0 .. 10, \$>(X, 4, TruthValue).
X = X{0 .. 10}

```
```

and Constraint conjunction. e.g. X \$> 3 and X \$< 8
or Constraint disjunction. e.g. X \$< 3 or X \$> 8
=> Constraint implication. e.g. X \$> 3 => Y \$< 8
neg Constraint negation. e.g. neg X \$> 3

```

Figure 8.4: Constraint Expression Connectives
```

TruthValue = TruthValue{[0, 1]}
There is 1 delayed goal.
Yes

```

As noted above the boolean truth variable corresponding to a constraint can also be used to enforce the constraint (or its negation):
```

?- X :: 0 .. 10, TruthValue \$= (X \$> 4), TruthValue = 1.
X = X{5 .. 10}
TruthValue = 1
Yes
?- X :: 0 .. 10, TruthValue \$= (X \$> 4), TruthValue = 0.
X = X{0 . . 4}
TruthValue = 0
Yes

```

By instantiating the value of the reified truth variable, the constraint changes from being passive to being active. Once actively true (or actively false) the constraint will prune domains as though it had been posted as a simple non-reified constraint.

Additional information on reified constraints can be found in the ECL \({ }^{i} \mathrm{PS}^{e}\) Constraint Library Manual that documents IC: A Hybrid Finite Domain / Real Number Interval Constraint Solver.

IC also provides a number of connectives useful for combining constraint expressions. These are summarised in Figure 8.4. For example:
```

?- [X, Y] :: 0 .. 10, X \#>= Y + 6 or X \#=< Y - 6.
X = X{0 .. 10}
Y = Y{0 . . 10}
There are 3 delayed goals.
Yes
?- [X, Y] :: 0 .. 10, X \#>= Y + 6 or X \#=< Y - 6, X \#>= 5.
Y = Y{0 . . 4}

```
```

X = X{6 . . 10}
There is 1 delayed goal.
Yes

```

In the above example, once it is known that \(\mathrm{X} \#=<\mathrm{Y}-6\) cannot be true, the constraint X \#>= \(Y+6\) is enforced.
Note that these connectives exploit constraint reification, and actually just reason about boolean variables. This means that they can be used as boolean constraints as well:
```

?- A => B.
A = A{[0, 1]}
B = B{[0, 1]}
There is 1 delayed goal.
Yes
?- A => B, A = 1.
B = 1
A = 1
Yes
?- A => B, A = 0.
B = B{[0, 1]}
A = 0
Yes

```

\subsection*{8.5 Global constraints}

The IC constraint solver has some optional components which provide so-called global constraints. These are high-level constraints that tend to provide more global reasoning than the constraints in the main IC library. These optional components are contained in the ic_global, ic_cumulative, ic_edge_finder and ic_edge_finder3 libraries. The ic_global library provides a collection of general global constraints, while the others provide constraints for resourceconstrained scheduling.
To use these global constraints, load the relevant optional library or libraries using directives in one of these forms:
```

:- lib(ic_global).
:- use_module(library(ic_global)).

```

Specify this at the beginning of your program.
Note that some of these libraries provide alternate implementations of predicates which also appear in other libraries. For example, the alldifferent/1 constraint is provided by both the standard ic library and the ic_global library. This means that if you wish to use it, you must use the relevant module qualifier to specify which one you want: ic:alldifferent/1 or ic_global:alldifferent/1.

See the "Additional Finite Domain Constraints" section of the Library Manual for more details of these libraries and a full list of the predicates they provide.

\subsection*{8.5.1 Different strengths of propagation}

The alldifferent (List) predicate imposes the constraint on the elements of List that they all take different values. The standard alldifferent/1 predicate from the IC library provides a level of propagation equivalent to imposing pairwise \(\# \backslash=/ \mathbf{2}\) constraints (though it does it more efficiently than that). This means that no propagation is performed until elements of the list start being made ground. This is despite the fact that there may be "obvious" inferences which could be made.
Consider as an example the case of 5 variables with domains \(1 . .4\). Clearly the 5 variables cannot all be given different values, since there are only 4 distinct values available. However, the standard alldifferent \(/ \mathbf{1}\) constraint cannot determine this:
```

?- L = [X1, X2, X3, X4, X5], L :: 1 .. 4, ic:alldifferent(L).
X1 = X1{1 .. 4}
X2 = X2{1 .. 4}
X3 = X3{1 .. 4}
X4 = X4{1 .. 4}
X5 = X5{1 .. 4}
L = [X1{1 . . 4}, X2{1 .. 4}, X3{1 .. 4}, X4{1 .. 4}, X5{1 .. 4}]
There are 5 delayed goals.
Yes

```

Consider another example where three of the variables have domain 1..3. Clearly, if all the variables are to be different, then no other variable can take a value in the range \(1 . .3\), since each of those values must be assigned to one of the original three variables. Again, the standard alldifferent/ \(\mathbf{1}\) constraint cannot determine this:
```

?- [X1, X2, X3] :: 1 .. 3, [X4, X5] :: 1 .. 5,
ic:alldifferent([X1, X2, X3, X4, X5]).
X1 = X1{1 .. 3}
X2 = X2{1 .. 3}
X3 = X3{1 . . 3}
X4 = X4{1 . . 5}
X5 = X5{1 . . 5}
There are 5 delayed goals.
Yes

```

On the other hand, ic_global's alldifferent \(/ \mathbf{1}\) constraint performs some stronger, more global reasoning, and for both of the above examples makes the appropriate inference:
```

?- L = [X1, X2, X3, X4, X5], L :: 1 .. 4, ic_global:alldifferent(L).
No

```
```

?- [X1, X2, X3] :: 1 .. 3, [X4, X5] :: 1 .. 5,
ic_global:alldifferent([X1, X2, X3, X4, X5]).
X1 = X1{1 . . 3}
X2 = X2{1 .. 3}
X3 = X3{1 .. 3}
X4 = X4{[4, 5]}
X5 = X5{[4, 5]}
There are 2 delayed goals.
Yes

```

Of course, there is a trade-off here: the stronger version of the constraint takes longer to perform its propagation. Which version is best depends on the nature of the problem being solved.
\(\odot\) Note that even stronger propagation can be achieved if desired, by using the Propia library (see Chapter 15).

In a similar vein, the ic_cumulative, ic_edge_finder and ic_edge_finder3 libraries provide increasingly strong versions of constraints such as cumulative/4, but with increasing cost to do their propagation (linear, quadratic and cubic, respectively).

\subsection*{8.6 Simple User-defined Constraints}

User-defined, or 'conceptual' constraints can easily be defined as conjunctions of primitive constraints. For example, let us consider a set of products and the specification that allows them to be colocated in a warehouse. This should be done in such a way as to propagate possible changes in the domains as soon as this becomes possible.
Let us assume we have a symmetric relation that defines which product can be colocated with another and that products are distinguished by numeric product identifiers:
```

colocate(100, 101).
colocate(100, 102).
colocate(101, 100).
colocate(102, 100).
colocate(103, 104).
colocate(104, 103).

```

Suppose we define a constraint colocate_product_pair (X, Y) such that any change of the possible values of \(X\) or \(Y\) is propagated to the other variable. There are many ways in which this pairing can be defined in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\). They are different solutions with different properties, but they yield the same results.

\subsection*{8.6.1 Using Reified Constraints}

We can encode directly the relations between elements in the domains of the two variables:
```

colocate_product_pair(A, B) :-
cpp(A, B),
cpp(B,A).
cpp(A, B) :-
[A,B] :: [100, 101, 102, 103, 104],
A \#= 100 => B :: [101, 102],
A \#= 101 => B \#= 100,
A \#= 102 => B \#= 100,
A \#= 103 => B \#= 104,
A \#= 104 => B \#= 103.

```

This method is quite simple and does not need any special analysis; on the other hand it potentially creates a huge number of auxiliary constraints and variables.

\subsection*{8.6.2 Using Propia}

By far the simplest mechanism, that avoids this potential creation of large numbers of auxiliary constraints and variables, is to load the Generalised Propagation library (propia) and use arcconsistency (ac) propagation, viz:
```

?- colocate(X,Y) infers ac

```
\(\odot\) Additional information on propia can be found in section 15.3 , section 15 and the \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) Constraint Library Manual.

\subsection*{8.6.3 Using the element Constraint}

In this case we use the element/3 predicate, that states in a list of integers that the element at an index is equal to a value. Every time the index or the value is updated, the constraint is activated and the domain of the other variable is updated accordingly.
```

relates(X, Xs, Y, Ys) :-
element(I, Xs, X),
element(I, Ys, Y).

```

We define a generic predicate, relates/4, that associates the corresponding elements at a specific index of two lists, with one another. The variable \(I\) is an index into the lists, \(X s\) and \(Y s\), to yield the elements at this index, in variables \(X\) and \(Y\).
```

colocate_product_pair(A, B) :-
relates(A, [100, 100, 101, 102, 103, 104],
B, [101, 102, 100, 100, 104, 103]).

```

The colocate_product_pair predicate simply calls relates/4 passing a list containing the product identifiers in the first argument of colocate/2 as \(X s\) and a list containing product identifiers from the second argument of colocate/2 as \(Y s\).
Behind the scenes, this is exactly the implementation used for arc-consistency propagation by the Generalised Propagation library.
Because of the specific and efficient algorithm implementing the element/3 constraint, it is usually faster than the first approach, using reified constraints.

\subsection*{8.7 Searching for Feasible Solutions}
indomain(+DVar) This predicate instantiates the domain variable DVar to an element of its domain; on backtracking the subsequent value is taken. It is used, for example, to find a value of DVar which is consistent with all currently imposed constraints. If DVar is a ground term, it succeeds. Otherwise, if it is not a domain variable, an error is raised.
labeling \((+\) List \()\) The elements of the List are instantiated using the indomain/1 predicate.
\(\odot\) Additional information on search algorithms, heuristics and their use in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) can be found in chapter 12 .

\subsection*{8.8 Bin Packing}

This section presents a worked example using finite domains to solve a bin-packing problem.

\subsection*{8.8.1 Problem Definition}

In this type of problem the goal is to pack a certain amount of different items into the minimal number of bins under specific constraints. Let us solve an example given by Andre Vellino in the Usenet group comp.lang.prolog, June 93:
- There are 5 types of items:
glass, plastic, steel, wood, copper
- There are three types of bins:
red, blue, green
- The capacity constraints imposed on the bins are:
- red has capacity 3
- blue has capacity 1
- green has capacity 4
- The containment constraints imposed on the bins are:
- red can contain glass, wood, copper
- blue can contain glass, steel, copper
- green can contain plastic, wood, copper
- The requirement constraints imposed on component types (for all bin types) are:
wood requires plastic
- Certain component types cannot coexist:
- glass and copper exclude each other
- copper and plastic exclude each other
- The following bin types have the following capacity constraints for certain components:
- red contains at most 1 wood item
- blue implicitly contains at most 1 wood item
- green contains at most 2 wood items
- Given the initial supply stated below, what is the minimum total number of bins required to contain the components?
- 1 glass item
- 2 plastic items
- 1 steel item
- 3 wood items
- 2 copper items

\subsection*{8.8.2 Problem Model - Using Structures}

In modelling this problem we need to refer to an array of quantities of glass items, plastic items, steel items, wood items and copper items. We therefore introduce:
A structure to hold this array:
```

:- local struct(contents(glass, plastic, steel, wood, copper)).

```

A structure that defines the colour for each of the bin types:
```

:- local struct(colour(red, blue, green)).

```

By defining the bin colours as fields of a structure there is an implicit integer value associated with each colour. This allows the readability of the code to be preserved by writing, for example, red of colour rather than explicitly writing the colour's integer value ' 1 '.
And a structure that represents the bin itself, with its colour, capacity and contents:
```

:- local struct(bin(colour, capacity, contents:contents)).

```

The contents attribute of bin is itself a contents structure. The contents field declaration within the bin structure using ':' allows field names of the contents structure to be used as if they were field names of the bin structure. More information on accessing nested structures and structures with inherited fields can be found in section 4.1 and in the Structure Notation section of the ECL \({ }^{i} \mathrm{PS}^{e}\) User Manual.

The predicate solve_bin/2 is the general predicate that takes an amount of components packed into a contents structure and returns the solution.
```

?- Demand = contents{glass:1, plastic:2, steel:1, wood:3, copper:2},
solve_bin(Demand, Bins).

```

\subsection*{8.8.3 Handling an Unknown Number of Bins}
solve_bin/2 calls bin_setup/2 to generate a list Bins. It adds redundant constraints to remove symmetries (two solutions are considered symmetrical if they are the same, but with the bins in a different order). Finally it labels all decision variables in the problem.
```

solve_bin(Demand, Bins) :-
bin_setup(Demand, Bins),
remove_symmetry(Bins),
bin_label(Bins).

```

The usual pattern for solving finite domain problems is to state constraints on a set of variables, and then label them. However, because the number of bins needed is not known initially, it is awkward to model the problem with a fixed set of variables.
One possibility is to take a fixed, large enough, number of bins and to try to find a minimum number of non-empty bins. However, for efficiency, we choose to solve a sequence of problems, each one with a - larger - fixed number of bins, until a solution is found.
The predicate bin_setup/2, to generate a list of bins with appropriate constraints, works as follows. First it tries to match the (remaining) demand with zero, and use no (further) bins. If this fails, a new bin is added to the bin list; appropriate constraints are imposed on all the new bin's variables; its contents are subtracted from the demand; and the bin_setup/2 predicate calls itself recursively:
```

bin_setup(Demand,[]) :-
all_zeroes(Demand).
bin_setup(Demand, [Bin | Bins]) :-

```
```

    constrain_bin(Bin),
    reduce_demand(Demand, Bin, RemainingDemand),
    bin_setup(RemainingDemand, Bins).
    all_zeroes(
contents{glass:0, plastic:0, wood:0, steel:0, copper:0}
).
reduce_demand(
contents{glass:G, plastic:P, wood:W, steel:S, copper:C},
bin{glass:BG, plastic:BP, wood:BW, steel:BS, copper:BC},
contents{glass:RG, plastic:RP, wood:RW, steel:RS, copper:RC}
) :-
RG \#= G - BG,
RP \#= P - BP,
RW \#= W - BW,
RS \#= S - BS,
RC \#= C - BC.

```

\subsection*{8.8.4 Constraints on a Single Bin}

The constraints imposed on a single bin correspond exactly to the problem statement:
```

constrain_bin(bincolour:Col, capacity:Cap, contents:C) :-
colour_capacity_constraint(Col, Cap),
capacity_constraint(Cap, C),
contents_constraints(C),
colour_constraints(Col, C).

```
colour_capacity_constraint The colour capacity constraint relates the colour of the bin to its capacity, we implement this using the relates/4 predicate (defined in section 8.6.3):
```

colour_capacity_constraint(Col, Cap) :-
relates(Col, [red of colour, blue of colour, green of colour],
Cap, [3, 1, 4]).

```
capacity_constraint The capacity constraint states the following:
- The number of items of each kind in the bin is non-negative.
- The sum of all the items does not exceed the capacity of the bin.
- and the bin is non-empty (an empty bin serves no purpose)
```

capacity_constraint(Cap, contents{glass:G,
plastic:P,
steel:S,
wood:W,
copper:C}) :-
G \#>= 0, P \#>= 0, S \#>= 0, W \#>= 0, C \#>= 0,
NumItems \#= G + P + W + S + C,
Cap \#>= NumItems,
NumItems \#> 0.

```
contents_constraints The contents constraints directly enforce the restrictions on items in the bin: wood requires paper, glass and copper exclude each other, and copper and plastic exclude each other:
```

contents_constraints(contents{glass:G, plastic:P, wood:W, copper:C}) :-
requires(W, P),
exclusive(G, C),
exclusive(C, P).

```

These constraints are expressed as logical combinations of constraints on the number of items. 'requires' is expressed using implication, =>. 'Wood requires paper' is expressed in logic as 'If the number of wood items is greater than zero, then the number of paper items is also greater than zero':
```

requires(W,P) :-
W \#> 0 => P \#> 0.

```

Exclusion is expressed using disjunction, or. ' X and Y are exclusive' is expressed as 'Either the number of items of kind \(X\) is zero, or the number of items of kind \(Y\) is zero':
```

exclusive(X,Y) :-
X \#= 0 or Y \#= 0.

```
colour_constraints The colour constraint limits the number of wooden items in bins of different colours. Like the capacity constraint, the relation between the colour and capacity, WCap, is expressed using the relates/4 predicate. The number of wooden items is then constrained not to exceed the capacity:
```

colour_constraints(Col, contents{wood:W}) :-
relates(Col, [red of colour, blue of colour, green of colour],
WCap, [1, 1, 2]),
W \#=< WCap.

```

This model artificially introduces a capacity of blue bins for wood items (set simply at its maximum capacity for all items).

\subsection*{8.8.5 Symmetry Constraints}

To make sure two solutions (a solution is a list of bins) are not just different permutations of the same bins, we impose an order on the list of bins:
```

remove_symmetry(Bins) :-
( fromto(Bins, [B1, B2 | Rest], [B2 | Rest], [_Last])
do
lex_ord(B1, B2)
).

```

We order two bins by imposing lexicographic order onto lists computed from their colour and contents, (recall that in defining the bin colours as fields of a structure we have encoded them as integers, which allows them to be ordered):
```

lex_ord(bincolour:Col1, contents:Conts1,
bincolour:Col2, contents:Conts2) :-
% Use '=..' to extract the contents of the bin as a list
Conts1 =.. [_ | Vars1],
Conts2 =.. [_ | Vars2],
lexico_le([Col1 | Vars1], [Col2 | Vars2]).

```

\subsection*{8.8.6 Search}

The search is done by first choosing a colour for each bin, and then labelling the remaining variables.
```

bin_label(Bins) :-
( foreach(bincolour:C Bins) do indomain(C) ),
term_variables(Bins, Vars),
search(Vars, 0, first_fail, indomain, complete, []).

```

The remaining variables are labelled by employing the first fail heuristic (using the search/6 predicate of the \(i c\) library).Additional information on search algorithms, heuristics and their use in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) can be found in section 12 .

\subsection*{8.9 Exercises}
1. A magic square is a \(3 \times 3\) grid containing the digits 1 through 9 exactly once, such that each row, each column and the two diagonals sum to the same number (15). Write a program to find such magic squares. (You may wish to use the "Send More Money" example in section 8.3 as a starting point.)
Bonus points if you can add constraints to break the symmetry, so that only the one unique solution is returned.
2. Fill the circles in the following diagram with the numbers 1 through 19 such that the numbers in each of the 12 lines of 3 circles (6 around the outside, 6 radiating from the centre) sum to 23 .

If the value of the sum is allowed to vary, which values of the sum have solutions, and which do not?
(Adapted from Puzzle 35 in Dudeney's "The Canterbury Puzzles".)
3. Consider the following code:
```

foo(Xs, Ys) :-
(
foreach(X, Xs),
foreach(Y, Ys),
fromto(1, In, Out, 1)
do
In \#= (X \#< Y + Out)

```

\section*{).}

Which constraint does this code implement? (Hint: declaratively, it is the same as one of the constraints from ic_global, but is implemented somewhat differently.) How does it work?

\section*{Chapter 9}

\section*{Working with real numbers and variables}

\subsection*{9.1 Real number basics}

In general, real values cannot be represented exactly if the representation is explicit. As a result, they are usually approximated on computers by floating point numbers, which have a finite precision. This approximation is sufficient for most purposes; however, in some situations it can lead to significant error. Worse, there is usually nothing to indicate that the final result has significant error; this can lead to completely wrong answers being accepted as correct.
One way to deal with this is to use interval arithmetic. The basic idea is that rather than using a single floating point value to approximate the true real value, a pair of floating point bounds are used which are guaranteed to enclose the true real value. Each arithmetic operation is performed on the interval represented by these bounds, and the result rounded to ensure it encloses the true result. The result is that any uncertainty in the final result is made explicit: while the true real value of the result is still not known exactly, it is guaranteed to lie somewhere in the computed interval.
Of course, interval arithmetic is no panacea: it may be that the final interval is too wide to be useful. However this indicates that the problem was probably ill-conditioned or poorly computed: if the same computation had been performed with normal floating point numbers, the final floating point value would probably not have been near the true real value, and there would have been no indication that there might be a problem.
In \(\mathrm{ECL}^{i}{ }^{\mathrm{P}}{ }^{e}\), such intervals are represented using the bounded real data type.
An example of using bounded reals to safely compute the square root of 2 :
```

?- X is sqrt(breal(2)).
X = 1.4142135623730949__1.4142135623730954
Yes

```

To see how using ordinary floating point numbers can lead to inaccuracy, try dividing 1 by 10 , and then adding it together 10 times. Using floats the result is not 1.0 ; using bounded reals the computed interval contains 1.0 and gives an indication of how much potential error there is:
- Bounded reals are written as two floating point bounds separated by a double underscore (e.g. 1.5__2.0, 1.0__1.0, 3.1415926535897927__3.1415926535897936)
- Other numeric types can be converted to bounded reals by giving them a breal/1 wrapper, or by calling breal/2 directly
- Bounded reals are not usually entered directly by the user; normally they just occur as the results of computations
- A bounded real represents a single real number whose value is known to lie somewhere between the bounds and is uncertain only because of the limited precision with which is has been calculated
- An arithmetic operation is only performed using bounded reals if at least one of its arguments is a bounded real

Figure 9.1: Bounded reals
```

?- Y is float(1) / 10, X is Y + Y + Y + Y + Y + Y + Y + Y + Y + Y.
X = 0.99999999999999989
Y = 0.1
Yes
?- Y is breal(1) / 10, X is Y + Y + Y + Y + Y + Y + Y + Y + Y + Y.
X = 0.99999999999999978__1.0000000000000007
Y = 0.099999999999999992__0.1
Yes

```

\subsection*{9.2 Issues to be aware of when using bounded reals}

When working with bounded reals, some of the usual rules of arithmetic no longer hold. In particular, it is not always possible to determine whether one bounded real is larger, smaller, or the same as another. This is because, if the intervals overlap, it is not possible to know the relationship between the true values.
An example of this can be seen in Figure 9.2. If the true value of \(X\) is \(X_{1}\), then depending upon whether the true value of Y is (say) \(\mathrm{Y}_{1}, \mathrm{Y}_{2}\) or \(\mathrm{Y}_{3}\), we have \(\mathrm{X}>\mathrm{Y}, \mathrm{X}=:=\mathrm{Y}\) or \(\mathrm{X}<\mathrm{Y}\), respectively. Different classes of predicate deal with the undecidable cases in different ways:

Arithmetic comparison \((</ 2,=:=/ 2\), etc.) If the comparison cannot be determined definitively, the comparison succeeds but a delayed goal is left behind, indicating that the result of the computation is contingent on the relationship actually being true. Examples:
```

?- X = 0.2__0.3, Y = 0.0__0.1, X > Y.
X = 0.2__0.3
Y = 0.0__0.1
Yes

```


Figure 9.2: Comparing two bounded reals
```

?- X = 0.2__0.3, Y = 0.0__0.1, X < Y.
No
?- X = 0.0__0.1, Y = 0.0__0.1, X < Y.
X = 0.0__0.1
Y = 0.0__0.1
Delayed goals:
0.0__0.1 < 0.0__0.1
Yes
?- X = Y, X = 0.0__0.1, X < Y.
No

```

Term equality or comparison (\(=/ 2,==/ 2\), compare \(/ 3, @</ 2\), etc.) These predicates consider bounded reals from a purely syntactic point of view: they determine how the bounded reals compare syntactically, without taking into account their meaning. Two bounded reals are considered equal if and only if their bounds are syntactically the same (note that the floating point numbers 0.0 and -0.0 are considered to be syntactically different). A unique ordering is also defined between bounded reals which do not have identical bounds; see the documentation for compare \(/ 3\) for details. This is important as it means predicates such as sort/2 behave in a sensible fashion when they encounter bounded reals (in particular, they do not throw exceptions or leave behind large numbers of meaningless delayed goals) - though one does need to be careful when comparing or sorting things of different types. Examples:
```

?- X = 0.2__0.3, Y = 0.0__0.1, X == Y.
No
?- X = 0.0__0.1, Y = 0.0__0.1, X == Y.
X = 0.0__0.1
Y = 0.0__0.1
Yes
?- X = 0.2__0.3, Y = 0.0__0.1, compare(R, X, Y).

```
```

R = >
X = 0.2__0.3
Y = 0.0__0.1
Yes
?- X = 0.1__3.0, Y = 0.2__0.3, compare(R, X, Y).
R = <
X = 0.1__3.0
Y = 0.2__0.3
Yes
?- X = 0.0__0.1, Y = 0.0__0.1, compare(R, X, Y).
R = =
X = 0.0__0.1
Y = 0.0__0.1
Yes
?- sort([-5.0, 1.0__1.0], Sorted).
Sorted = [1.0__1.0, -5.0] % 1.0__1.0 > -5.0, but 1.0__1.0 @< -5.0
Yes

```

Note that the potential undecidability of arithmetic comparisons has implications when writing general code. For example, a common thing to do is test the value of a number, with different code being executed depending on whether or not it is above a certain threshold; e.g.
```

( X >= 0 ->
% Code A
;
% Code B
)

```

When writing code such as the above, if X could be a bounded real, one ought to decide what should happen if \(X\) 's bounds span the threshold value. In the above example, if \(X=-0.1 _0.1\) then a delayed goal -0.1 _-0.1 \(>=0\) will be left behind and Code A executed. If one does not want the delayed goal, one can instead write:
```

( not X >= 0 ->
% Code B
;
% Code A
)

```
- Real variables may be declared using reals/1, \(\$:: / \mathbf{2}\), ::/2 (specifying non-integer bounds) or just by using them in an IC constraint
- Basic constraints available for real variables are \(\$=/ 2, \$>=/ 2, \$=</ 2, \$>/ 2\), \(\$</ 2\) and \(\$ \backslash=/ 2\), as well as their reified versions and the reified connectives
- Real constraints also work with integer variables and a mix of integer and real variables
- Solutions to real constraints can be found using locate/2, locate/3, locate/4 or squash/3

Figure 9.3: Real variables and constraints

The use of not ensures that any actions performed during the test (in particular the set up of any delayed goals) are backtracked, regardless of the outcome of the test.
Finally, if one wishes Code B to be executed instead of Code A in the case of an overlap, one can reverse the sense of the test:
```

( not X < 0 ->
% Code A
;
% Code B
)

```

\subsection*{9.3 IC as a solver for real variables}

The IC solver is a hybrid solver which supports both real and integer variables.See Chapter 8 for an introduction to IC and how to use it with integer variables.
See the IC chapter in the Constraint Library Manual for a full list of the arithmetic operators which are available for use in IC constraint expressions.

IC's real constraints perform bounds propagation in the same way as the integer versions; indeed, most of the basic integer constraints are transformed into their real counterparts, plus a declaration of the integrality of the variables appearing in the constraint.
Note that the interval reasoning performed to propagate real bounds is the same as that used for bounded reals; that is, the inferences made are safe, taking into account potential floating point errors.

Figure 9.4: Example of using locate/2

\subsection*{9.4 Finding solutions of real constraints}

In very simple cases, just imposing the constraints may be sufficient to directly compute the (unique) solution. For example:
```

?- 3 * X \$= 4.
X = 1.3333333333333333__1.3333333333333335
Yes

```

Other times, propagation will reduce the domains of the variables to suitably small intervals:
```

?- 3* X + 2* Y \$= 4, X - 5* Y \$= 2, X \$>= -100.
Y = Y{-0.11764705946382902 .. -0.1176470540212896}
X = X{1.4117647026808551 .. 1.4117647063092196}
There are 2 delayed goals.
Yes

```

In general though, some extra work will be needed to find the solutions of a problem. The IC library provides two methods for assisting with this. Which method is appropriate depends on the nature of the solutions to be found. If it is expected that there a finite number of discrete solutions, locate \(/ \mathbf{2}\) and locate/ \(\mathbf{3}\) would be good choices. If solutions are expected to lie in a continuous region, squash \(/ \mathbf{3}\) may be more appropriate.
Locate works by nondeterministically splitting the domains of the variables until they are narrower than a specified precision (in either absolute or relative terms). Consider the problem of finding the points where two circles intersect (see Figure 9.4). Normal propagation does not deduce more than the obvious bounds on the variables:

Figure 9.5: Example of propagation using the squash algorithm
```

?- 4 \$= X^2 + Y^2, 4 \$= (X - 1)^2 + (Y - 1)^2.
X = X{-1.0000000000000004 . . 2.0000000000000004}
Y = Y{-1.0000000000000004 .. 2.0000000000000004}
There are 12 delayed goals.
Yes

```

Calling locate/2 quickly determines that there are two solutions and finds them to the desired accuracy:
```

?- 4 \$= X^2 + Y^2, 4 \$= (X-1)^2 + (Y-1)^2, locate([X, Y], 1e-5).
X = X{-0.8228756603552696 .. -0.82287564484820042}
Y = Y{1.8228756448482002 .. 1.8228756603552694}
There are 12 delayed goals.
More
X = X{1.8228756448482004 .. 1.8228756603552696}
Y = Y{-0.82287566035526938 . . -0.82287564484820019}
There are 12 delayed goals.
Yes

```

Squash works by deterministically cutting off parts of the domains of variables which it determines cannot contain any solutions. In effect, it is like a stronger version of bounds propagation. Consider the problem of finding the intersection of two circular discs and a hyperplane (see Figure 9.5). Again, normal propagation does not deduce more than the obvious bounds on the variables:
```

?- 4 \$>= X^2 + Y^2, 4 \$>= (X-1)^2 + (Y-1)^2, Y \$>= X.

```
```

Y = Y{-1.0000000000000004 .. 2.0000000000000004}
X = X{-1.0000000000000004 .. 2.0000000000000004}
There are 13 delayed goals.
Yes

```

Calling squash/ \(\mathbf{3}\) results in the bounds being tightened (in this case the bounds are tight for the feasible region, though this is not true in general):
```

?-4 \$>= X^2 + Y^2, 4 \$>= (X-1)^2 + (Y-1)^2, Y \$>= X,
squash([X, Y], 1e-5, lin).
X = X{-1.0000000000000004 . . 1.4142135999632601}
Y = Y{-0.41421359996326 . . 2.0000000000000004}
There are 13 delayed goals.
Yes

```

For more details, see the IC chapter of the Library Manual or the documentation for the individual predicates.

\subsection*{9.5 A larger example}

Consider the following problem:
George is contemplating buying a farm which is a very strange shape, comprising a large triangular lake with a square field on each side. The area of the lake is exactly seven acres, and the area of each field is an exact whole number of acres. Given that information, what is the smallest possible total area of the three fields?

A diagram of the farm is shown in Figure 9.6.
This is a problem which mixes both integer and real quantities, and as such is ideal for solving with the IC library. A model for the problem appears below. The farm/4 predicate sets up the constraints between the total area of the farm F and the lengths of the three sides of the lake, \(\mathrm{A}, \mathrm{B}\) and C .
```

:- lib(ic).
farm(F, A, B, C) :-
[A, B, C] :: 0.0 .. 1.0Inf, % The 3 sides of the lake
triangle_area(A, B, C, 7), % The lake area is 7
[F, FA, FB, FC] :: 1 .. 1.0Inf, % The square areas are integral
square_area(A, FA),
square_area(B, FB),
square_area(C, FC),
F \#= FA+FB+FC,

```


Figure 9.6: Triangular lake with adjoining square fields
```

    FA $>= FB, FB $>= FC. % Avoid symmetric solutions
    triangle_area(A, B, C, Area) :-
S \$>= 0,
S \$= (A+B+C)/2,
Area \$= sqrt (S*(S-A)*(S-B)*(S-C)).
square_area(A, Area) :-
Area \$= sqr (A).

```

A solution to the problem can then be found by first instantiating the area of the farm, and then using locate \(/ 2\) to find the lengths of the sides of the lakes. Instantiating the area of the farm first ensures that the first solution returned will be the minimal one, since indomain/1 always chooses the smallest possible value first:
```

solve(F) :-
farm(F, A, B, C), % the model
indomain(F), % ensure that solution is minimal
locate([A, B, C], 0.01).

```

\subsection*{9.6 Exercise}
1. Consider the "farm" problem in section 9.5. (Source code may be found in farm.ecl, if you have access to it.) Try running this program to find the answer. Note that other, larger solutions are available by selecting more.
This implementation sums three integer variables (FA, FB and FC), and then constrains their order to remove symmetries. Would this be a good candidate for the global constraint ordered_sum/2? Modify the program so that it does use ordered_sum/2. How does the run time compare with the original?

\section*{Chapter 10}

\section*{The Integer Sets Library}

\subsection*{10.1 Why Sets}

The ic_sets library is a solver for constraints over the domain of finite sets of integers. Modelling with sets is useful for problems where one is not interested in each item as a specific individual, but in a collection of item where no specific distinction is made and thus where symmetries among the element values need to be avoided.

\subsection*{10.2 Finite Sets of Integers}

In the context of the ic_sets library, (ground) integer sets are simply sorted, duplicate-free lists of integers e.g.
```

SetOfThree = [1,3,7]
EmptySet = []

```

Lists which contain non-integers, are unsorted or contain duplicates, are not sets in the sense of this library.

\subsection*{10.3 Set Variables}

Set variables are variables which can eventually take a ground integer set as their value. They are characterized by a lower bound (the set of elements that are definitely in the set) and an upper bound (the set of elements that may be in the set). A set variable can be declared as follows:
SetVar :: []..[1,2,3,4,5,6,7]

If the lower bound is the empty set and the upper bound is a set of consecutive integers, one can also declare it like
```

intset(SetVar, 1, 7)

```
which is equivalent to the above.
The system prints set variables in a particular way, for instance:
?Set :: ++ Lwb.. ++ Upb Set is an integer set within the given bounds intset(?Set, +Min, +Max) Set is a set containing numbers between Min and Max intsets(?Sets, ?N, +Min, +Max) Sets is a list of N sets containing numbers between Min and Max

Figure 10.1: Declaring Set Variables
```

?- lib(ic_sets).
?- X :: [2,3]..[1,2,3,4].
X = X{[2, 3] \/ ([] .. [1, 4]) : _308{[2 .. 4]}}

```

The curly brackets contain the description of the current domain of the set variable in the form of
1. the lower bound of the set (values which definitely are in the set)
2. the union symbol \(\backslash /\)
3. the set of optional values (which may or may not be in the set)
4. a colon
5. a finite domain variable indicating the admissible cardinality for the set

\subsection*{10.4 Constraints}

The constraints that \(i c _\)sets implements are the usual relations over sets. The membership (in/2, notin \(/ 2\)) and cardinality constraints (\(\# / 2\)) establish relationships between set variables and integer variables:
```

?- X ::[]..[1, 2, 3], 2 in X, 3 in X, \#(X, 2).
X = [2, 3]
Yes (0.01s cpu)
?- X :: []..[1, 2, 3, 4], 3 in X, 4 notin X.
X = X{[3] \/ ([] .. [1, 2]) : _2161{1 .. 3}}
Yes (0.00s cpu)

```
? X in ?Set The integer X is member of the integer set Set
?X notin ?Set The integer X is not a member of the integer set Set
\#(?Set, ?Card) Card is the cardinality of the integer set Set

Figure 10.2: Membership and Cardinality Constraints
```

?Set1 sameset ?Set2 The sets Set1 and Set2 are equal
?Set1 disjoint ?Set2 The integer sets Set1 and Set2 are disjoint
?Set1 includes ?Set2 Set1 includes (is a superset) of the integer set Set2
?Set1 subset ?Set2 Set1 is a (non-strict) subset of the integer set Set2
intersection(?Set1, ?Set2, ?Set3) Set3 is the intersection of the integer sets Set1 and Set2
union(?Set1, ?Set2, ?Set3) Set3 is the union of the integer sets Set1 and Set2
difference(?Set1, ?Set2, ?Set3) Set3 is the difference of the integer sets Set1 and Set2 symdiff(?Set1, ?Set2, ?Set3) Set3 is the symmetric difference of the integer sets Set1 and Set2

```

Figure 10.3: Basic Set Relations

Possible constraints between two sets are equality, inclusion/subset and disjointness:
```

?- X subset [1, 2, 3, 4].
X = X{([] .. [1, 2, 3, 4]) : _2139{0 .. 4}}
Yes (0.00s cpu)
?- X :: []..[1, 2, 3, 4], Y :: []..[3, 4, 5, 6], X subset Y.
X = X{([] .. [3, 4]) : _2176{0 .. 2}}
Y = Y{([] .. [3, 4, 5, 6]) : _2367{0 .. 4}}
There are 4 delayed goals.
Yes (0.00s cpu)
?- X :: [2] .. [1, 2, 3, 4], Y :: [3] .. [1, 2, 3, 4], X disjoint Y.
X = X{[2] \/ ([] .. [1, 4]) : _2118{1 .. 3}}
Y = Y{[3] \/ ([] .. [1, 4]) : _2213{1 .. 3}}
There are 2 delayed goals.
Yes (0.00s cpu)

```

Possible constraints between three sets are for example intersection, union, difference and symmetric difference. For example:
```

?- X :: [2, 3] .. [1, 2, 3, 4],
Y :: [3, 4] .. [3, 4, 5, 6],
ic_sets : intersection(X, Y, Z).
X = X{[2, 3] \/ ([] .. [1, 4]) : _2127{2 .. 4}}
Y = Y{[3, 4] \/ ([] .. [5, 6]) : _2222{2 .. 4}}
Z = Z{[3] \/ ([] .. [4]) : _2302{[1, 2]}}
There are 6 delayed goals.

```
all_disjoint(+Sets) Sets is a list of integers sets which are all disjoint
all_union(+Sets, ?SetUnion) SetUnion is the union of all the sets in the list Sets all intersection(+Sets, ?SetIntersection) SetIntersection is the intersection of all the sets in the list Sets

Figure 10.4: N-ary Set Relations
```

Yes (0.00s cpu)

```
\(\otimes\) Note that we needed to qualify the intersection/3 constraint with the ic_sets module prefix because of a name conflict with a predicate from the lists library of the same name.
\(\otimes\) Note the lack of a complement constraint: this is because the complement of a finite set is infinite and cannot be represented. Complements can be modelled using an explicit universal set and a difference constraint.

Finally, there are a number of n-ary constraints that apply to lists of sets: disjointness, union and intersection. For example:
```

?- intsets(Sets, 5, 1, 5), all_intersection(Sets, Common).
Sets = [_2079{([] .. [1, 2, 3, 4, 5]) : _2055{0 .. 5}}, ... ]
Common = Common{([] .. [1, 2, 3, 4, 5]) : _3083{0 .. 5}}
There are 24 delayed goals.
Yes (0.00s cpu)

```

In most positions where a set or set variable is expected one can also use a set expression. A set expression is composed from ground sets (integer lists), set variables, and the following set operators:
```

Set1 /\ Set2 % intersection
Set1 \/ Set2 % union
Set1 \ Set2 % difference

```

When such set expressions occur, they are translated into auxiliary intersection/3, union/3 and difference \(/ \mathbf{3}\) constraints, respectively.

\subsection*{10.5 Search Support}

The insetdomain/4 predicate can be used to enumerate all ground instantiations of a set variable, much like indomain/1 in the finite domain case. Here is an example of the default enumeration strategy:
```

?- X::[]..[1,2,3], insetdomain(X,_,_,_), writeln(X), fail.
[1, 2, 3]
[1, 2]

```
\([1,3]\)
[1]
\([2,3]\)
[2]
[3]
[]

Other enumeration strategies can be selected (see the Reference Manual on insetdomain/4).

\subsection*{10.6 Example}

The following program computes so-called Steiner triplets. The problem is to compute triplets of numbers between 1 and N , such that any two triplets have at most one element in common.
```

:- lib(ic_sets).
:- lib(ic).
steiner(N, Sets) :-
NB is N * (N-1) // 6, % compute number of triplets
intsets(Sets, NB, 1, N), % initialise the set variables
( foreach(S,Sets) do
\#(S,3) % constrain their cardinality
),
( fromto(Sets,[S1|Ss],Ss,[]) do
( foreach(S2,Ss), param(S1) do
\#(S1 /\ S2, C), % constrain the cardinality
C \#=< 1 % of pairwise intersections
)
),
label_sets(Sets). % search
label_sets([]).
label_sets([S|Ss]) :-
insetdomain(S,_,_,_),
label_sets(Ss).

```

Running this program yields the following first solution:
```

?- steiner(9,X).
X = [[1, 2, 3], [1, 4, 5], [1, 6, 7], [1, 8, 9],
[2, 4, 6], [2, 5, 8], [2, 7, 9], [3, 4, 9],
[3, 5, 7], [3, 6, 8], [4, 7, 8], [5, 6, 9]] More? (;)

```
```

weight(?Set, ++ElementWeights,?Weight) According to the array of element
weights, the weight of set Set1 is Weight

```

Figure 10.5: Set Weight Constraint

\subsection*{10.7 Weight Constraints}

Another constraint between sets and integers is the weight/3 constraint. It allows the association of weights to set elements, and can help when solving problems of the knapsack or bin packing type. The constraint takes a set and an array of element weights and constrains the weight of the whole set:
```

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5]),
Weights = [] (20, 34, 9, 12, 19),
weight(Container, Weights, W).
Container = Container{([] .. [1, 2, 3, 4, 5]) : _2127{0 .. 5}}
Weights = [] (20, 34, 9, 12, 19)
W = W{0 .. 94}
There is 1 delayed goal.
Yes (0.01s cpu)

```

By adding a capacity limit and a search primitive, we can solve a knapsack problem:
```

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5]),
Weights = [] (20, 34, 9, 12, 19),
weight(Container, Weights, W),
W \#=< 50,
insetdomain(Container,_,_,_).
Weights = [] (20, 34, 9, 12, 19)
W = 41
Container = [1, 3, 4]
More (0.00s cpu)

```

By using the heuristic options provided by insetdomain, we can implement a greedy heuristic, which finds the optimal solution (in terms of greatest weight) straight away:
```

?- ic_sets:(Container :: [] .. [1, 2, 3, 4, 5]),
Weights = [] (20, 34, 9, 12, 19),
weight(Container, Weights, W),
W \#=< 50,
insetdomain(Container,decreasing,heavy_first(Weights),_).
W = 48
Container = [1, 3, 5]
Weights = [] (20, 34, 9, 12, 19)
More (0.00s cpu)

```

\subsection*{10.8 Exercises}
1. Consider the knapsack problem in section 10.7. Suppose that the items each have an associated profit, namely \(17,38,18,10\) and 5 , respectively. Which items should be included to maximise profit?
2. Write a predicate which, given a list of sizes of items and a list of capacities of buckets, returns a list of (ground) sets indicating which items should go into each bucket. Obviously each item should go into exactly one bucket.
Try it out with 5 items of sizes \(20,34,9,12\) and 19 , into 3 buckets of sizes 60,20 and 20 .

\section*{Chapter 11}

\section*{Problem Modelling}

\subsection*{11.1 Constraint Logic Programming}

One of the main ambitions of Constraint Programming is the separation of Modelling, Algorithms and Search. This is best characterised by two pseudo-equations. The first one is paraphrased from Kowalski [12]
```

Solution = Logic + Control

```
and states that we intend to solve a problem by giving a logical, declarative description of the problem and adding control information that enables a computer to deduce a solution. The second equation
Control = Reasoning + Search
is motivated by a fundamental difficulty we face when dealing with combinatorial problems: we do not have efficient algorithms for finding solutions, we have to resort to a combination of reasoning (via efficient algorithms) and (inefficient) search.
We can consider every constraint program as an exercise in combining the 3 ingredients:
- Logic - The design of a declarative Model of the problem.
- Reasoning - The choice of clever Constraint Propagation algorithms that reduce the need for search.
- Search - The choice of search strategies and heuristics for finding solutions quickly.

In this chapter we will focus on the first issue, Problem Modelling, and how it is supported by \(\mathrm{ECL}^{i}{ }^{i} \mathrm{PS}^{e}\).

\subsection*{11.2 Issues in Problem Modelling}

A good formalism for problem modelling should fulfil the following criteria:
- Expressive power - Can we write a formal model of the real world problem?
- Clarity for humans - How easily can the model be written, read, understood or modified?
- Solvability for computers - Are there good known methods to solve it?

Higher-level models are typically closer to the user and close to the problem and therefore easier to understand and to trust, easier to debug and to verify, and easier to modify when customers change their mind. On the other hand, it is not necessarily easy to see how they can be solved, because high-level models contain high-level notions (e.g. sets, tasks) and heterogeneous constraints.
The constraint programming approach also addresses one of the classical sources of error in application development with traditional programming languages: the transition from a formal description of the problem to the final program that solves it. The question is: Can the final program be trusted? The Constraint (Logic) Programming solution is to
- Keep the initial formal model as part of the final program
- Enhance rather than rewrite

The process of enhancing the initial formal model involves for example
- Adding control annotations, e.g. algorithmic information or heuristic information.
- Transformation: Mapping high-level (problem) constraints into low-level (solver) constraints, possibly exploiting multiple, redundant mappings.

There are many other approaches to problem modelling software. The following is a brief comparison:

Formal specification languages (e.g. Z, VDM) More expressive power than ECLiPSe, but not executable

Mathematical modelling languages (e.g. OPL, AMPL) Similar to ECLiPSe, but usually limited expressive power, e.g. fixed set of constraints.

Mainstream programming languages (e.g. C++ plus solver library) Variables and constraints are "aliens" in the language. Specification is mixed with procedural control.

Other CLP/high-level languages (e.g. CHIP) Most similar to ECLiPSe. Less support for hybrid problem solving. Harder to define new constraints.

\subsection*{11.3 Modelling with CLP and \(\mathrm{ECL}^{i} \mathbf{P S}^{e}\)}

When modelling problems with constraints, the basic idea is to set up a network of variables and constraints. Figure 11.1 shows such a constraint network. It can be seen that the Constraint Logic Programming (CLP) formulation
- is a natural declarative description of the constraint network
- can serve as a program to set up the constraint network

Variables with attributes e.g. domain

\section*{Constraints}
predicates involving one or more variables

\section*{Model}
= setup program:
[x1, X2, X3, X4]::1..9,
[x1, X2, X3, X4]::1..9,
X1 #> X2,
X1 #> X2,
alldifferent([X2,X3,X4]),
alldifferent([X2,X3,X4]),
 X1 #\= X4.
 X1 #\= X4.

Figure 11.1: A Constraint Network

The main \(E C L{ }^{i} \mathrm{PS}^{e}\) language constructs used in modelling are
Built-in constraints
X \#> Y
Abstraction
before(task(Si,Di), task(Sj,Dj)) :- Si+Di \#<= Sj.
Conjunction
between (X,Y,Z) :- X \#< Y, Y \#< Z.
Disjunction (but see below)
neighbour (X,Y) :- (X \#= Y+1 ; Y \#= X+1).
Iteration
not_among(X, L) :- (foreach (Y,L), param(X) do X \#\= Y).

\section*{Recursion}
```

not_among(X, []).
not_among(X, [Y|Ys]) :- X \#\= Y, not_among(X, Ys).

```

\subsection*{11.4 Same Problem - Different Model}

There are often many ways of modelling a problem. Consider the famous "SEND + MORE \(=\) MONEY" example:
```

sendmore(Digits) :-
Digits = [S,E,N,D,M,O,R,Y],
Digits :: [0..9],
alldifferent(Digits),

```
```

S \#\= 0, M \#\= 0,
1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
\#= 10000*M + 1000*O + 100*N + 10*E + Y.

```

An alternative model is based on the classical decimal addition algorithm with carries:
```

sendmore(Digits) :-
Digits = [S,E,N,D,M,O,R,Y],
Digits :: [0..9],
Carries = [C1, C2, C3, C4],
Carries :: [0..1],
alldifferent(Digits),
S \#\= 0,
M \#\= 0,
C1 \#= M,
C2 + S + M \#= O + 10*C1,
C3 + E + O \#= N + 10*C2,
C4 + N + R \#= E + 10*C3,
D + E \#= Y + 10*C4.

```

Both models work fine, but obviously involve different variables and constraints. Even though high-level models reduce the need for finding sophisticated encodings of problems, finding good models still requires substantial expertise and experience.

\subsection*{11.5 Rules for Modelling Code}

In CLP, the declarative model is at the same time the constraint setup code. This code should therefore be deterministic and terminating, so:

Careful with disjunctions Don't leave choice-points (alternatives for backtracking). Choices should be deferred until search phase.

Use only simple conditionals Conditions in (...->...;...) must be true or false at modelling time!

Use only structural recursion and loops Termination conditions must be know at modelling time!

\subsection*{11.5.1 Disjunctions}

Disjunctions in the model should be avoided. Assume that a naive model would contain the following disjunction:
```

% DO NOT USE THIS IN A MODEL
no_overlap(S1,D1,S2,D2) :- S1 \#>= S2 + D2.
no_overlap(S1,D1,S2,D2) :- S2 \#>= S1 + D1.

```

There are two basic ways of treating the disjunction:
- Deferring the choice until the search phase by introducing a decision variable.
- Changing the behaviour of the disjunction so it becomes a constraint (see also 14 and 15).

In the example, we can introduce a boolean variable \(\mathrm{B}\{0,1\}\) which represents the choice. The actual choice can be then be taken in search code by choosing a value for the variable. The model code must then be changed to observe the decision variable, either using the delay facility of \(\mathrm{ECL}^{i}{ }^{\mathrm{P}}{ }^{e}\) :
```

delay no_overlap(S1,D1,S2,D2,B) if var(B).
no_overlap(S1,D1,S2,D2,0) :- S1 \#>= S2 + D2.
no_overlap(S1,D1,S2,D2,1) :- S2 \#>= S1 + D1.

```
or using an arithmetic encoding like in
```

no_overlap(S1,D1,S2,D2,B) :-
B :: 0..1,
S1 + B*1000 \#>= S2 + D2,
S2 + (1-B)*1000 \#>= S1 + D1.

```

The alternative of turning the disjunction into a proper constraint is achieved most easily using propia's infer-annotation (see 15). The original formulation of neighbour/2 is kept but it is used as follows:
```

..., no_overlap(S1,D2,S2,D2) infers most, ...

```

\subsection*{11.5.2 Conditionals}

Similar considerations apply to conditionals where the condition is not decidable at constraint setup time. For example, suppose we want to impose a no-overlap constraint only if two tasks share the same resource. The following code is currently not safe in ECLiPSe:
```

nos(Res1, Res2, Start1, Dur1, Start2, Dur2) :-
( Res1 \#= Res2 -> % WRONG!!!

```
```

    no_overlap(Start1, Dur1, Start2, Dur2)
    ;
true
)

```

The reason is that (at constraint setup time) Res1 and Res2 will most likely be still uninstantiated. Therefore, the condition will in general delay (rather than succeed or fail), but the conditional construct will erroneously take this for a success and take the first alternative. Again, this can be handled using delay
```

delay nos(Res1, Res2, _, _, _, _) if nonground([Res1,Res2]).
nos(Res1, Res2, Start1, Dur1, Start2, Dur2) :-
( Res1 == Res2 ->
no_overlap(Start1, Dur1, Start2, Dur2)
;
true
).

```

It might also be possible to compute a boolean variable indicating the truth of the condition. This is particularly easy when a reified constraint can be used to express the condition, like in this case:
```

nos(Res1, Res2, Start1, Dur1, Start2, Dur2) :-
\#=(Res1, Res2, Share),
cond_no_overlap(Start1, Dur1, Start2, Dur2, Share).
delay cond_no_overlap(_,_,_,_,Share) if var(Share).
cond_no_overlap(Start1, Dur1, Start2, Dur2, Share) :-
( Share == 1 ->
no_overlap(Start1, Dur1, Start2, Dur2)
;
true
).

```

\subsection*{11.6 Symmetries}

Consider the following puzzle, where numbers from 1 to 19 have to be arranged in a hexagonal shape such that every diagonal sums up to 38 :
```

puzzle(Pattern) :-
Pattern = [

```
```

            A,B,C,
    D,E,F,G,
    H,I,J,K,L,
    M,N,O,P,
        Q,R,S
    ],
    Pattern :: 1 .. 19,
% Problem constraints
alldifferent(Pattern),
A+B+C \#= 38, A+D+H \#= 38, H+M+Q \#= 38,
D+E+F+G \#= 38, B+E+I+M \#= 38, D+I+N+R \#= 38,
H+I+J+K+L \#= 38, C+F+J+N+Q \#= 38, A+E+J+O+S \#= 38,
M+N+O+P \#= 38, G+K+O+R \#= 38, B+F+K+P \#= 38,
Q+R+S \#= 38, L+P+S \#= 38, C+G+L \#= 38,

```

In this formulation, the problem has 12 solutions, but it turns out they are just rotated and mirrored variants of each other. Removal of symmetries is still an area of active research, but a simple method is applicable in situations like this one. One can add constraints which require the solution to have certain additional properties, and so exclude many of the symmetric solutions:
```

...,
% Optional anti-symmetry constraints
% Forbid rotated solutions: require A to be the smallest corner
A \#< C, A \#< H, A \#< L, A \#< S, A \#< Q,
% Forbid solutions mirrored on the A-S diagonal
C \#< H.

```

\section*{Chapter 12}

\section*{Tree Search Methods}

\subsection*{12.1 Introduction}

In this chapter we will take a closer look at the principles and alternative methods of searching for solutions in the presence of constraints. Let us first recall what we are talking about. We assume we have the standard pattern of a constraint program:
```

solve(Data) :-
model(Data, Variables),
search(Variables),
print_solution(Variables).

```

The model part contains the logical model of our problem. It defines the variables and the constraints. Every variable has a domain of values that it can take (in this context, we only consider domains with a finite number of values).
Once the model is set up, we go into the search phase. Search is necessary since generally the implementation of the constraints is not complete, i.e. not strong enough to logically infer directly the solution to the problem. Also, there may be multiple solutions which have to be located by search, e.g. in order to find the best one. In the following, we will use the following terminology:
- If a variable is given a value (from its domain, of course), we call this an assignment. If every problem variable is given a value, we call this a total assignment.
- A total assignment is a solution if it satisfies all the constraints.
- The search space is the set of all possible total assignments. The search space is usually very large because it grows exponentially with the problem size:
\[
\text { SearchSpaceSize }=\text { DomainSize }{ }^{\text {NumberOfVariables }}
\]

Figure 12.1: A search space of size 16

\subsection*{12.1.1 Overview of Search Methods}

Figure 12.1 shows a search space with N (here 16) possible total assignments, some of which are solutions. Search methods now differ in the way in which these assignments are visited. We can classify search methods according to different criteria:

Complete vs incomplete exploration complete search means that the search space is investigated in such a way that all solutions are guaranteed to be found. This is necessary when the optimal solution is needed (one has to prove that no better solution exists). Incomplete search may be sufficient when just some solution or a relatively good solution is needed.

Constructive vs move-based this indicates whether the method advances by incrementally constructing assignments (thereby reasoning about partial assignments which represent subsets of the search space) or by moving between total assignments (usually by modifying previously explored assignments).

Randomness some methods have a random element while others follow fixed rules.
Here is a selection of search methods together with their properties:
\begin{tabular}{|l|lll|}
\hline Method & exploration & assignments & random \\
\hline Full tree search & complete & constructive & no \\
Credit search & incomplete & constructive & no \\
Bounded backtrack & incomplete & constructive & no \\
Limited discrepancy & complete & constructive & no \\
Hill climbing & incomplete & move-based & possibly \\
Simulated annealing & incomplete & move-based & yes \\
Tabu search & incomplete & move-based & possibly \\
Weak commitment & complete & hybrid & no \\
\hline
\end{tabular}

The constructive search methods usually organise the search space by partitioning it systematically. This can be done naturally with a search tree (Figure 12.2). The nodes in this tree represent choices which partition the remaining search space into two or more (usually disjoint) sub-spaces. Using such a tree structure, the search space can be traversed systematically and completely (with as little as \(\mathrm{O}(\mathrm{N})\) memory requirements).
Figure 12.4 shows a sample tree search, namely a depth-first incomplete traversal. As opposed to that, figure 12.3 shows an example of an incomplete move-based search which does not follow a fixed search space structure. Of course, it will have to take other precautions to avoid looping and ensure termination.

Figure 12.2: Search space structured using a search tree

Figure 12.3: A move-based search

Figure 12.4: A tree search (depth-first)

A few further observations: Move-based methods are usually incomplete. This is not surprising given typical sizes of search spaces. A complete exploration of a huge search space is only possible if large sub-spaces can be excluded a priori, and this is only possible with constructive methods which allow one to reason about whole classes of similar assignments. Moreover, a complete search method must remember which parts of the search space have already been visited. This can only be implemented with acceptable memory requirements if there is a simple structuring of the space that allows compact encoding of sub-spaces.

\subsection*{12.1.2 Optimisation and Search}

Many practical problems are in fact optimisation problems, ie. we are not just interested in some solution or all solutions, but in the best solution.
Fortunately, there is a general method to find the optimal solution based on the ability to find all solutions. The branch-and-bound technique works as follows:
1. Find a first solution
2. Add a constraint requiring a better solution than the best one we have so far (e.g. require lower cost)
3. Find a solution which satisfies this new constraint. If one exists, we have a new best solution and we repeat step 2. If not, the last solution found is the proven optimum.

The branch_and_bound library provides generic predicates which implement this technique:
minimize(+Goal,-Cost) This is the simplest predicate in the branch_and_bound library: A solution of the goal Goal is found that minimizes the value of Cost. Cost should be a variable that is affected, and eventually instantiated, by the execution of Goal. Usually, Goal is the search procedure of a constraint problem and Cost is the variable representing the cost.
bb_min(+Goal, -Cost, + Options) A more flexible version where the programmer can take more control over the branch and bound behaviour and choose between different strategies and parameter settings.

\subsection*{12.1.3 Heuristics}

Since search space sizes grow exponentially with problem size, it is not possible to explore all assignments except for the very smallest problems. The only way out is not to look at the whole search space. There are only two ways to do this:
- Prove that certain areas of the space contain no solutions. This can be done with the help of constraints. This is often referred to as pruning.
- Ignore parts of the search space that are unlikely to contain solutions (i.e. do incomplete search), or at least postpone their exploration. This is done by using heuristics. A heuristic is a particular traversal order of the search space which explores promising areas first.

In the following sections we will first investigate the considerable degrees of freedom that are available for heuristics within the framework of systematic tree search, which is the traditional search method in the Constraint Logic Programming world.
Subsequently, we will turn our attention to move-based methods which in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) can be implemented using the facilities of the repair library.

\subsection*{12.2 Complete Tree Search with Heuristics}

There is one form of tree search which is especially economic: depth-first, left-to-right search by backtracking. It allows a search tree to be traversed systematically while requiring only a stack of maximum depth N for bookkeeping. Most other strategies of tree search (e.g. breadth-first) have exponential memory requirements. This unique property is the reason why backtracking is a built feature of \(E C L{ }^{i} \mathrm{PS}^{e}\). Note that the main disadvantage of the depth-first strategy (the danger of going down an infinite branch) does not come into play here because we deal with finite search trees.
Sometimes depth-first search and heuristic search are treated as antonyms. This is only justified when the shape of the search tree is statically fixed. Our case is different: we have the freedom of deciding on the shape of every sub-tree before we start to traverse it depth-first. While this does not allow for absolutely any order of visiting the leaves of the search tree, it does provide considerable flexibility. This flexibility can be exploited by variable and value selection strategies.

\subsection*{12.2.1 Search Trees}

In general, the nodes of a search tree represent choices. These choices should be mutually exclusive and therefore partition the search space into two or more disjoint sub-spaces. In other words, the original problem is reduced to a disjunction of simpler sub-problems.
In the case of finite-domain problems, the most common form of choice is to choose a particular value for a problem variable (this technique is often called labeling). For a boolean variable, this means setting the variable to 0 in one branch of the search tree and to 1 in the other. In \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\), this can be written as a disjunction (which is implemented by backtracking):
(X1=0 ; X1=1)
Other forms of choices are possible. If X2 is a variable that can take integer values from 0 to 3 (assume it has been declared as X2::0..3), we can make a n-ary search tree node by writing
```

( X2=0 ; X2=1 ; X2=2 ; X2=3 )

```
or more compactly
```

indomain(X2)

```

However, choices do not necessarily involve choosing a concrete value for a variable. It is also possible to make disjoint choices by domain splitting, e.g.
```

( X2 \#=< 1 ; X2 \#>= 2 )

```


Figure 12.5: The effect of variable selection
or by choosing a value in one branch and excluding it in the other:
```

( X2 = 0 ; X2 \#>= 1 )

```

In the following examples, we will mainly use simple labeling, which means that the search tree nodes correspond to a variable and a node's branches correspond to the different values that the variable can take.

\subsection*{12.2.2 Variable Selection}

Figure 12.5 shows how variable selection reshapes a search tree. If we decide to choose values for X1 first (at the root of the search tree) and values for X 2 second, then the search tree has one particular shape. If we now assume a depth-first, left-to-right traversal by backtracking, this corresponds to one particular order of visiting the leaves of the tree: \((0,0),(0,1),(0,2),(0,3)\), \((1,0),(1,1),(1,2),(1,3)\).
If we decide to choose values for X2 first and X1 second, then the tree and consequently the order of visiting the leaves is different: \((0,0),(1,0),(0,1),(1,1),(0,2),(1,2),(0,3),(1,3)\).
While with 2 variables there are only 2 variable selection strategies, this number grows exponentially with the number of variables. For 5 variables there are already \(2^{2^{5}-1}=2147483648\) different variable selection strategies to choose from.
Note that the example shows something else: If the domains of the variables are different, then the variable selection can change the number of internal nodes in the tree (but not the number of leaves). To keep the number of nodes down, variables with small domains should be selected first.

Figure 12.6: The effect of value selection

\subsection*{12.2.3 Value Selection}

The other way to change the search tree is value selection, i.e. reordering the child nodes of a node by choosing the values from the domain of a variable in a particular order. Figure 12.6 shows how this can change the order of visiting the leaves: \((1,2),(1,1),(1,0),(1,3),(0,1),(0,3)\), \((0,0),(0,2)\).
By combining variable and value selection alone, a large number of different heuristics can be implemented. To give an idea of the numbers involved, table 12.7 shows the search space sizes, the number of possible search space traversal orderings, and the number of orderings that can be obtained by variable and value selection (assuming domain size 2).

\subsection*{12.2.4 Example}

We use the famous N -Queens problem to illustrate how heuristics can be applied to backtrack search through variable and value selection. We model the problem with one variable per queen, assuming that each queen occupies one colunm. The variables range from 1 to N and indicate the row in which the queen is being placed. The constraints ensure that no two queens occupy the same row or diagonal:
```

:- lib(ic).
queens(N, Board) :-
length(Board, N),
Board :: 1..N,
( fromto(Board, [Q1|Cols], Cols, []) do
( foreach(Q2, Cols), count(Dist,1,_), param(Q1) do
noattack(Q1, Q2, Dist)
)
).
noattack(Q1,Q2,Dist) :-
Q2 \#\= Q1,
Q2 - Q1 \#\= Dist,
Q1 - Q2 \#\= Dist.

```
\begin{tabular}{|l|l|l|l|}
\hline Variables & Search space & Visiting orders & Selection Strategies \\
\hline 1 & 2 & 2 & 2 \\
2 & 4 & 24 & 16 \\
3 & 8 & 40320 & 336 \\
4 & 16 & \(2.1 * 10^{13}\) & \(1.8 * 10^{7}\) \\
5 & 32 & \(2.6 * 10^{35}\) & \(3.5 * 10^{15}\) \\
n & \(2^{n}\) & \(2^{n}!\) & \(2^{2^{n}-1} \prod_{i=0}^{n-1}(n-1)^{2^{i}}\) \\
\hline
\end{tabular}

Figure 12.7: Flexibility of Variable/Value Selection Strategies

We are looking for a first solution to the 16 -queens problem by calling
```

?- queens(16, Vars), % model
labeling(Vars). % search

```

We start naively, using the pre-defined labeling-predicate that comes with the ic library. It is defined as follows:
```

labeling(AllVars) :-
( foreach(Var, AllVars) do
indomain(Var) % select value
).

```

The strategy here is simply to select the variables from left to right as they occur in the list, and they are assigned values starting from the lowest to the numerically highest they can take (this is the definition of indomain/1). A solution is found after 542 backtracks (see section 12.2.5 below for how to count backtracks).
A first improvement is to employ a general-purpose variable-selection heuristic, the so called first-fail principle. It requires to label the variables with the smallest domain first. This reduces the branching factor at the root of the search tree and the total number of internal nodes. The delete/5 predicate from the ic_search library implements this strategy for finite integer domains. Using delete/5, we can redefine our labeling-routine as follows:
```

:- lib(ic_search).
labeling_b(AllVars) :-
( fromto(AllVars, Vars, VarsRem, []) do
delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-select
indomain(Var) % select value
).

```

Indeed, for the 16 -queens example, this leads to a dramatic improvement, the first solution is found with only 3 backtracks now. But caution is necessary: The 256 -queens instance for example solves nicely with the naive strategy, but our improvement leads to a disappointment: the time increases dramatically! This is not uncommmon with heuristics: one has to keep in mind that the search space is not reduced, just re-shaped. Heuristics that yield good results with some problems can be useless or counter-productive with others. Even different instances of the same problem can exhibit widely different characteristics.
Let us try to employ a problem-specific heuristic: Chess players know that pieces in the middle of the board are more useful because they can attack more fields. We could therefore start placing queens in the middle of the board to reduce the number of unattacked fields earlier. We can achieve that simply by pre-ordering the variables such that the middle ones are first in the list:
```

labeling_c(AllVars) :-
middle_first(AllVars, AllVarsPreOrdered), % static var-select
( foreach(Var, AllVarsPreOrdered) do
indomain(Var) % select value
).

```

The implementation of middle_first/2 requries a bit of list manipulation and uses primitives from the lists-library:
```

:- lib(lists).
middle_first(List, Ordered) :-
halve(List, Front, Back),
reverse(Front, RevFront),
splice(Back, RevFront, Ordered).

```

This strategy also improves things for the 16 -queens instance, the first solution requires 17 backtracks.
We can now improve things further by combining the two variable-selection strategies: When we pre-order the variables such that the middle ones are first, the delete/5 predicate will prefer middle variables when several have the same domain size:
```

labeling_d(AllVars) :-
middle_first(AllVars, AllVarsPreOrdered), % static var-select
( fromto(AllVarsPreOrdered, Vars, VarsRem, []) do
delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-select
indomain(Var) % select value
).

```
\begin{tabular}{l|l|l|l|l|l|l|l|l}
\(\mathrm{N}=\) & 8 & 12 & 14 & 16 & 32 & 64 & 128 & 256 \\
\hline labeling_a & 10 & 15 & 103 & 542 & & & & \\
labeling_b & 10 & 16 & 11 & 3 & 4 & 148 & & \\
labeling_c & 0 & 3 & 22 & 17 & & & & \\
labeling_d & 0 & 0 & 1 & 0 & 1 & 1 & & \\
labeling_e & 3 & 3 & 38 & 3 & 7 & 1 & 0 & 0
\end{tabular}

Figure 12.8: N-Queens with different labeling strategies: Number of backtracks

The result is positive: for the 16-queens instance, the number of backtracks goes down to zero, and more difficult instances become solvable!
Actually, we have not yet implemented our intuitive heuristics properly. We start placing queens in the middle columns, but not on the middle rows. With our model, that can only be achieved by changing the value selection, ie. setting the variables to values in the middle of their domain first. For this we can use indomain/2, a more flexible variant of indomain \(/ 1\), provided by the ic_search library. It allows us to specify that we want to start labeling with the middle value in the domain:
```

labeling_e(AllVars) :-
middle_first(AllVars, AllVarsPreOrdered), % static var-select
( fromto(AllVarsPreOrdered, Vars, VarsRem, []) do
delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-select
indomain(Var, middle) % select value
).

```

Surprisingly, this improvement again increases the backtrack count for 16 -queens again to 3 . However, when looking at a number of different instances of the problem, we can observe that the overall behaviour has improved and the performance has become more predictable than with the initial more naive strategies. Figure 12.2 .4 shows the behaviour of the different strategies on various problem sizes.

\subsection*{12.2.5 Counting Backtracks}

An interesting piece of information during program development is the number of backtracks. It is a good measure for the quality of both constraint propagation and search heuristics. We can instrument our labeling routine as follows:
```

labeling(AllVars) :-
init_backtracks,
( foreach(Var, AllVars) do
count_backtracks, % insert this before choice!
indomain(Var)
),

```
```

get_backtracks(B),
printf("Solution found after %d backtracks%n", [B]).

```

The backtrack counter itself can be implemented by the code below. It uses a non-logical counter variable (backtracks) and an additional flag (deep_fail) which ensures that backtracking to exhausted choices does not increment the count.
```

:- local variable(backtracks), variable(deep_fail).
init_backtracks :-
setval(backtracks,0).
get_backtracks(B) :-
getval(backtracks,B).
count_backtracks :-
setval(deep_fail,false).
count_backtracks :-
getval(deep_fail,false), % may fail
setval(deep_fail,true),
incval(backtracks),
fail.

```

Note that there are other possible ways of defining the number of backtracks. However, the one suggested here has the following useful properties:
- Shallow backtracking (an attempt to instantiate a variable which causes immediate failure due to constraint propagation) is not counted. If constraint propagation works well, the count is therefore zero.
- With a perfect heuristic, the first solution is found with zero backtracks.
- If there are N solutions, the best achievable value is N (one backtrack per solution). Higher values indicate an opportunity to improve pruning by constraints.

The search/6 predicates from the libary ic_search have this backtrack counter built-in.

\subsection*{12.3 Incomplete Tree Search}

The library ic_search contains a flexible search routine search/6, which implements several variants of incomplete tree search.
For demonstration, we will use the N-queens problem from above. The following use of search/6 is equivalent to labeling(Xs) and will print all 92 solutions:

bbs(10)

Figure 12.9: Bounded-backtrack search
```

?- queens(8, Xs),
search(Xs, 0, input_order, indomain, complete, []),
writeln(Xs),
fail.
[1, 5, 8, 6, 3, 7, 2, 4]
[8, 4, 1, 3, 6, 2, 7, 5]
No.

```

\subsection*{12.3.1 First Solution}

One of the easiest ways to do incomplete search is to simply stop after the first solution has been found. This is simply programmed using cut or once/1:
```

?- queens(8, Xs),
once search(Xs, 0, input_order, indomain, complete, []),
writeln(Xs),
fail.
[1, 5, 8, 6, 3, 7, 2, 4]
No.

```

This will of course not speed up the finding of the first solution.

\subsection*{12.3.2 Bounded Backtrack Search}

Another way to limit the scope of backtrack search is to keep a record of the number of backtracks, and curtail the search when this limit is exceeded. The bbs option of the search/6 predicate implements this:
```

?- queens(8, Xs),
search(Xs, 0, input_order, indomain, bbs(20), []),
writeln(Xs),
fail.
[1, 5, 8, 6, 3, 7, 2, 4]
[1, 6, 8, 3, 7, 4, 2, 5]

```


\section*{\(\operatorname{dbs}(2, \operatorname{bbs}(0))\)}

Figure 12.10: Depth-bounded, combined with bounded-backtrack search
```

[1, 7, 4, 6, 8, 2, 5, 3]
[1, 7, 5, 8, 2, 4, 6, 3]
No.

```

Only the first 4 solutions are found, the next solution would have required more backtracks than were allowed. Note that the solutions that are found are all located on the left hand side of the search tree. This often makes sense because with a good search heuristic, the solutions tend to be towards the left hand side. Figure 12.9 illustrates the effect of bbs (note that the diagram does not correspond to the queens example, it shows an unconstrained search tree with 5 binary variables).

\subsection*{12.3.3 Depth Bounded Search}

A simple method of limiting search is to limit the depth of the search tree. In many constraint problems with a fixed number of variables this is not very useful, since all solutions occur at the same depth of the tree. However, one may want to explore the tree completely up to a certain depth and switch to an incomplete search method below this depth. The search/6 predicate allows for instance the combination of depth-bounded search with bounded-backtrack search. The following explores the first 2 levels of the search tree completely, and does not allow any backtracking below this level. This gives 16 solutions, equally distributed over the search tree:
```

?- queens(8, Xs),
search(Xs, 0, input_order, indomain, dbs(2,bbs(0)), []),
writeln(Xs),
fail.
[3, 5, 2, 8, 1, 7, 4, 6]
[3, 6, 2, 5, 8, 1, 7, 4]
[4, 2, 5, 8, 6, 1, 3, 7]
[4, 7, 1, 8, 5, 2, 6, 3]
[4, 8, 1, 3, 6, 2, 7, 5]
[5, 1, 4, 6, 8, 2, 7, 3]
[5, 2, 4, 6, 8, 3, 1, 7]
[5, 3, 1, 6, 8, 2, 4, 7]
[5, 7, 1, 3, 8, 6, 4, 2]
[6, 4, 1, 5, 8, 2, 7, 3]

```
```

[7, 1, 3, 8, 6, 4, 2, 5]
[7, 2, 4, 1, 8, 5, 3, 6]
[7, 3, 1, 6, 8, 5, 2, 4]
[8, 2, 4, 1, 7, 5, 3, 6]
[8, 3, 1, 6, 2, 5, 7, 4]
[8, 4, 1, 3, 6, 2, 7, 5]
No (0.18s cpu)

```

\subsection*{12.3.4 Credit Search}

Credit search [1] is a tree search method where the number of nondeterministic choices is limited a priori. This is achieved by starting the search at the tree root with a certain integral amount of credit. This credit is split between the child nodes, their credit between their child nodes, and so on. A single unit of credit cannot be split any further: subtrees provided with only a single credit unit are not allowed any nondeterministics choices, only one path though these subtrees can be explored, i.e. only one leaf in the subtree can be visited. Subtrees for which no credit is left are pruned, i.e. not visited.
The following code (a replacement for labeling/1) implements credit search. For ease of understanding, it is limited to boolean variables:
```

% Credit search (for boolean variables only)
credit_search(Credit, Xs) :-
(
foreach(X, Xs),
fromto(Credit, ParentCredit, ChildCredit, _)
do
( var(X) ->
ParentCredit > 0, % possibly cut-off search here
( % Choice
X = 0, ChildCredit is (ParentCredit+1)//2
;
X = 1, ChildCredit is ParentCredit//2
)
;
ChildCredit = ParentCredit
)
).

```

Note that the leftmost alternative (here \(\mathrm{X}=0\)) gets slightly more credit than the rightmost one (here \(\mathrm{X}=1\)) by rounding the child node's credit up rather than down. This is especially relevant when the leftover credit is down to 1: from then on, only the leftmost alternatives will be taken until a leaf of the search tree is reached. The leftmost alternative should therefore be the one favoured by the search heuristics.

Figure 12.11: Credit-based incomplete search
What is a reasonable amount of credit to give to a search? In an unconstrained search tree, the credit is equivalent to the number of leaf nodes that will be reached. The number of leaf nodes grows exponentially with the number of labelled variables, while tractable computations should have polynomial runtimes. A good rule of thumb could therefore be to use as credit the number of variables squared or cubed, thus enforcing polynomial runtime.
Note that this method in its pure form allows choices only close to the root of the search tree, and disallows choices completely below a certain tree depth. This is too restrictive when the value selection strategy is not good enough. A possible remedy is to combine credit search with bounded backtrack search.
The implementation of credit search in the search/6 predicate works for arbitrary domain variables: Credit is distributed by giving half to the leftmost child node, half of the remaining credit to the second child node and so on. Any remaining credit after the last child node is lost. In this implementation, credit search is always combined with another search method which is to be used when the credit runs out.
When we use credit search in the queens example, we get a limited number of solutions, but these solutions are not the leftmost ones (like with bounded-backtrack search), they are from different parts of the search tree, although biased towards the left:
```

?- queens(8, Xs),
search(Xs, 0, input_order, indomain, credit(20,bbs(0)), []),
writeln(Xs),
fail.
[2, 4, 6, 8, 3, 1, 7, 5]
[2, 6, 1, 7, 4, 8, 3, 5]
[3, 5, 2, 8, 1, 7, 4, 6]
[5, 1, 4, 6, 8, 2, 7, 3]
No.

```

We have used a credit limit of 20 . When credit runs out, we switch to bounded backtrack search with a limit of 0 backtracks.

\subsection*{12.3.5 Timeout}

Another form of incomplete tree search is simply to use time-outs. The branch-and-bound primitives bb_min \(/ 3,6\) allow a maximal runtime to be specified. If a timeout occurs, the best

\section*{lds(1)}

Figure 12.12: Incomplete search with LDS
solution found so far is returned instead of the proven optimum.
A general timeout is available from the library test_util. It has parameters timeout(Goal, Seconds, TimeOutGoal). When Goal has run for more than Seconds seconds, it is aborted and TimeOutGoal is called instead.

\subsection*{12.3.6 Limited Discrepancy Search}

Limited discrepancy search \((L D S)\) is a search method that assumes the user has a good heuristic for directing the search. A perfect heuristic would, of course, not require any search. However most heuristics are occasionally misleading. Limited Discrepancy Search follows the heuristic on almost every decision. The "discrepancy" is a measure of the degree to which it fails to follow the heuristic. LDS starts searching with a discrepancy of 0 (which means it follows the heuristic exactly). Each time LDS fails to find a solution with a given discrepancy, the discrepancy is increased and search restarts. In theory the search is complete, as eventually the discrepancy will become large enough to admit a solution, or cover the whole search space. In practice, however, it is only beneficial to apply LDS with small discrepancies. Subsequently, if no solution is found, other search methods should be tried. The definitive reference to LDS is [29]
There are different possible ways of measuring discrepancies. The one implemented in the search \(/ 6\) predicate is a variant of the original proposal. It considers the first value selection choice as the heuristically best value with discrepancy 0 , the first alternative has a discrepancy of 1 , the second a discrepancy of 2 and so on.
As LDS relies on a good heuristic, it only makes sense for the queens problem if we use a good heuristic, e.g. first-fail variable selection and indomain-middle value selection. Allowing a discrepancy of 1 yields 4 solutions:
```

?- queens(8, Xs),
search(Xs, 0, first_fail, indomain_middle, lds(1), []),
writeln(Xs),
fail.
[4, 6, 1, 5, 2, 8, 3, 7]
[4, 6, 8, 3, 1, 7, 5, 2]
[4, 2, 7, 5, 1, 8, 6, 3]
[5, 3, 1, 6, 8, 2, 4, 7]
No.

```

The reference also suggests that combining LDS with Bounded Backtrack Search (BBS) yields good behaviour. The search/6 predicate accordingly supports the combination of LDS with BBS and DBS. The rationale for this is that heuristic choices typically get more reliable deeper down in the search tree.

\subsection*{12.4 Exercises}

For exercises 1-3, start from the constraint model for the queens problem given in section 12.2.4. It is available in the examples directory as queens_ic.ecl.
1. Use the search/6 predicate from the ic_search library and the standard model for the queens problem (given below) to find ONE solution to the 42-queens problem. With a naive search strategy this requires millions of backtracks. Using heuristics and/or incomplete search, try to find a solution in less than 100 backtracks!
2. How many solutions does the 9 -queens problem have?
3. Solve the " 8 sticky queens problem": Assume that the queens in neighbouring columns want to stick together as close as possible. Minimize the sum of the vertical distances between neighbouring queens. What is the best and what is the worst solution for this problem?
4. For given N , create a list of length N whose members are numbers between 1 and N (inclusive), which are all different (easy so far) and satisfy the following constraint. For each element E of the list, its successors are divided into two sets,
- BiggerE: the successors which are greater than E and
- SmallerE: the successors less than E.
(Thus no successor takes the same value as E). The cardinalities of the sets BiggerE and SmallerE differ by at most 1 .
5. A harder version of the problem is similar. For given N , create a list of length N whose members are numbers between 1 and some upper bound Max (start with, say Max \(=N^{2}\)), which are all different (easy so far) and satisfy the following (more complex) constraint. For each K from 1..N, call the Kth element of the list Ek. Its successors are divided into two sets, as before:
- BiggerEk: the successors which are greater than or equal to \(\mathrm{Ek}+\mathrm{K}\) and
- SmallerEk: the successors less than or equal to Ek - K.
(Thus no successor takes a value between Ek-K+1 and Ek+K-1.) The cardinalities of the sets BiggerEk and SmallerEk differ by at most 1 .
What is the smallest upper bound Max for which there is a feasible solution?

\section*{Chapter 13}

\section*{Repair and Local Search}

\subsection*{13.1 Motivation}

Constraint logic programming uses logical variables. This means that when a variable is instantiated, its value must satisfy all the constraints on the variable. For example if the program includes the constraint \(X>=2\), then any attempt to instantiate \(X\) to a value less than 2 will fail.
However, there are various contexts and methods in which it is useful to associate (temporarily) a value with a variable that does not satisfy all the constraints on the variable. Generally this is true of repair techniques. These methods start with a complete, infeasible, assignment of values to variables and change the values of the variables until a feasible assignment is found. Repair methods are useful in the case where a problem has been solved, but subsequently external changes to the problem render the solution infeasible. This is the normal situation in scheduling applications, where machines and vehicles break down, and tasks are delayed.
Repair methods are also useful for solving problems which can be broken down into quasiindependent simpler subproblems. Solutions to the subproblems which are useful for solving the complete problem, may not be fully compatible with each other, or even completely feasible with respect to the full problem.
Finally there are techniques such as conflict minimisation which seek solutions that minimise infeasibility. These techniques can be treated as optimisation algorithms, whose constraints are wrapped into the optimisation function. However they can also be treated as repair problems, which means that the constraints can propagate actively during problem solving.

\subsection*{13.2 Syntax}

\subsection*{13.2.1 Setting and Getting Tentative Values}

With the repair library each variable can be given a tentative value. This is different from instantiating the variable. Rather the tentative value is a piece of updatable information associated with the variable. The tentative value can be changed repeatedly during search, not just on backtracking. The value is set using the syntax tent_set, and retrieved using tent_get. For example the following query writes first 1 and then 2 :

\section*{Repair is used for:}
- Re-solving problems which have been modified
- Combining subproblem solutions and algorithms
- Implementing local search
- Implementing powerful search heuristics

Figure 13.1: Uses of Repair
```

?- X tent_set 1,
X tent_get Tent1,
writeln(Tent1),
X tent_set 2,
X tent_get Tent2,
writeln(Tent2).

```

Throughout this query \(X\) remains a variable.
A tentative variable may violate constraints. The following query writes succeed, because setting the tentative value to 1 does not cause a failure:
```

?- X \$> 2,
X tent_set 1,
writeln(succeed).

```

\subsection*{13.2.2 Building and Accessing Conflict Sets}

The relation between constraints and tentative values can be maintained in two ways. The first method is by monitoring a constraint for conflicts.
```

?- X \$> 2 r_conflict myset,
X tent_set 1,
writeln(succeed).

```

This query also succeeds - but additionally it creates a conflict set named myset. Because \(X \$>2\) is violated by the tentative value of \(X\), the constraint is recorded in the conflict set. The conflict set written out by the following query is [X\{1\} \$> 2]:
```

?- X \$> 2 r_conflict myset,
X tent_set 1,
conflict_constraints(myset,Conflicts),
writeln(Conflicts).

```

The conflict can be repaired by changing the tentative value of the variable which causes it:
```

Repair supports the following primitives:

```
- tent_set/2
- tent_get/2
- r_conflict/2
- conflict_constraints/2
- tent_is/2
(and some others that are not covered in this tutorial).

Figure 13.2: Syntax
```

?- X \$> 2 r_conflict myset,
X tent_set 1,
conflict_constraints(myset,Conflicts),
X tent_set 3,
conflict_constraints(myset,NoConflicts).

```

This program instantiates Conflicts to [X\{1\} \$> 2], but NoConflicts is instantiated to [].

\subsection*{13.2.3 Propagating Conflicts}

Arithmetic equality (\(=:=, \$=\)) constraints, instead of monitoring for conflicts, can be maintained by propagating tentative values. To do so, they must be rewritten in a functional syntax. Consider the constraint \(\mathrm{X}=:=\mathrm{Y}+1\). For propagation of tentative values, this must be rewritten in the form X tent_is \(\mathrm{Y}+1\). If the tentative value of \(Y\) is set to 1 , then this will be propagated to the tentative value of \(X\). The following query writes out the value 2 .
```

?- X tent_is Y+1,
Y tent_set 1,
X tent_get(TentX),
writeln(TentX).

```

Each time the tentative value of \(Y\) is changed, the value of \(X\) is kept in step, so the following writes out the value 3 :
```

?- X tent_is Y+1,
Y tent_set 1,
Y tent_set 2,
X tent_get(TentX),
writeln(TentX).

```

\subsection*{13.3 Repairing Conflicts}

If all the constraints of a problem are monitored for conflicts, then the problem can be solved by:
- Finding an initial assignment of tentative values for all the problem variables
- Finding a constraint in conflict, and labelling a variable in this constraint
- Instantiating the remaining variables to their tentative values, when there are no more constraints in conflict

Consider a satisfiability problem with each clause represented by an ic constraint, whose form is illustrated by the following example: (X1 or neg X2 or X3 \(\$=1\). This represents the clause \(X 1 \vee \neg X 2 \vee X 3\).
To apply conflict minimisation to this problem use the predicate:
- tent_init to find an initial solution
- conflict_constraints and term_variables to find a variable to label
- set_to_tent to set the remaining variables to their tentative values

The code is as follows:
```

prop_sat_1(Vars) :-
Vars = [x1, X2, X3],
tent_init(Vars),
(X1 or neg X2 or X3 \$= 1) r_conflict cs,
(neg X1 or neg X2 \$= 1) r_conflict cs,
(X2 or neg X3 \$= 1) r_conflict cs,
min_conflicts(Vars).
tent_init(List) :-
( foreach(Var,List) do Var tent_set 1 ).
min_conflicts(Vars) :-
conflict_constraints(cs,List),
( List = [] -> set_to_tent(Vars) ;
List = [Constraintl_] ->
term_variables(Constraint,[Varl_]),
guess(Var),
min_conflicts(Vars)
).
guess(0).
guess(1).

```
```

set_to_tent(Term) :-
Term tent_get Tent,
Term = Tent.

```

The value choice predicate guess is naive. Since the variable occurs in a conflict constraint it would arguably be better to label it to another value. This would be implemented as follows:
```

guess(Var) :-
Var tent_get Value,
( Value = 0 -> (Var=1 ; Var=0)
; Value = 1 -> (Var=0 ; Var=1)
).

```

\subsection*{13.3.1 Combining Repair with IC Propagation}

To illustrate a combination of repair with ic propagation we tackle a scheduling example. The problem involves tasks with unknown start times, and known durations, which are related by a variety of temporal constraints. These temporal constraints are handled, for the purposes of this example, by ic. The temporal constraints are encoded thus:
```

before(TimePoint1,Interval,TimePoint2) :-
TimePoint1+Interval \#=< TimePoint2.

```

TimePoint1 and TimePoint2 are variables (or numbers), but we assume, for this example, that the Interval is a number. This constraint can enforce a minimum separation between start times, or a maximum separation (if the Interval is negative). It can also enforce constraints between end times, by adjusting the Interval to account for the task durations.
Additionally we assume that certain tasks require the same resource and cannot therefore proceed at the same time. The resource constraint is encoded thus:
```

noclash(Start1,Duration1,Start2,_) :-
Start2 \#>= Start1+Duration1.
noclash(Start1,_,Start2,Duration2) :-
Start1 \#>= Start2+Duration2.

```

Suppose the requirement is to complete the schedule as early as possible. To express this we introduce a last time point End which is constrained to come after all the tasks. Ignoring the resource constraints, the temporal constraints are easily handled by ic. The optimal solution is obtained simply by posting the temporal constraints and then instantiating each start time to the lowest value in its domain.

To deal with the resource constraints conflict minimisation is used. The least (i.e. optimal) value in the domain of each variable is chosen as its tentative value, at each node of the search tree.
To fix a constraint in conflict, we simply invoke its nondetermistic definition, and ECL \({ }^{i} \mathrm{PS}^{e}\) then unfolds the first clause and sends the new temporal constraint Start2 \#>= Start1+Duration1 to ic. On backtracking, the second clause will be unfolded instead.
After fixing a resource constraint, and posting a new temporal constraint, ic propagation takes place, and then the tentative values are changed to the new ic lower bounds.
The code is simply this:
```

:- lib(ic), lib(repair), lib(branch_and_bound).
schedule(Starts,End) :-
Starts = [S1,S2, ...,End],
Starts :: 0..1000,
before(S2,5,S1),
before(S1,8,End),
noclash(S1,4,S2,8) r_conflict resource_cons,
minimize(repair_ic(Starts),End).
repair_ic(Starts) :-
set_tent_to_min(Starts),
conflict_constraints(resource_cons,List),
( List = [] ->
set_to_tent(Starts)
; List = [Constraint|_] ->
call(Constraint),
repair_ic(Starts)
).
set_tent_to_min(Vars) :-
( foreach(Var,Vars)
do
get_min(Var,Min),
Var tent_set Min
).

```

This code is much more robust than the traditional code for solving the bridge scheduling example from [27]. The code is in the examples directory file bridge_repair.pl.
This algorithm uses the ic solver to:
- Enforce the consistency of the temporal constraints
- Set the tentative values to an optimal solution (of this relaxation of the original problem)

Repair naturally supports conflict minimisation. This algorithm can be combined with other solvers, such as ic, and with optimization.

Figure 13.3: Conflict Minimisation

This technique is called probing. The use of the eplex solver, instead of ic for probing is described in chapter 17 below.

\subsection*{13.4 Introduction to Local Search}

\subsection*{13.4.1 Changing Tentative Values}

From a technical point of view, the main difference between tree search and local (or move-based) search is that tree search adds assignments while local search changes them. During tree search constraints get tightened when going down the tree, and this is undone in reverse order when backing up the tree to a parent node. This fits well with the idea of constraint propagation.
It is characteristic of local search that a move produces a small change, but it is not clear what effect this will have on the constraints. They may become more or less satisfied. We therefore need implementations of the constraints that monitor changes rather than propagate instantiations.
Local search can be implemented quite naturally in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) using the repair library. In essence, the difference between implementing tree search techniques and local search in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) is that, instead of instantiating variables during search, local search progresses by changing tentative values of variables. For the satisfiability example of the last section, we can change min_conflicts to local_search by simply replacing the guess predicate by the predicate move:
```

local_search(Vars) :-
conflict_constraints(cs,List),
( List = [] ->
set_to_tent(Vars)
; List = [Constraintl_] ->
term_variables(Constraint,[Var|_]),
move(Var),
local_search(Vars)
).
move(Var) :-
Var tent_get Value,
NewValue is (1-Value),
Var tent_set NewValue.

```

There is no guarantee that this move will reach a better assignment, since NewValue may violate more constraints than the original Value.

\subsection*{13.4.2 Hill Climbing}

To find a neighbour which overall increases the number of satisfied constraints we could replace local_search with the predicate hill_climb:
```

hill_climb(Vars) :-
conflict_constraints(cs,List),
length(List,Count),
( Count = 0 ->
set_to_tent(Vars)
; try_move(List,NewCount), NewCount < Count ->
hill_climb(Vars)
;
write('local optimum: '), writeln(Count)
).
try_move(List,NewCount) :-
select_var(List,Var),
move(Var),
conflict_constraints(cs,NewList),
length(NewList,NewCount).
select_var(List,Var) :-
member(Constraint,List),
term_variables(Constraint,Vars),
member(Var,Vars).

```

Some points are worth noticing:
- Constraint satisfaction is recognised by finding that the conflict constraint set is empty.
- The move operation and the acceptance test are within the condition part of the if-thenelse construct. As a consequence, if the acceptance test fails (the move does not improve the objective) the move is automatically undone by backtracking.

The code code for try_move is very inefficient, because it repeatedly goes through the whole list of conflict constraints to count the number of constraints in conflict. The facility to propagate tentative values supports more efficient maintenance of the number constraints in conflict. This technique is known as maintenance of invariants (see [18]). For the propositional satisfiability example we can maintain the number of satisfied clauses to make the hill climbing implementation more efficient.
The following program not only monitors each clause for conflict, but it also records in a boolean variable whether the clause is satisfied. Each tentative assignment to the variables is propagated to the tentative value of the boolean. The sum of the boolean BSum records for any tentative assignment of the propositional variables, the number of satisfied clauses. This speeds up hill

Local search can be implemented in \(\mathrm{ECL}^{i} \mathrm{PS}{ }^{e}\) with the repair library. Invariants can be implemented by tentative value propagation using tent_is \(/ 2\).

Figure 13.4: Local Search and Invariants
climbing because, after each move, its effect on the number of satisfied clauses is automatically computed by the propagation of tentative values.
```

prop_sat_2(Vars) :-
Vars = [X1,X2,X3],
tent_init(Vars),
clause_cons(X1 or neg X2 or X3,B1),
clause_cons(neg X1 or neg X2,B2),
clause_cons(X2 or neg X3,B3),
BSum tent_is B1+B2+B3,
hill_climb_2(Vars,BSum).
clause_cons(Clause,B) :-
Clause \$= 1 r_conflict cs,
B tent_is Clause.
hill_climb_2(Vars,BSum) :-
conflict_constraints(cs,List),
BSum tent_get Satisfied,
( List=[] ->
set_to_tent(Vars)
; select_var(List,Var), move(Var), tent_get(BSum) > Satisfied ->
hill_climb_2(Vars,BSum)
;
write('local optimum: '), writeln(Count)
).

```

To check whether the move is uphill, we retrieve the tentative value of BSum before and after the move is done. Remember that, since the move operator changes the tentative values of some variable, the tent_is primitive will automatically update the BSum variable. This code can be made more efficent by recording more invariants, as described in [28].

\subsection*{13.5 More Advanced Local Search Methods}

In the following we discuss several examples of local search methods. These methods have originally been developed for unconstrained problems, but they work for certain classes of constrained problems as well.

The \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) code for all the examples in this section is available in the file knapsack_ls.ecl in the doc/examples directory of your \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) installation.

\subsection*{13.5.1 The Knapsack Example}

We will demonstrate the local search methods using the well-known knapsack problem. The problem is the following: given a container of a given capacity and a set of items with given weights and profit values, find out which items have to be packed into the container such that their weights do not exceed the container's capacity and the sum of their profits is maximal.

The model for this problem involves N boolean variables, a single inequality constraint to ensure the capacity restriction, and an equality to define the objective function.
```

:- lib(ic).
:- lib(repair).
knapsack(N, Profits, Weights, Capacity, Opt) :-
length(Vars, N),
Vars :: 0..1,
Capacity \#>= Weights*Vars r_conflict cap,
Profit tent_is Profits*Vars,
local_search(<extra parameters>, Vars, Profit, Opt).

```

The parameters mean
- N - the number of items (integer)
- Profits - a list of N integers (profit per item)
- Weights - a list of N integers (weight per item)
- Capacity - the capacity of the knapsack (integer)
- Opt - the optimal result (output)

\subsection*{13.5.2 Search Code Schema}

In the literature, e.g. in [18], local search methods are often characterised by the the following nested-loop program schema:
```

local_search:
set starting state
while global_condition
while local_condition
select a move
if acceptable
do the move
if new optimum
remember it
endwhile
set restart state
endwhile

```

We give three examples of local search methods coded in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) that follow this schema: random walk, simulated annealing and tabu search. Random walk and tabu search do not use the full schema, as there is only a single loop with a single termination condition.

\subsection*{13.5.3 Random walk}

The idea of Random walk is to start from a random tentative assignment of variables to 0 (item not in knapsack) or 1 (item in knapsack), then to remove random items (changing 1 to 0) if the knapsack's capacity is exceeded and to add random items (changing 0 to 1) if there is capacity left. We do a fixed number (MaxIter) of such steps and keep track of the best solution encountered.

Each step consists of:
- Changing the tentative value of some variable, which in turn causes the automatic recomputation of the conflict constraint set and the tentative objective value.
- Checking whether the move lead to a solution and whether this solution is better than the best one so far.

Here is the ECL \({ }^{i} \mathrm{PS}^{e}\) program. We assume that the problem has been set up as explained above. The violation of the capacity constraint is checked by looking at the conflict constraints. If there are no conflict constraints, the constraints are all tentatively satisfied and the current tentative values form a solution to the problem. The associated profit is obtained by looking at the tentative value of the Profit variable (which is being constantly updated by tent_is).
```

random_walk(MaxIter, VarArr, Profit, Opt) :-
init_tent_values(VarArr, random), % starting point
( for(_,1,MaxIter), % do MaxIter steps
fromto(0, Best, NewBest, Opt), % track the optimum
param(Profit,VarArr)
do
( conflict_constraints(cap,[]) -> % it's a solution!
Profit tent_get CurrentProfit, % what is its profit?
(
CurrentProfit > Best % new optimum?
->
printf("Found solution with profit %w%n", [CurrentProfit]),
NewBest=CurrentProfit % yes, remember it
;
NewBest=Best % no, ignore
),
change_random(VarArr, 0, 1) % add another item
;
NewBest=Best,
change_random(VarArr, 1, 0) % remove an item
)
).

```

The auxiliary predicate init_tent_values sets the tentative values of all variables in the array randomly to 0 or 1 : The change_random predicate changes a randomly selected variable with a tentative value of 0 to 1 , or vice versa. Note that we are using an array, rather than a list of variables, to provide more convenient random access. The complete code and the auxiliary predicate definitions can be found in the file knapsack_ls.ecl in the doc/examples directory of your \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) installation.

\subsection*{13.5.4 Simulated Annealing}

Simulated Annealing is a slightly more complex variant of local search. It follows the nested loop schema and uses a similar move operator to the random walk example. The main differences are in the termination conditions and in the acceptance criterion for a move. The outer loop simulates the cooling process by reducing the temperature variable T , the inner loop does random moves until MaxIter steps have been done without improvement of the objective.
The acceptance criterion is the classical one for simulated annealing: Uphill moves are always accepted, downhill moves with a probability that decreases with the temperature. The search routine must be invoked with appropriate start and end temperatures, they should roughly correspond to the maximum and minimum profit changes that a move can incur.
```

sim_anneal(Tinit, Tend, MaxIter, VarArr, Profit, Opt) :-
starting_solution(VarArr), % starting solution
( fromto(Tinit, T, Tnext, Tend),
fromto(0, Opt1, Opt4, Opt),
param(MaxIter,Profit,VarArr,Tend)
do
printf("Temperature is %d%n", [T]),
( fromto(MaxIter, JO, J1, 0),
fromto(Opt1, Opt2, Opt3, Opt4),
param(VarArr,Profit,T)
do
Profit tent_get PrevProfit,
( flip_random(VarArr), % try a move
Profit tent_get CurrentProfit,
exp((CurrentProfit-PrevProfit)/T) > frandom,
conflict_constraints(cap,[]) % is it a solution?
->
(CurrentProfit > Opt2 -> % is it new optimum?
printf("Found solution with profit %w%n",
[CurrentProfit]),
Opt3=CurrentProfit, % accept and remember
J1=J0
; CurrentProfit > PrevProfit ->
Opt3=Opt2, J1=JO % accept
;
Opt3=Opt2, J1 is J0-1 % accept
)
;
Opt3=Opt2, J1 is J0-1 % reject
)
),
Tnext is max(fix (0.8*T),Tend)
).
flip_random(VarArr) :-
functor(VarArr, _, N),
X is VarArr[random mod N + 1],
X tent_get Old,
New is 1-Old,
X tent_set New.

```

\subsection*{13.5.5 Tabu Search}

Another variant of local search is tabu search. Here, a number of moves (usually the recent moves) are remembered (the tabu list) to direct the search. Moves are selected by an acceptance criterion, with a different (generally stronger) acceptance crtierion for moves in the tabu list. Like most local search methods there are many possible variants and concrete instances of this basic idea. For example, how a move would be added to or removed from the tabu list has to be specified, along with the different acceptance criteria.

Repair can be used to implement a wide variety of local search and hybrid search techniques.

Figure 13.5: Implementing Search

In the following simple example, the tabu list has a length determined by the parameter TabuSize. The local moves consist of either adding the item with the best relative profit into the knapsack, or removing the worst one from the knapsack. In both cases, the move gets rememebered in the fixed-size tabu list, and the complementary move is forbidden for the next TabuSize moves.
```

tabu_search(TabuSize, MaxIter, VarArr, Profit, Opt) :-
starting_solution(VarArr), % starting solution
tabu_init(TabuSize, none, Tabu0),
( fromto(MaxIter, IO, I1, 0),
fromto(Tabu0, Tabu1, Tabu2, _),
fromto(0, Opt1, Opt2, Opt),
param(VarArr,Profit)
do
( try_set_best(VarArr, MoveId), % try uphill move
conflict_constraints(cap,[]), % is it a solution?
tabu_add(MoveId, Tabu1, Tabu2) % is it allowed?
->
Profit tent_get CurrentProfit,
( CurrentProfit > Opt1 -> % is it new optimum?
printf("Found solution with profit %w%n", [CurrentProfit]),
Opt2=CurrentProfit % accept and remember
;
Opt2=Opt1 % accept
),
I1 is IO-1
;
( try_clear_worst(VarArr, MoveId), % try downhill move
tabu_add(MoveId, Tabu1, Tabu2) % is it allowed?
->
I1 is IO-1,
Opt2=Opt1 % reject
;
I1=0, % no moves possible, stop
Opt2=Opt1 % reject
)
)
).

```

In practice, the tabu search forms only a skeleton around which a complex search algorithm is built. An example of this is applying tabu search to the job-shop problem, see e.g. [19].

\subsection*{13.6 Repair Exercise}

Write a predicate min_conflicts(Vars, Count) that takes two arguments:
- Vars - a list of variables, with tentative \(0 / 1\) values
- Count - a variable, with a tentative integer value

The specification of min_conflicts(Vars,Count) is as follows:
1. If conflict set cs is empty, instantiate Vars to their tentative values
2. Otherwise find a variable, V , in a conflict constraint
3. Instantiate \(V\) to the value (0 or 1) that maximises the tentative value of Count
4. On backtracking instantiate V the other way.

This can be tested with the following propositional satisfiability program.
```

cons_clause(Clause,Bool) :-
Clause =:= 1 r_conflict cs,
Bool tent_is Clause.
prop_sat(Vars,List) :-
( foreach(N,List),
foreach(Cl,Clauses),
param(Vars)
do
cl(N,Vars,Cl)
),
init_tent_values(Vars),
( foreach(Cl,Clauses),
foreach(B,Bools)
do
cons_clause(Cl,B)
),
Count tent_is sum(Bools),
min_conflicts(Vars,Count).
init_tent_values(Vars) :-
( foreach(V,Vars) do V tent_set 1).
cl(1,[X,Y,Z], (X or neg Y or Z)).
cl(2,[X,Y,Z], (neg X or neg Y)).
cl(3,[X,Y,Z], (Y or neg Z)).
cl(4,[X,Y,Z], (X or neg Z)).

```
cl(5, \([\mathrm{X}, \mathrm{Y}, \mathrm{Z}]\), (Y or Z)).

To test your program try the following queries:
?- prop_sat ([X,Y,Z], \([1,2,3])\).
?- prop_sat([X,Y,Z],[1,2,3,4]).
?- prop_sat ([X,Y,Z], [1, 2, 3, 4, 5]).

\section*{Chapter 14}

\section*{Implementing Constraints}

This chapter describes how to use \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) 's advanced control facilities for implementing constraints. Note that the Generalised Propagation library lib(propia) and the Constraint Handling Rules library lib(ech) provide other, higher-level ways to implement constraints. Those are more suited for prototyping, while this chapter introduces those low-level primitives that are actually used in the implementation of the various \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) constraint solvers.

\subsection*{14.1 What is a Constraint in Logic Programming?}

Constraints fit very naturally into the Logic Programming paradigm. Declaratively, a constraint is just the same as any other predicate. Indeed, in ECL \({ }^{i} \mathrm{PS}^{e}\), "constraints" are not a particular programming language construct, constraints are just a conceptual notion.
Consider the following standard Prolog query:
```

?- member(X, [5,7,3,4]), X =< 4.

```

This will succeed with \(\mathrm{X}=3\) after some search. In this example, both the member \(/ 2\) goal and the inequality goal could be considered 'constraints on X ' because they both restrict the possible values for X. Usually, however, member \(/ 2\) would not be considered a "constraint" because of its backtracking (search) behaviour:
```

?- member(X, [5, 7, 3, 4]).
X = 5
More (0.00s cpu)
X = 7
More (0.04s cpu)

```

Also, the standard Prolog inequality would not be considered a "constraint", because if invoked on its own it will raise an error:
```

?- X =< 4.
instantiation fault in X =< 4

```

In the following, we will call a predicate a constraint only if it
- behaves deterministically
- somehow actively enforces its declarative meaning

\subsection*{14.2 Background: Constraint Satisfaction Problems}

There is a large body of scientific work and literature about Constraint Satisfaction Problems, or CSPs. CSPs are a restricted class of constraint problems with the following properties
- there is a fixed set of variables \(X_{1}, \ldots, X_{n}\)
- every variable \(X_{i}\) has a finite domain \(D_{i}\) of values that the variable is allowed to take. In general, this can be an arbitrary, unordered domain.
- usually one considers only binary (2-variable) constraints \(c_{i j}\left(X_{i}, X_{j}\right)\). Every constraint is simply defined as a set of pairs of consistent values.
- the problem is to find a valuation (labeling) of the variables such that all the constraints are satisfied

The restriction to binary constraints is not really limiting since every CSP can be transformed into a binary CSP. However, this is often not necessary since many algorithms can be generalised to n-ary constraints.
A CSP network is the graph formed by considering the variables as nodes and the constraints as arcs between them. In such a network, several levels of consistency can be defined:

Node consistency \(\forall v \in D_{i}: c_{i}(v)\) (not very interesting). It means that all unary constraints are reflected in the domains

Arc consistency \(\forall v \in D_{i} \exists w \in D_{j}: c_{i j}(v, w)\) (most practically relevant). It means that for every value in the domain of one variable, there is a compatible value in the domain of the other variable in the constraint. In practice, constraints are symmetric, so the reverse property also holds.

Path consistency \(\forall v \in D_{i} \forall w \in D_{j} \exists u \in D_{k}: c_{i k}(v, u), c_{k j}(u, w)\) (usually too expensive). One can show that this property extends to whole paths, i.e. on any path of constraints between variables \(i\) and \(j\) the variables have domain values which are compatible with any domain values for i and j .

Note that neither of these conditions is sufficient for the problem to be satisfiable. It is still necessary to search for solutions. Computing networks with these consistency levels can however be a useful intermediate step to finding a solution to the CSP.
Consequently, a complete CSP solver needs the following design decisions:
- what level of consistency do we want to employ?
- at what time during search do we want to (re)establish this consistency?
- what algorithm do we use to establish this consistency?

In practice, the most relevant consistency level is arc-consistency. Consequently, a number of algorithms have been proposed for the purpose of establishing arc-consistency. The algorithms used in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) are mostly variants of AC-3 [16] and AC-5 [10].

Figure 14.1: Control during Constraint Solving

\subsection*{14.3 Constraint Behaviours}

As opposed to the theoretical CSP framework sketched in the previous section, in ECL \({ }^{i} \mathrm{PS}^{e}\) we usually deal with more heterogeneous situation. We want to allow the integration of very different constraints, and we want to achieve a separation of constraint propagation and search. Therefore, we are not interested in an overall problem solving algorithm which controls search and constraint propagation globally for the whole problem and all constraints. We prefer to view the constraint solving process as in figure 14.1: the search process is controlled by an algorithmic program, while constraint propagation is performed by data-driven agents which do local (again algorithmic) computations on one or several constraints. Individual constraints can then be implemented with different behaviours, and freely mixed within a single computation. Constraint behaviours can essentially be characterised by
- their triggering condition (when are they executed)
- the action they perform when triggered (what do they do)

Let us now look at examples of different constraint behaviours.

\subsection*{14.3.1 Consistency Check}

The \(=</ 2\) predicate, whose standard Prolog version raises an error when invoked with uninstantiated variable, is also implemented by the suspend library. Both implementations have the same declarative meaning, but the suspend version can be considered to be a proper constraint. It implements a passive test, i.e. it simply delays until both arguments are numbers, and then succeeds or fails:
```

?- suspend : (X =< 4).
x = X

```
```

There is 1 delayed goal.
Yes (0.00s cpu)
?- suspend : (X =< 4), X = 2.
X = 2
Yes (0.00s cpu)
?- suspend : (X =< 4), X = 5.
No (0.00s cpu)

```

\subsection*{14.3.2 Forward Checking}

Often a constraint can already do useful work before all its arguments are instantiated. In particular, this is the case when we are working with domain variables. Consider ic's disequality constraint \# = : Even when only one side is instantiated, it can already remove this value from the domain of the other (still uninstantiated) side:
```

?- X :: 1 .. 5,
X \#\= 3.
X = X{[1, 2, 4, 5]}
Yes (0.00s cpu)

```

If both sides are uninstantiated, the constraint cannot do anything useful. It therefore waits (delays) until one side becomes instantiated, but then wakes up and acts as before. This behaviour is sometimes called forward checking [27]:
```

?- [X,Y] :: 1 .. 5,
X \#\= Y. % delays
X = X{1 . . 5}
Y = Y{1 . . 5}
There is 1 delayed goal.
Yes (0.00s cpu)
?- X :: 1 .. 5,
X \#\= Y, % delays
Y = 3. % wakes
X = X{[1, 2, 4, 5]}
Y = 3
Yes (0.01s cpu)

```

\subsection*{14.3.3 Domain (Arc) Consistency}

For many constraints, even more eager behaviour is possible. For example, ic's inequality constraints performs domain updates as soon as possible, even when one or both arguments are still variables:
\[
\text { ?- [X, Y] : : } 1 \text {.. 5, X \#< Y. }
\]

Consistency Checking wait until all variables instantiated, then check
Forward Checking wait until one variable left, then compute consequences
Domain (Arc) Consistency wait until a domain changes, then compute consequences for other domains

Bounds Consistency wait until a domain bound changes, then compute consequences for other bounds

Figure 14.2: Typical Constraint Behaviours
```

X = X{1 .. 4}
Y = Y{2 .. 5}
There is 1 delayed goal.
Yes (0.00s cpu)
?- [X, Y] :: 1 .. 5, X \#< Y, X \#> 2.
Y = Y{[4, 5]}
X = X{[3, 4]}
There is 1 delayed goal.
Yes (0.00s cpu)

```

Inconsistent values are removed form the domains as soon as possible. This behaviour corresponds to arc consistency as discussed in section 14.2.

\subsection*{14.3.4 Bounds Consistency}

Note however that not all ic constraints maintain full domain arc consistency. For performance reasons, the \#= constraint only maintains bounds consistency, which is weaker, as illustrated by the following example:
```

?- [X, Y] :: 1 .. 5, X \#= Y + 1, X \#\= 3.
Y = Y{1 .. 4}
X = X{[2, 4, 5]}
There is 1 delayed goal.
Yes (0.00s cpu)

```

Here, the value 4 for \(Y\) was not removed even though it is not arc consistent (there is no value for X which is compatible with it).
It is important to understand that this kind of propagation incompleteness does not affect correctness: the constraint will simply detect the inconsistency later, when its arguments have become more instantiated. In terms of the search tree, this means that a branch will not be pruned as early as possible, and extra time might be spent searching.

\subsection*{14.4 Programming Basic Behaviours}

As an example, we will look at creating constraint versions of the following predicate. It defines a relationship between containers of type 1,2 or 3 , and their capacity:
```

capacity(1, N) :- N>=0.0, N=<350.0.
capacity(2,N) :- N>=0.0, N=<180.0.
capacity(3, N) :- N>=0.0, N=<50.0.

```

This definition gives the intended declarative meaning, but does not behave as a constraint: capacity (3, C) will raise an error, and capacity (Type, 30.5) will generate several solutions nondeterministically. Only calls like capacity (\(3,27.1\)) will act correctly as a test.

\subsection*{14.4.1 Consistency Check}

To program the passive consistency check behaviour, we need to wait until both arguments of the predicate are instantiated. This can be achieved by adding an \(E C L^{i} \mathrm{PS}^{e}\) delay clause:
```

delay capacity(T,N) if var(T);var(N).
capacity(1, N) :- N>=0.0, N=<350.0.
capacity(2, N) :- N>=0.0, N=<180.0.
capacity(3, N) :- N>=0.0, N=<50.0.

```

The delay clause specifies that any call to capacity/2 will delay as long as one of the arguments is a variable. When the variables become instantiated later, execution will be resumed automatically, and the instantiations will be checked for satisfying the constraint.

\subsection*{14.4.2 Forward Checking}

For Forward Checking, we will assume that we have interval domain variables, as provided by the ic library (without domain variables, there would not be much interesting propagation to be done).
Here is one implementation of a forward checking version:
```

:- lib(ic).
delay capacity(T, N) if var(T), var(N).
capacity(T, N) :- nonvar(N), !,
N >= 0,
( N =< 50.0 -> T :: [1,2,3]
; N =< 180.0 -> T :: [1,2]
; N =< 350.0 -> T = 1
; fail
).

```
```

capacity(1, N) :- N$>=0.0, N$=<350.0.
capacity(2, N) :- N$>=0.0, N$=<180.0.
capacity(3,N) :- N$>=0.0, N$=<50.0.

```

Note that the delay clause now only lets goals delay when both arguments are variables. As soon as one is instantiated, the goal wakes up and, depending on which is the instantiated argument, either the first, or one of the last three clauses is executed. Some examples of the behaviour:
```

?- capacity(T, C).
There is 1 delayed goal.
Yes (0.00s cpu)
?- capacity(3, C).
C = C{0.0 .. 50.0}
Yes (0.00s cpu)
?- capacity(T, C), C = 100.
T = T{[1, 2]}
C = 100
Yes (0.00s cpu)

```

A disadvantage of the above implementation is that when the predicate wakes up, it can be either because \(T\) was instantiated, or because \(C\) was instantiated. An extra check (nonvar(N)) is needed to distinguish the two cases. Alternatively, we could have created two agents (delayed goals), each one specialised for one of these cases:
```

capacity(T, N) :-
capacity_forward(T, N),
capacity_backward(T, N).
delay capacity_forward(T, _N) if var(T).
capacity_forward(1, N) :- N$>=0.0, N$=<350.0.
capacity_forward(2, N) :- N$>=0.0, N$=<180.0.
capacity_forward(3, N) :- N$>=0.0, N$=<50.0.
delay capacity_backward(_T, N) if var(N).
capacity_backward(T, N) :-
N >= 0,
( N =< 50.0 -> T :: [1,2,3]
; N =< 180.0 -> T :: [1,2]
; N =< 350.0 -> T = 1
; fail
).

```

Unfortunately, there is a drawback to this implementation as well: once one of the two delayed goals has done its work, all the constraint's information has been incorporated into the remaining variable's domain. However, the other delayed goal is still waiting, and will eventually wake up when the remaining variable gets instantiated as well, at which time it will then do a redundant check.
The choice between having one or several agents for a constraint is a choice we will face every time we implement a constraint.

\subsection*{14.5 Basic Suspension Facility}

For the more complex constraint behaviours (beyond those waiting for instantiations), we need to employ lower-level primitives of the \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) kernel (suspensions and priorities). If we want to add a new constraint to an existing solver, we also need to use the lower-level interface that the particular solver provides.
Apart from the delay clauses used above, \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) also provides a more powerful (though less declarative) way of causing a goal to delay. The following is another implementation of the constraint checking behaviour, this time using the suspend/3 built-in predicate to create a delayed goal for capacity/2:
```

capacity(T,N) :- (var(T);var(N)), !,
suspend(capacity(T,N), 0, [T,N]->inst).
capacity(1, N) :- N>=0.0, N=<350.0.
capacity(2, N) :- N>=0.0, N=<180.0.
capacity(3, N) :- N>=0.0, N=<50.0.

```

\subsection*{14.6 A Bounds-Consistent IC constraint}

To show the basic ideas, we will simply reimplement a constraint that already exists in the ic solver, the inequality constraint. We want a constraint ge/2 that takes two ic variables (or numbers) and constrains the first to be greater or equal to the second.
The behaviour should be to maintain bounds-consistency: If we have a goal ge(\(\mathrm{X}, \mathrm{Y}\)), where the domain of X is \(\mathrm{X}\{1 . .5\}\) and the domain of Y is \(\mathrm{Y}\{3 . .7\}\), we would like the domains to be updated such that the upper bound of Y gets reduced to 5 , and the lower bound of X gets increased to 3 . The following code achieves this:
```

ge(X, Y) :-
get_bounds(X, _, XH),
get_bounds(Y, YL, _),
( var(X),var(Y) ->
suspend(ge(X,Y), 0, [X->ic:max, Y->ic:min])
;

```
suspend(Goal, Priority, Triggers) Creates Goal as a delayed goal with a given waking priority and triggering conditions. Triggers is a list of Variables->Conditions terms, specifying under which conditions the goal will be woken up. The priority specifies with which priority the goal will be scheduled after it has been triggered. A priority of 0 selects the default for the predicate. Otherwise, valid priorities range are from 1 (most urgent, reserved for debugging purposes) to 12 (least urgent).

Some valid triggers:
X->inst wake when the variable becomes instantiated (most specific)
X->constrained wake when the variable becomes constrained somehow (most general)
\(\mathrm{X}->\mathbf{i c}:\) min wake when the lower bound of an ic-variable changes
X->ic:max wake when the upper bound of an ic-variable changes
X->ic:hole wake an internal domain value gets removed

Figure 14.3: The Basic Suspension Facilities
```

    true
    ),
X \#>= YL, % impose new bounds
Y \#=< XH.

```

We have used a single primitive from the low-level interface of the ic library: get_bounds/3, which extracts the current domain bounds from a variable. Further, we have used the information that the library implements trigger conditions called min and max, which cause a goal to wake up when the lower/upper bound on an ic variable changes.
Note that we suspend a new instance of the ge (\(\mathrm{X}, \mathrm{Y}\)) goal before we impose the new bounds on the variables. This is important when the constraint is to be used together with other constraints of higher priority: imposing a bound may immediately wake and execute such a higher-priority constraint. The higher-priority constraint may then in turn change one of the bounds that ought to wake ge/2 again. This only works if ge/2 has already been (re-)suspended at that time.

\subsection*{14.7 Using a Demon}

Every time the relevant variable bounds change, the delayed ge/2 goal wakes up and (as long as there are still two variables) a new, identical goal gets delayed. To better support this situation, \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) provides a special type of predicate, called a demon. A predicate is turned into a demon by annotating it with a demon/1 declaration. A demon goal differs from a normal goal only in its behaviour on waking. While a normal goal disappears from the resolvent when it is woken, the demon remains in the resolvent. Declaratively, this corresponds to an implicit
recursive call in the body of each demon clause. Or, in other words, the demon goal forks into one goal that remains in the suspended part of the resolvent, and an identical one that gets scheduled for execution.
With a demon, our above example can be done more efficiently. One complication arises, however. Since the goal implicitly re-suspends, it now has to be explicitly killed when it is no longer needed. The easiest way to achieve this is to let it have a handle to itself (its 'suspension') in one of its arguments. This can then be used to kill the suspension when required:
```

ge(X, Y) :-
suspend(ge(X,Y,MySusp), 0, [X->ic:max, Y->ic:min], MySusp),
ge(X, Y, MySusp).
:- demon ge/3.
ge(X, Y, MySusp) :-
get_bounds(X, _, XH),
get_bounds(Y, YL, _),
( var(X),var(Y) ->
true % implicitly re-suspend
;
kill_suspension(MySusp)
),
X \#>= YL, % impose new bounds
Y \#=< XH.

```

We have used the new primitives suspend/4 and kill_suspension/1.

\subsection*{14.8 Exercises}
1. Implement a constraint atmost \(/ 3\)
atmost (+N, +List, +V)
which takes an integer N , an integer V and a list List containing integers or integer domain variables.

Meaning: at most N elements of List have value V .
Behaviour: Fail as soon as too many list elements are instantiated to value V . This requires only basic suspension facilities, no domain information needs to be taken into account.
Tests are provided in the file atmost.tst. You can test your constraint by loading the library lib(test_util) and then calling test (atmost).
2. Implement a constraint offset \(/ 3\)
```

offset(?X,+Const,?Y)

```
which is declaratively like
```

offset(X,Const, $Y$ ) :- Y \#= X+Const.

```
but maintains domain-arc-consistency (i.e. propagates "holes", while the above definition only maintains bounds-consistency).
Use suspension built-ins and domain-access primitives from the ic_kernel module. Use not_unify \(/ 2\) to test whether a value is outside a variable's domain.
Tests are provided in the file offset.tst. You can test your constraint by loading the library lib(test_util). and then calling test (offset).

\section*{Chapter 15}

\section*{Propia and CHR}

\subsection*{15.1 Two Ways of Specifying Constraint Behaviours}

There are two elegant and simple ways of building constraints available in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\), called Propia and Constraint Handling Rules (or CHR's). They are themselves built using the facilities described in chapter 14.
Consider a simple noclash constraint requiring that two activities cannot be in progress at the same time. For the sake of the example, the constraint involves two variables, the start times \(S 1\) and \(S 2\) of the two activities, which both have duration 5. Logically this constraint states that noclash \(\Leftrightarrow(S 1>=S 2+5 \vee S 2>=S 1+5)\). The same logic can be expressed as two \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) clauses:
```

noclash(S1,S2) :-
ic:(S1 \$>= S2+5).
noclash(S1,S2) :-
ic:(S2 \$>= S1+5).

```

Constraint propagation elicits information from constraints without leaving any choice points. Constraint propagation behaviour can be associated with each of the above representations, by CHR's and by Propia.
One way to propagate information from noclash is to wait until the domains of the start times are reduced sufficiently that only one ordering of the tasks is possible, and then to enforce the constraint that the second task not start until the first is finished.
This behaviour can be implemented in CHR's as follows:
```

:- constraints noclash/2.
noclash(S1,S2) <=> ic:(S2 \#< S1+5) | ic:(S1 \#>= S2+5).
noclash(S1,S2) <=> ic:(S1 \#< S2+5) | ic:(S2 \#>= S1+5).

```

Consider the query:

Propia and CHRs make it easy to turn the logical statement of a constraint into code that efficiently enforces that constraint.

Figure 15.1: Building Constraints without Tears
```

?- ic:([S1,S2]::1..10),
noclash(S1,S2),
S1 \#>= 6.

```

In this query noclash achieves no propagation when it is initially posted with the start time domains set to \(1 \ldots\). However, after imposing \(S 1>=6\), the domain of \(S 1\) is reduced to \(6 . .10\). Immediately the noclash constraint wakes, detects that the first condition \(S 1+5>=S 2\) is entailed, and narrows the domain of \(S 2\) to 1..5.
The same behaviour can be expressed in Propia, but this time the original ECL \({ }^{i} \mathrm{PS}^{e}\) representation of noclash as two clauses is used directly. The propagation behaviour is automatically extracted from the two clauses by Propia when the noclash goal is annotated as follows:
```

?- [S1,S2]::1..10,
noclash(S1,S2) infers most,
S1 \#>= 6.

```

\subsection*{15.2 The Role of Propia and CHR in Problem Modelling}

To formulate and solve a problem in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) the standard pattern is as follows:
1. Initialise the problem variables
2. State the constraints
3. Specify the search behaviour

Very often, however, the constraints involve logical implications or disjunctions, as in the case of the noclash constraint above. Such constraints are most naturally formulated in a way that would introduce choice points during the constraint posting phase. The two \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) clauses defining noclash, above, are a case in point.
There are two major disadvantages of introducing choice points during constraint posting:
- Posting and reposting constraints during search is an unnecessary and computationally expensive overhead
- Mixing constraint behaviour and search behaviour makes it harder to explore and optimize the algorithm executed by the program.

Propia and CHR's support the separation of constraint setup and search behaviour, by allowing constraints to be formulated naturally without their execution setting up any choice points.
The effect on performance is illustrated by the following small example. The aim is to choose a set of 9 products (Products, identified by their product number 101-109) to manufacture, with

Figure 15.2: Modelling without Choice Points
a limited quantity of raw materials (Raw1 and Raw2), so as to achieve a profit (Profit) of over 40. The amount of raw materials (of two kinds) needed to produce each product is listed in a table, together with its profit.
```

product_plan(Products) :-
length(Products,9),
Raw1 \#=< 95,
Raw2 \#=< 95,
Profit \#>= 40,
sum(Products,Raw1,Raw2,Profit),
labeling(Products).
product( 101,1,19,1). product( 102,2,17,2). product( 103,3,15,3).
product( 104,4,13,4). product( 105,10,8,5). product( 106,16,4,4).
product( 107,17,3,3). product( 108,18,2,2). product( 109,19,1,1).
sum(Products,Raw1,Raw2,Profit) :-
( foreach(Item,Products),
foreach(R1,R1List),
foreach(R2,R2List),
foreach(P,PList)
do
product(Item,R1,R2,P)
),
Raw1 \#= sum(R1List),
Raw2 \#= sum(R2List),
Profit \#= sum(PList).

```

The drawback of this program is that the sum constraint calls product which chooses an item and leaves a choice point at each call. Thus the setup of the sum constraint leaves 9 choice points. Try running it, and the program fails to terminate within a reasonable amount of time. Now to make the program run efficiently, we can simply annotate the call to product as a Propia constraint making: product(Item,R1,R2,P) infers most. This program leaves no choice points during constraint setup, and finds a solution in a fraction of a second.
In the remainder of this chapter we show how to use Propia and CHR's, give some examples, and outline their implementation.

\subsection*{15.3 Propia}

Propia is an implementation of Generalised Propagation which is described in the paper [14].

\subsection*{15.3.1 How to Use Propia}

In principle Propia propagates information from an annotated goal by finding all solutions to the goal and extracting any information that is common to all the different solutions. (In practice, as we shall see later, Propia does not typically need to find all the solutions.)
The "common" information that can be extracted depends upon what constraint solvers are used when evaluating the underlying un-annotated ECL \({ }^{i} \mathrm{PS}^{e}\) goal. To illustrate this, consider another simple example.
```

p(1,3).
p(1,4).
?- p(X,Y) infers most.

```

If the ic library is not loaded when this query is invoked, then the information propagated by Propia is that \(X=1\). If, on the other hand, ic is loaded, then more common information is propagated. Not only does Propia propagate \(X=1\) but also the domain of \(Y\) is tightened from -inf..inf to 3..4. (In this case the additional common information is that \(Y \neq 0, Y \neq 1\), \(Y \neq 2\) and so on for all values except 3 and \(4!\))
Any goal Goal in an \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) program, can be transformed into a constraint by annotating it thus: Goal infers Parameter. Different behaviours can be specified with different parameters, viz:
- Goal infers most

Propagates all common information produced by the loaded solvers
- Goal infers unique

Fails if there is no solution, propagates the solution if it is unique, and succeeds without propagating further information if there is more than one solution.
- Goal infers consistent

Fails if there is no solution, and propagates no information otherwise
These behaviours are nicely illustrated by the crossword demonstration program crossword in the examples code directory. There are 72 ways to complete the crossword grid with words from the accompanying directory. For finding all 72 solutions, the comparative performance of the different annotations is given in the table Comparing Annotations.
The example program also illustrates the effect of specifying the waking conditions for Propia. By only waking a Propia constraint when it becomes instantiated, the time to solve the crossword problem can be changed considerably. For example by changing the annotation from Goal infers most to suspend (Goal,4, Goal->inst) infers most the time needed to find all solutions goes down from 10 seconds to just one second.
For other problems, such as the square tiling problem in the example directory, the fastest version is the one using infers consistent. To find the best Propia annotation it is necessary to experiment with the current problem using realistic data sets.
\begin{tabular}{|c|c|}
\hline Annotation & CPU time (secs) \\
\hline consistent & 13.3 \\
unique & 2.5 \\
most & 9.8 \\
ac & 0.3 \\
\hline
\end{tabular}

Table 15.1: Comparing Annotations

\subsection*{15.3.2 Propia Implementation}

In this section we describe how Propia works.

\section*{Outline}

When a goal is annotated as a Propia constraint, eg. \(p(X, Y)\) infers most, first the goal \(\mathrm{p}(\mathrm{X}, \mathrm{Y})\) is in effect evaluated in the normal way by \(\mathrm{ECL}^{i} \mathrm{PS}{ }^{e}\). However Propia does not stop at the first solution, but continues to find more and more solutions, each time combining the information from the solutions retrieved. When all the information has been accumulated, Propia propagates this information (either by narrowing the domains of variables in the goal, or partially instantiating them).
Propia then suspends the goal again, until the variables become further constrained, at which point it wakes, extracts information from solutions to the more constrained goal, propagates it, and suspends again.
If Propia detects that the goal is entailed (i.e. the goal would succeed whichever way the variables were instantiated), then after propagation it does not suspend any more.

\section*{Most Specific Generalisation}

Propia works by treating its input both as a goal to be called, and as a term which can be manipulated as data. As with any \(E C L^{i} \mathrm{PS}^{e}\) goal, when executed its result is a further instantiation of the term. For example the first result of calling member (\(X,[a, b, c]\)) is to further instantiate the term yielding member \((a,[a, b, c])\). This instantiated term represents the (first) solution to the goal.
Propia combines information from the solutions to a goal using their most specific generalisation \((M S G)\). The MSG of two terms is a term that can be instantiated (in different ways) to either of the two terms. For example \(p(a, f(Y))\) is the MSG of \(p(a, f(b))\) and \(p(a, f(c))\). This is the meaning of generalisation. The meaning of most specific is that any other term that generalises the two terms, is more general than the MSG. For example, any other term that generalises \(p(a, f(b)\) and \(p(a, f(c))\) can be instantiated to \(p(a, f(Y))\). The MSG of two terms captures only

Propia extracts information from a procedure which may be defined by multiple \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) clauses. The information to be extracted is controlled by the Propia annotation.

Figure 15.3: Transforming Procedures to Constraints
information that is common to both terms (because it generalises the two terms), and it captures all the information possible in the two terms (because it is the most specific generalisation). Some surprising information is caught by the MSG. For example the MSG of \(p(0,0)\) and \(p(1,1)\) is \(p(X, X)\). We can illustrate this being exploited by Propia in the following example:
```

% Definition of logical conjunction
conj(1,1,1).
conj(1,0,0).
conj(0,1,0).
conj(0,0,0).
conjtest(X,Z) :-
conj(X,Y,Z) infers most,
X=Y.

```

The test succeeds, recognising that \(X\) must take the same truth value as \(Z\). Running this in ECL \({ }^{i}\) PS \({ }^{e}\) yields:
```

X = X
Z = X
Delayed goals:
conj(X, X, X) infers most
Yes (0.00s cpu)

```

If the ic library is loaded more information can be extracted, because the MSG of 0 and 1 is a variable with domain \(0 . .1\). Thus the result of the above example is not only to equate \(X\) and \(Z\) but to associate with them the domain \(0 . .1\).
The MSG of two terms depends upon what information is expressible in the MSG term. As the above example shows, if the term can employ variable domains the MSG is more precise.
By choosing the class of terms in which the MSG can be expressed, we can capture more or less information in the MSG. If, for example, we allow only terms of maximum depth 1 in the class, then MSG can only capture functor and arity. In this case the MSG of \(f(a, 1)\) and \(f(a, 2)\) is simply \(f\left({ }_{-},-\right)\), even though there is more shared information at the next depth.
In fact the class of terms can be extended to a lattice, by introducing a bottom \(\perp\) and a top \(\top . \perp\) is a term carrying no information; \(T\) is a term representing inconsistent information; the meet of two terms is the result of unifying them; and their join is their MSG.

\section*{The Propia Algorithm}

We can now specify the Propia algorithm more precisely. The Propia constraint is

\section*{Goal infers Parameter}
- Set OutTerm \(:=\top\)

Propia computes the Most Specific Generalisation (MSG) of the set of solutions to a procedure. It does so without, necessarily, backtracking through all the solutions to the procedure. The MSG depends upon the annotation of the Propia call.

Figure 15.4: Most Specific Generalisation
- Repeat
- Find a solution \(S\) to Goal which is not an instance of OutTerm
- Find the MSG, in the class specified by Parameter, of OutTerm and S. Call it MSG
- Set OutTerm \(:=\) MSG
until either Goal is an instance of OutTerm, or no such solution remains
- Return OutTerm

When infers most is being handled, the class of terms admitted for the MSG is the biggest class expressible in terms of the currently loaded solvers. In case \(i c\) is loaded, this includes variable domain, but otherwise it includes any \(\mathrm{ECL}^{i} \mathrm{PS}{ }^{e}\) term without variable attributes.
The algorithm supports infers consistent by admitting only the two terms \(\top\) and \(\perp\) in the MSG class. infers unique is a variation of the algorithm in which the first step OutTerm := \(\top\) is changed to finding a first solution \(S\) to Goal and initialising OutTerm \(:=S\).
Propia's termination is dramatically improved by the check that the next solution found is not an instance of OutTerm. In the absence of domains, there is no infinite sequence of terms that strictly generalise each other. Moreover, if the variables in Goal have finite domains, the same result holds. Thus, because of this check, Propia will terminate as long as each call of Goal terminates.
For example the Propia constraint member(Var, List) infers Parameter will always terminate, if each call of member (Var,List) does, even in case member (Var,List) has infinitely many solutions!

\subsection*{15.3.3 Propia and Related Techniques}

If the finite domain solver is loaded then Goal infers most prunes the variable domains so every value is supported by values in the domains of the other variables. If every problem constraint was annotated this way, then Propia would enforce arc consistency.
Propia generalises traditional arc consistency in two ways. Firstly it admits n-ary constraints, and secondly it handles predicates defined by rules, as well as ground facts. In the special case that the goal can be "unfolded" into a finite set of ground solutions, this can be exploited by using infers ac to make Propia run more efficiently. When called with parameter infers ac, Propia simply finds all solutions and applies n-ary arc-consistency to the resulting tables.
Propia also generalises constructive disjunction. Constructive disjunction could be applied in case the predicate was unfolded into a finite set of solutions, where each solution was expressed using ic constraints (such as equations, inequations etc.). Propia can also handle recursively defined predicates, like member, exampled above, which may have an infinite number of solutions.

\subsection*{15.4 CHR}

Constraint Handling Rules were originally implemented in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\). They are introduced in the paper 9 .

\subsection*{15.4.1 How to Use CHR}

CHR's offer a rule-based programming style to express constraint simplification and constraint propagation. The rules all have a head, an explicit or implicit guard, and a body, and are written either
```

Head <=> Guard | Body. %Simplification Rule

```
or
```

Head ==> Guard | Body. %Propagation Rule

```

When a constraint is posted that is an instance of the head, the guard is checked to determine whether the rule can fire. If the guard is satisfied (i.e. CHR detects that it is entailed by the current search state), the rule fires. Unlike \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) clauses, the rules leave no choice points. Thus if several rules share the same head and one fires, the other rules are never fired even after a failure.
Normally the guards exclude each other, as in the noclash example:
```

:- lib(ech).
:- constraints noclash/2.
noclash(S1,S2) <<> ic:(S2 \#< S1+5) | ic:(S1 \#>= S2+5).
noclash(S1,S2) <=> ic:(S1 \#< S2+5) | ic:(S2 \#>= S1+5).

```

Henceforth we will not explicitly load the ech library.
The power of guards lies in the behaviour of the rules when they are neither entailed, nor disentailed. Thus in the query
```

?- ic:([S1,S2]::1..10),
noclash(S1,S2),
S1 \#>= 6.

```
when the noclash constraint is initially posted, neither guard is entailed, and CHR simply postpones the handling of the constraint until further constraints are posted. As soon as a guard becomes entailed, however, the rule fires. For simplification rules, of the form Head <s> Guard | Body, the head is replaced by the body. In this example, therefore, noclash (S1,S2) is replaced by S1 \#>= S2+5.
Propagation rules are useful to add constraints, instead of replacing them. Consider, for example, an application to temporal reasoning. If the time \(T 1\) is before time \(T 2\), then we can propagate an additional ic constraint saying \(T 1=<T 2\) :

CHRs are guarded rules which fire without leaving choice points. A CHR rule may have one or many goals in the head, and may take the following forms: Simplification rule, Propagation rule or Simpagation rule.

Figure 15.5: CHRs
```

:- constraints before/2.
before(T1,T2) ==> ic:(T1 \$=< T2)

```

This rule simply posts the constraint T1 \(\$=<\mathrm{T} 2\) to \(i c\). When a propagation rule fires its body is invoked, but its head remains in the constraint store.

\subsection*{15.4.2 Multiple Heads}

Sometimes different constraints interact, and more can be deduced from the combination of constraints than can be deduced from the constraints separately. Consider the following query:
```

?- ic:([S1,S2]::1..10),
noclash(S1,S2),
before(S1,S2).

```

Unfortunately the ic bounds are not tight enough for the noclash rule to fire. The two constraints can be combined so as to propagate \(S 2 \geq S 1+5\) using a two-headed CHR:
```

noclash(S1,S2), before(S1,S2) ==> ic:(S2 \#>= S1+5).

```

We would prefer to write a set of rules that captured this kind of inference in a general way. This can be achieved by writing a more complete solver for prec, and combining it with noclash. \(\operatorname{prec}(S 1, D, S 2)\) holds if the time \(S 1\) precedes the time \(S 2\) by at least \(D\) units of time. For the following code to work, \(S 1\) and \(S 2\) may be numbers or variables, but \(D\) must be a number.
```

:- constraints prec/3.
prec(S,D,S) <=> D=<0.
prec(S1,0,S2), prec(S2,0,S1) <=> S1=S2.
prec(S1,D1,S2), prec(S2,D2,S3) ==> D3 is D1+D2, prec(S1,D3,S3).
prec(S1,D1,S2) \ prec(S1,D2,S2) <<> D2=<D1 | true. % Simpagation
noclash(S1,S2), prec(S1,D,S2) ==> D > -5 | prec(S1,5,S2).
noclash(S1,S2), prec(S2,D,S1) ==> D > -5 | prec(S2,5,S1).

```

Note the simpagation rule, whose head has two parts Head1 \Head2. In a simpagation rule Head2 is replaced, but Head1 is kept in the constraint store.

\subsection*{15.5 A Complete Example of a CHR File}

Sometimes whole sets of constraints can be combined. Consider, for example, a program where disequalities on pairs of variables are accumulated during search. Whenever a point is reached where any subset of the variables are all constrained to be different an alldifferent constraint can be posted on that subset, thus supporting more powerful propagation. This can be achieved by finding cliques in the graph whose nodes are variables and edges are disequality constraints. We start our code with a declaration to load the ech library. The constraints are then declared, and subsequently defined by rules. The CHR encoding starts by generating a clique whenever two variables are constrained to be different.
```

:- lib(ech).
:- constraints neq/2.
neq(X,Y) ==>
sort([X,Y],List),
clique(List),
neq(Y,X).

```

Each clique is held as a sorted list to avoid any duplication. The symmetrical disequality is added to simplify the detection of new cliques, below. Whenever a clique is found, the alldifferent constraint is posted, and the CHRs seek to extend this clique to include another variable:
```

:- constraints clique/1.
clique(List) ==> alldifferent(List).
clique(List),neq(X,Y) ==>
in_clique(Y,List), not in_clique(X,List) |
sort([X|List],Clique),
extend_clique(X,List,Clique).
in_clique(Var,List) :-
member(El,List), El==Var, !.

```

The idea is to search the constraint store for a disequality between the new variable \(X\) and each other variable in the original clique. This is done by recursing down the list of remaining variables. When there are no more variables left, a new clique has been found.
```

neq(X,Y) \ extend_clique(X,[Y|Tail],Clique) <=>
extend_clique(X,Tail,Clique).
extend_clique(_,[],Clique) <=>
clique(Clique).

```

Finally, we add three optimisations. Don't try and find a clique that has already been found, or find the same clique twice. If the new variable is equal to a variable in the list, then don't try any further.
```

clique(Clique) \ extend_clique(_,_,Clique) <<> true.
extend_clique(_,_,Clique) \ extend_clique(_,_,Clique) <=> true.
extend_clique(Var,List,_) <<> in_clique(Var,List) | true.

```

\subsection*{15.5.1 CHR Implementation}

CHR's are implemented using the ECL \({ }^{i} \mathrm{PS}^{e}\) suspension and waking mechanisms. A rule is woken if:
- a new goal is posted, which matches one of the goals in its head
- a goal which has already been posted earlier becomes further instantiated.

The rule cannot fire unless the goal is more instantiated than the rule head. Thus the rule \(p(a, f(Y), Y) \Leftrightarrow q(Y)\) is really a shorthand for the guarded rule:
\[
p(A, B, C) \Leftrightarrow A=a, B=f(Y), C=Y \mid q(Y)
\]

The guard is "satisfied" if, logically, it is entailed by the constraints posted already.
In practice the CHR implementation cannot always detect the entailment. The consequence is that goals may fire later than they could. For example consider the program
```

:- constraints p/2.
p(X,Y) <=> ic:(X \$> Y) | q(X,Y).

```
and the goal
```

?- ic:(X \$> Y),
p(X,Y).

```

Although the guard is clearly satisfied, the CHR implementation cannot detect this and \(p(X, Y)\) does not fire. If the programmer needs the entailment of inequalities to be detected, it is necessary to express inequalities as CHR constraints, which propagate ic constraints as illustrated in the example prec (S1,D,S2) above.
CHRs can detect entailment via variable bounds, so \(p(X, 0)\) does fire in the following example:
```

?- ic:(X \$> 1),
p(X,0).

```

The implementation of this entailment test in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) is to impose the guard as a constraint, and fail (the entailment test) as soon as any variable becomes more constrained. A variable becomes more constrained if:

CHRs suspend on the variables in the rule head. On waking the CHR tests if its guard is entailed by the current constraint store. The entailment test is efficient but incomplete, and therefore rules may fail to fire as early as they could in theory.

Figure 15.6: CHR Implementation
- it becomes more instantiated
- its domain is tightened
- a new goal is added to its suspension list

There are many examples of applications expressed in CHR in the ECL \({ }^{i} \mathrm{PS}^{e}\) distribution. They are held as files in the chr subdirectory of the standard \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) library directory lib.

\subsection*{15.6 Global Reasoning}

Constraints in ic are handled separately and individually. More global consistency techniques can be achieved using global constraints. Propia and CHRs provide alternative methods of achieving more global consistency. Propia allows any subproblem to be treated as a single constraint. CHRs allow any set of constraints to be handled by a single rule. Each technique has special strengths. Propia is good for handling complicated logical combinations of constraints. CHRs are good for combining sets of constraints to extract transitive closures, and cliques.
Both are fun to implement and use!

\subsection*{15.7 Propia and CHR Exercise}

The problem is to implement three constraints, and, or and xor in CHRs and, as a separate exercise, in Propia. The constraints are specified as follows: All boolean variables have domain \(\{0,1\}: 0\) for 'false' and 1 for 'true'.
\[
\begin{aligned}
& \operatorname{and}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\operatorname{def}(\mathrm{X} \& \mathrm{Y})=\mathrm{Z} \\
& \operatorname{or}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\operatorname{def}(\mathrm{X} \text { or } \mathrm{Y})=\mathrm{Z} \\
& \operatorname{xor}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\operatorname{def}((\mathrm{X} \&-\mathrm{Y}) \text { or }(-\mathrm{X} \& \mathrm{Y}))=\mathrm{Z}
\end{aligned}
\]

Suppose your constraints are called cons_and, cons_or and cons_xor Now write enter the following procedure:
```

full_adder(I1,I2,I3,01,02) :-
cons_xor(I1,I2,X1),
cons_and(I1,I2,Y1),
cons_xor(X1,I3,01),
cons_and(I3,X1,Y2),
cons_or(Y1,Y2,02).

```

The problem is solved if you enter the query:
```

?- full_adder(I1,I2,0,01,1).

```
and get the correct answer.
Note: you are not allowed to load the ic library nor to use search and backtracking!

\section*{Chapter 16}

\section*{The Eplex Library}

\subsection*{16.1 Introduction}

The eplex library allows an external Mathematical Programming solver to be used by ECL \({ }^{i} \mathrm{PS}^{e}\). It is designed to allow the external solver to be seen as another solver for \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\), possibly in co-operation with the existing 'native' solvers of \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) such as the \(i c\) solver. It is not specific to a given external solver, with the differences between different solvers (largely) hidden from the user, so that the user can write the same code and it will run on the different solvers.
The exact types of problems that can be solved (and methods to solve them) are solver dependent, but currently linear programming, mixed integer programming and quadratic programming problems can be solved.
The rest of this chapter is organised as follows: the remainder of this introduction gives a very brief description of Mathematical Programming, which can be skipped if the reader is familiar with the concepts. Section 16.3 demonstrates the modelling of an MP problem, and the following section discusses some of the more advanced features of the library that are useful for hybrid techniques.

\subsection*{16.1.1 What is Mathematical Programming?}

Mathematical Programming (MP) (also known as numerical optimisation) is the study of optimisation using mathematical/numerical techniques. A problem is modelled by a set of simultaneous equations: an objective function that is to be minimised or maximised, subject to a set of constraints on the problem variables, expressed as equalities and inequalities.
Many subclasses of MP problems have found important practical applications. In particular, Linear Programming (LP) problems and Mixed Integer Programming (MIP) problems are perhaps the most important. LP problems have both a linear objective function and linear constraints. MIP problems are LP problems where some or all of the variables are constrained to take on only integer values.
It is beyond the scope of this chapter to cover MP in any more detail. However, for most usages of the eplex library, the user need not know the details of MP - it can be treated as a black-box solver.
\(\odot\) For more information on Mathematical Programming, you can read a textbook on the subject
- Linear Programming (LP) problems: linear constraints and objective function, continuous variables.
- Mixed Integer Programming (MIP) problems: LP problems with some or all variables restricted to taking integral values.

Figure 16.1: Classification of MP problems
such as H. P. Williams' Model Building in Mathematical Programming [30].

\subsection*{16.1.2 Why interface to Mathematical Programming solvers?}

Much research effort has been devoted to developing efficient ways of solving the various subclasses of MP problems for over 50 years. The external solvers are state-of-the-art implementations of some of these techniques. The eplex library allows the user to model an MP problem in ECLiPSe, and then solve the problem using the best available MP tools.
In addition, the eplex library allows for the user to write programs that combines MP's global algorithmic solving techniques with the local propagation techniques of Constraint Logic Programming.

\subsection*{16.1.3 Example formulation of an MP Problem}

Figure 16.2 shows an example of an MP problem. It is a transportation problem where several plants (1-3) have varying product producing capacities that must be transported to various clients (A-D), each requiring various amounts of the product. The per-unit cost of transporting the product to the clients also varies. The problem is to minimise the transportation cost whilst satisfying the demands of the clients.
To formulate the problem, we define the amount of product transported from a plant \(N\) to a client \(p\) as the variable \(N p\), e.g. \(A 1\) represents the cost of transporting to plant \(A\) from client 1. There are two kinds of constraints:
- The amount of product delivered from all the plants to a client must be equal to the client's demand, e.g. for client A , which can recieve products from plants 1-3: \(A 1+A 2+A 3=21\)
- The amount of product sent by a plant must not be more than its capacity, e.g. for plant 1, which can send products to plants A-D: \(A 1+B 1+C 1+D 1 \leq 50\)

The objective is to minimise the transportation cost, thus the objective function is to minimise the combined costs of transporting the product to all 4 clients from the 3 plants.
Putting everything together, we have the following formulation of the problem:
Objective function:
\[
\min (10 A 1+7 A 2+200 A 3+8 B 1+5 B 2+10 B 3+5 C 1+5 C 2+8 C 3+9 D 1+3 D 2+7 D 3)
\]

Figure 16.2: An Example MP Problem
Constraints:
\[
\begin{aligned}
A 1+A 2+A 3 & =21 \\
B 1+B 2+B 3 & =40 \\
C 1+C 2+C 3 & =34 \\
D 1+D 2+D 3 & =10 \\
A 1+B 1+C 1+D 1 & \leq 50 \\
A 2+B 2+C 2+D 2 & \leq 30 \\
A 3+B 3+C 3+D 3 & \leq 40
\end{aligned}
\]

\subsection*{16.2 How to load the library}

To use the library, you must have an MP solver that eplex can use (for example, XPRESS-MP or CPLEX). Your \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) should be configured to load in a 'default' solver if there is more than one available.See the library manual's Eplex chapter for details for how to install the solver.
When configured properly, the library can be loaded with the directive:

An eplex instance represents a single MP problem in a module. Constraints for the problem are posted to the module. The problem is solved with respect to an objective function.

Figure 16.3: Eplex Instance
```

:- lib(eplex).

```

This will load the library with the default external MP solver.
You may need a valid license in order to use an external solver. With your \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) license, you can obtain a full OEM version of XPRESS-MP \({ }^{1}\) that runs with \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) version 5.5 and later from \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) 's ftp site.

\subsection*{16.3 Modelling MP problems in \(\mathrm{ECL}^{i} \mathbf{P S}^{e}\)}

\subsection*{16.3.1 Eplex instance}

The simplest way to model an eplex problem is through an eplex instance. Abstractly, it can be viewed as a solver module that is dedicated to one MP problem. MP constraints can be posted to the instance and the problem solved with respect to an objective function by the external solver.
Declaratively, an eplex instance can be seen as a compound constraint consisting of all the variables and constraints of its eplex problem. Like normal constraints, different eplex instances can share variables, although the individual MP constraints in an eplex instance do not necessarily have to be consistent with those in another.

\subsection*{16.3.2 Example modelling of an MP problem in \(\mathrm{ECL}^{i} \mathbf{P S}^{e}\)}

The following code models (and solves) the transportation problem of Figure 16.2, using an eplex instance:
```

:- lib(eplex).
:- eplex_instance(prob). % a. declare an eplex instance
main1(Cost, Vars) :-
% b. create the problem variables and set their range
Vars = [A1,A2,A3,B1, B2, B3,C1,C2,C3,D1,D2,D3],
prob: (Vars \$:: 0.0..1.0Inf),
% c. post the constraints for the problem to the eplex instance
prob: (A1 + A2 + A3 \$= 21),
prob: (B1 + B2 + B3 \$= 40),

```

\footnotetext{
\({ }^{1}\) XPRESS-MP is a product from Dash Associates Ltd. (www.dashoptimization.com)
}
```

prob: (C1 + C2 + C3 \$= 34),
prob: (D1 + D2 + D3 \$= 10),
prob: (A1 + B1 + C1 + D1 \$=< 50),
prob: (A2 + B2 + C2 + D2 \$=< 30),
prob: (A3 + B3 + C3 + D3 \$=< 40),
% d. set up the external solver with the objective function
prob: eplex_solver_setup(min(
10*A1 + 7*A2 + 200*A3 +
8*B1 + 5*B2 + 10*B3 +
5*C1 + 5*C2 + 8*C3 +
9*D1 + 3*D2 + 7*D3)),
%------------------------------ End of Modelling code
prob: eplex_solve(Cost). % e. Solve problem using external solver

```

To use an eplex instance, it must first be declared with eplex_instance/1. This is usually done with a directive, as in line a. Once declared, an eplex instance can be referred to using its name like a module qualifier.
We first create the problem variables and set their range to be non-negative, as is conventional in MP. Note that the bounds are posted to our eplex instance, using \(\$:: / 2\).
\(\otimes\) The default bounds for variables is -1.0Inf..1.0Inf. Bounds posted to an eplex instance are specific to that eplex instance.

Next, we set up the MP constraints for the problem by posting them to the eplex instance. The MP constraints accepted by eplex are the arithmetic equalities and inequalities: \(\$=/ 2, \$=</ 2\) and \(\$>=/ 2\).
\(\otimes\) The arithmetic constraints can be linear expressions on both sides. The restriction to linear expressions originates from the external solver.

We need to setup the external solver with the eplex instance, so that the problem can be solved by the external solver. This is done by eplex_solver_setup/1, with the objective function given as the argument, enclosed by either \(\min (\ldots)\) or \(\max (\ldots)\). In this case, we are minimising. Note that generally the setup of the solver and the posting of the MP constraints can be done in any order.
Having set up the problem, we can solve it by calling eplex_solve/1 in line e.
When an instance gets solved, the external solver takes into account all constraints posted to that instance, the current variable bounds for the problem variables, and the objective specified during setup.
In this case, there is an optimal solution of 710.0:
```

?- main1(Cost, Vars).

```
```

Cost = 710.0
Vars = [A1{0.0 .. 1e+20 @ 0.0}, A2{0.0 .. 1e+20 @ 21.0}, ....]

```

Note that the problem variables are not instantiated by the solver. However, the 'solution' values, i.e. the values that the variable are given by the solver, are available in the eplex attribute. The eplex attribute is shown as Lo..Hi @ Sol where Lo is the lower bound, Hi the upper bound, and Sol the solution value for the variable (e.g., A2 has the solution value of 21.0 in the example above). Note also that the external solver may not allow very large floats, hence \(1 \mathrm{e}+20\), this external solver's representation of infinity, is the upper bound of the variables, even though we specified 1.OInf in our code.
One reason the problem variables are not assigned their solution values is so that the eplex problem can be solved again, after it has been modified. A problem can be modified by the addition of more constraints, and/or changes in the bounds of the problem variables.

\subsection*{16.3.3 Getting more solution information from the solver}

The solution values of the problem variables can be obtained by eplex_var_get/3. The example program in the previous section can be modified to return the solution values:
```

main2(Cost, Vars) :-
.... % same as previous example up to line e
prob: eplex_solve(Cost), % e. Solve problem using external solver
(foreach(V, Vars) do
% f. set the problem variables to their solution values
prob: eplex_var_get(V, typed_solution, V)
).

```

In line \(f\), eplex_var_get \(/ 3\) is used to obtain the solution value for a problem variable. The second argument, set to typed_solution, specifies that we want the solution value for the variable to be returned. Here, we instantiate the problem variable itself to the solution value with the third argument:
```

?- main2(Cost, Vars).
Cost = 710.0
Vars = [0.0, 21.0, 0.0, 16.0, 9.0, 15.0, 34.0, 0.0, 0.0, 0.0, 0.0, 10.0]

```

Note that, in general, an MP problem can have many optimal solutions, i.e. different solutions which give the optimal value for the objective function. As a result, the above instantiations for Vars might not be what is returned by the solver used.

\subsection*{16.3.4 Adding integrality constraints}

In general, a problem variable is not restricted to taking integer values. However, for some problems, there may be a requirement that some or all of the variable values be strictly integral
(for example, in the previous transportation problem, it may be that only whole units of the products can be transported; also variables may often be used to model booleans by allowing them to take on the values of 0 or 1 only). This can be specified by posting an additional integers/1 constraint on the variables.
Consider the example problem again, where it so happens that the optimal value for the objective function can be satisfied with integral values for the variables. To show the differences that imposing integer constraints might make, we add the constraint that client A must receive an equal amount of products from plants 1 and 2 . Now the problem (without the integer constraints) can be written as:
```

:- lib(eplex).
:- eplex_instance(prob).
main3(Cost, Vars) :-
Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],
prob: (Vars \$:: 0.0..1.0Inf),
prob: (A1 + A2 + A3 \$= 21),
prob: (B1 + B2 + B3 \$= 40),
prob: (C1 + C2 + C3 \$= 34),
prob: (D1 + D2 + D3 \$= 10),
prob: (A1 + B1 + C1 + D1 \$=< 50),
prob: (A2 + B2 + C2 + D2 \$=< 30),
prob: (A3 + B3 + C3 + D3 \$=< 40),
prob: eplex_solver_setup(min(
10*A1 + 7*A2 + 200*A3 +
8*B1 + 5*B2 + 10*B3 +
5*C1 + 5*C2 + 8*C3 +
9*D1 + 3*D2 + 7*D3)),
prob: (A1 \$= A2), % g. the new constraint, added after setup
%------------------------------- End of Modelling code
prob: eplex_solve(Cost),
(foreach(V, Vars) do
prob: eplex_var_get(V, typed_solution, V)
).

```

In this example, the new constraint in line \(g\) is imposed after the solver setup. In fact it can be imposed anytime before eplex_solve (Cost) is called.
This problem also has an optimal Cost of 710, the same as the original problem. However, the solution values are not integral:
```

?- main3(Cost, Vars).

```
```

Cost = 710.0
Vars = [10.5, 10.5, 0.0, 5.5, 19.5, 15.0, 34.0, 0.0, 0.0, 0.0, 0.0, 10.0]

```

Now, to impose the constraints that only whole units of the products can be transported, we modify the program as follows:
```

main4(Cost, Vars) :-
Vars = [A1, A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],
prob: (Vars \$:: 0.0..1.0Inf),
prob: integers(Vars), % h. impose the integrality constraint
....% Rest is the same as main3

```

In line h, we added the integers/1 constraint. This imposes the integrality constraint on Vars for the eplex instance prob. Now, the external solver will only assign integer solution values to the variables in the list.

Q In fact, with the integer constraints, the problem is solved as a MIP problem rather than an LP problem, which involves different (and generally computationally more expensive) techniques. This difference is hidden from the eplex user.

Running this program, we get:
```

?- main4(Cost,Vars).
Cost = 898.0
Vars = [10, 10, 1, 6, 20, 14, 34, 0, 0, 0, 0, 10]

```

In this case, A1 and A2 are now integers. In fact, notice that all the values returned are now integers rather than floats. This is because the typed_solution option of eplex_var_get/3 returns the solution values taking into account if the variables have been declared as integers for the eplex instance.
\(\otimes\) Posting an integers \(/ 1\) constraint to an eplex instance only inform the external solver to treat those variables as integers (in fact the external solver will still represent the variables as floats, but will only assign intergral solution values to them), but does not constrain the variable itself to be of type integer.

\subsection*{16.4 Repeated Solving of an Eplex Problem}

Part of the power of using the eplex library comes from being able to solve an eplex problem repeatedly after modification. For example, we can solve the original transportation problem, add the extra constraint, and resolve the problem. Remember that as eplex_solve/1 instantiates its argument, we need to use a new variable for each call:
- Declare an eplex instance using eplex_instance(+Instance).
- Post the constraints \((\$=/ 2, \$>=/ 2, \$=</ 2\), integers \(/ 1, \$:: / 2)\) for the problem to the eplex instance.
- Setup the solver with the objective function using Instance: eplex_solver_setup(+ObjFunc).

Figure 16.4: Modelling an MP Problem
```

.... % setup the constraints for the original problem as before
prob: (A3 + B3 + C3 + D3 =< 40),
prob: eplex_solver_setup(min(....)), % as before
prob: eplex_solve(Cost1), % h. solve original problem
prob: (A1 \$= A2),
prob: eplex_solve(Cost2), % i. solve modified problem

```

Note that posted constraints behave logically: they are added to an eplex instance when posted, and removed when they are backtracked over.
In the examples so far, the solver has been invoked explicitly. However, the solver can also behave like a normal constraint, i.e. it is automatically invoked when certain conditions are met. As an example, we implement the standard branch-and-bound method of solving a MIP problem, using the external solver as an LP solver only. Firstly we outline how this can be implemented with the facilities we have already encountered. We then show how this can be improved usin more advanced features of lib(eplex).
With the branch-and-bound approach, a search-tree is formed, and at each node a 'relaxed' version of the MIP problem is solved as an LP problem. Starting at the root, the problem solved is the original MIP problem, but without any of the integrality constraints:
```

:- eplex_instance(mip).
main5(Cost, Vars) :-
% set up variables and constraints, but no integers/1 constraints
% assume minimise for simplicity
mip: eplex_solver_setup(min(Obj)),
mip: eplex_solve(RelaxedCost),
mip: (Cost \$>= RelaxedCost), % RelaxedCost is lower bound

```

In general, this initial LP solution contains non-integer assignments to integer variables. The objective value of this LP is a lower bound on the actual MIP objective value. The task of the search is to find integer assignments for the integer variables that optimises the objective

Figure 16.5: Labelling a variable at a MIP tree node
function. Each node of the search-tree solves the problem with extra bound constraints on these variables. At each node, a particular variable is 'labelled' as shown in Figure 16.5. The integer variable in this case has been assigned the non-integer value of 4.2. In the subsequent nodes of the tree, we consider two alternate problems, which creates two branches in the search. In one problem, we impose the bound constraint \(X \leq 4\), and in the other, \(X \geq 5\) : these are the two nearest integer values to 4.2. In each branch, the problem is solved again as an LP problem with its new bound for the variable:
```

branching(IntVars) :-
% for each integer variable X which violates the integer constraint
mip: eplex_var_get(X, solution, XVal),
Split is floor(XVal),
% choice: branch on the two ranges for X
(mip: (X \$=< Split) ; mip: (X \$>= Split + 1)),
mip: eplex_solve(RelaxedCost),
...% repeat until there are no integer violations

```

A choice-point for the two alternative branchings is created in the above code, the problem is solved with one of the branchings (\(\mathrm{X} \$=<\mathrm{Split}\)). The program then proceeds to further labelling of the variables. The alternative branch is left to be tried on backtracking.
Eventually, if the problem has a solution, all the integer variables will be 'labelled' with integer values, resulting in a solution to the MIP problem. However, this will generally not be optimal, and so the program needs to backtrack into the tree to search for a better solution by trying the other branches for the variables, using the existing solution value as a bound. This 'branch-and-bound' search technique is implemented in lib(branch_and_bound).
In the code, the external solver is invoked explicitly at every node. This however may not be necessary as the imposed bound may already be satisfied. As stated at the start of this section, the

Remember that \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) provides libraries that make some programming tasks much easier. There is no need to write your own code when you can use what is provided by an ECL \({ }^{i} \mathrm{PS}^{e}\) library.

Figure 16.6: Reminder: use \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) libraries!
invocation of the solver could be done in a data-driven way, more like a normal constraint. This is done with eplex_solver_setup/4: eplex_solver_setup(+Obj, -ObjVal,+Options,+Trigs), a more powerful version of eplex_solver_setup/1 for setting up a solver. The Trigs argument specifies a list of 'trigger modes' for triggering the solver.
\(\odot\) See the \(\mathrm{ECL}^{i} \mathrm{PS}{ }^{e}\) reference manual for a complete description of the predicate.
For our example, we add a bound constraint at each node to exclude a fractional solution value for a variable. The criterion we want to use is to invoke the solver only if this old solution value is excluded by the new bounds (otherwise the external solver will solve the same problem redundantly). This is done by specifying deviating_bounds in the trigger modes. The full code that implements a MIP solution for the example transportation problem is given below:
```

:- lib(eplex).
:- lib(branch_and_bound).
:- eplex_instance(mip).
main6(Cost, Vars) :-
% b. create the problem variables and set their range
Vars = [A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3],
mip: (Vars :: 0.0..1.0Inf),
% c. post the constraints for the problem to the eplex instance
mip: (A1 + A2 + A3 \$= 21),
mip: (B1 + B2 + B3 \$= 40),
mip: (C1 + C2 + C3 \$= 34),
mip: (D1 + D2 + D3 \$= 10),
mip: (A1 + B1 + C1 + D1 \$=< 50),
mip: (A2 + B2 + C2 + D2 \$=< 30),
mip: (A3 + B3 + C3 + D3 \$=< 40),
mip: (A1 \$= A2),
% j. post the objective function as a constraint
ObjFunc = 10*A1 + 7*A2 + 200*A3 +
8*B1 + 5*B2 + 10*B3 +
5*C1 + 5*C2 + 8*C3 +
9*D1 + 3*D2 + 7*D3,
mip: (ObjFunc \$= Cost),
% k. this is a more flexible method for setting up a solver.
% [deviating_bounds] specifies that the external solver should be
% invoked when any solution value is outside the variable bounds
mip: eplex_solver_setup(min(ObjFunc), Cost, [], [deviating_bounds]),
% l. Use the branch_and_bound library to do the branch and bound
bb_min(( branching(Vars),
mip: eplex_get(cost, Cost)
(foreach(V, Vars) do mip: eplex_var_get(V,solution,V))
), Cost, _).

```
```

branching(IntVars) :-
% Find a variable X which does not have an integer solution value
(integer_violation(IntVars, X, XVal) ->
% m. try the closer integer range first
Split is round(XVal),
(Split > XVal ->
(mip: (X \$>= Split) ; mip: (X \$=< Split - 1))
;
(mip: (X \$=< Split) ; mip: (X \$>= Split + 1))
),
branching(IntVars)
;
% cannot find any integer violations; found a solution
true
).
% returns Var with solution value Val which violates the integer constraint
integer_violation([X|Xs], Var, Val) :-
mip: eplex_var_get(X, solution, RelaxedSol),
% m. we are dealing with floats here, so need some 'margin' for a
% float value to be considered integer (1e-5 on either side)
(abs( RelaxedSol - round(RelaxedSol) ) >= 1e-5 ->
Var = X, Val = RelaxedSol
;
integer_violation(Xs, Var, Val)
).

```

The setup of the solver is done in line \(k\), with the use of the deviating_bounds trigger mode. There are no explicit calls to trigger the solver - it is triggered automatically. In addition, the first call to eplex_solve/1 for an initial solution is also not required, because when trigger modes are specified, then by default, eplex_solver_setup/4 will invoke the solver once the problem is setup.
Besides the deviating_bounds trigger condition, the other argument of interest in our use of eplex_solver_setup/4 is the second argument, the objective value of the problem (Cost in the example): recall that this was returned previously by eplex_solve/1. Unlike in eplex_solve/1, the variable is not instantiated when the solver returns. Instead, one of the bounds (lower bound in the case of minimise) is updated to the optimal value, reflecting the range the objective value can take, from suboptimal to the 'best' value at optimal. The variable is therefore made a problem variable by posting of the objective as a constraint in line j . This informs the external solver needs to be informed that the Cost variable is the objective value.
In line \(m\), the branch choice is created by the posting of the bound constraint, which may trigger the external solver. Here, we use a simple heuristic to decide which of the two branches to try first: the branch with the integer range closer to the relaxed solution value. For example, in the situation of Figure 16.5, the branch with \(\mathrm{X} \$=<4\) is tried first since the solution value of 4.2 is closer to 4 than 5 .
By using lib(branch_and_bound)'s bb_min/3 predicate in m , there is no need to explicitly write
- Use Instance:eplex_solver_setup(+Obj,-ObjVal,+Opts,+Trigs) to set up an external solver state for instance Instance. Trigs specifies a list of trigger conditions to automatically trigger the external solver.
- Instance:eplex_var_get(+Var,+What,-Value) can be used to obtain information for the variable Var in the eplex instance.
- Instance:eplex get(+Item, -Value) can be used to retrieve information about the eplex instance's solver state.

Figure 16.7: More advanced modelling in eplex
our own branch-and-bound routine. However, this predicate requires the cost variable to be instantiated, so we call eplex_get (cost, Cost) to instantiate Cost at the end of each labelling of the variables. We also get the solution values for the variables, so that the branch-and-bound routine will remember it. The final value returned in Cost (and Vars for the solution values) is the optimal value after the branch-and-bound search, i.e. the optimal value for the MIP problem. Of course, in practice, we do not write our own MIP solver, but use the MIP solver provided with the external solvers instead. These solvers are highly optimised and tightly coupled to their own LP solvers. The techniques of solving relaxed subproblems described here are however very useful for combining the external solver with other solvers in a hybrid fashion.
\(\odot\) See chapter 17 for more details on hybrid techniques.

\subsection*{16.5 Exercise}

A company produces two types of products T 1 and T 2 , which requires the following resources to produce each unit of the product:
\begin{tabular}{|r|r|r|}
\hline Resource & T1 & T2 \\
\hline Labour (hours) & 9 & 6 \\
\hline Pumps (units) & 1 & 1 \\
\hline Tubing (m) & 12 & 16 \\
\hline
\end{tabular}

The amount of profit per unit of products are:
T1 £350
T2 £300
They have the following resources available: 1566 hours of labour, 200 pumps, and 2880 metres of tubing.
1. Write a program to maximise the profit for the company, using eplex as a black box solver. Write a predicate that returns the profit and the values for T 1 and T 2 .
2. What program change is required to answer this question: What profit can be achieved if exactly 150 units of T 1 are required?
3. What would the profit be if fractional numbers of refrigerators could be produced?
4. Rewrite the program from (1) without optimize/2, using eplex_solver_setup/1, eplex_solve/1, and eplex_var_get \(/ 3\).
5. In the program from (4), remove the integrality constraints (so that eplex only sees an LP problem). Solve the integer problem by interleaving solving of the LP problem with a rounding heuristic:
- solve the continuous relaxation
- round the solution for T 1 to the nearest integer and instantiate it Initially just return the maximum profit value.
- re-solve the new continuous relaxation
- round the solution for T 2 to the nearest integer and instantiate it
- re-solve the new continuous relaxation

What is the result in terms of T1, T2 and Profit?
6. Rewrite the program from (5) using eplex solver_setup/4 and automatic triggering of the solver instead of explicit calls to eplex solve/1. The solver should be triggered whenever variables get instantiated.

\section*{Chapter 17}

\section*{Building Hybrid Algorithms}

\subsection*{17.1 Combining Domains and Linear Constraints}

Most optimisation problems arising in industry and commerce involve different subproblems that are best addressed by different algorithms and constraint solvers. In ECL \({ }^{i} \mathrm{PS}^{e}\) it is easy to use different constraint solvers in combination. The different solvers may share variables and even constraints.
We discuss reasons for combining the eplex and \(I C\) solver libraries and explore ways of doing this. The repair library plays a useful role in propagating solutions generated by a linear solver to other variables handled by the domain solver. We show how this works in a generic hybrid algorithm termed probing.

\subsection*{17.2 Reasons for Combining Solvers}

The ic solver library implements two kinds of constraints
- finite domain constraints
- interval constraints

Each constraint is handled separately and individually, and the only communication between them is via the bounds on their shared variables.
The benefits of the ic solvers are
1. the repeated tightening of guaranteed upper and lower bounds on the variables
2. the application of tailored algorithms to standard subproblems (encapsulated as global constraints)
3. the implementation of a very wide class of constraints

The eplex solver library implements two kinds of constraints
- linear numeric constraints
- integrality constraints

\section*{There are two main reasons for combining eplex and ic in a hybrid algorithm}
- ic handles a wider class of constraints than eplex
- The solvers extract different kinds of information from the constraints

Figure 17.1: Motivation

The linear constraints are handled by a very powerful solver that enforces global consistency on all the constraints. The integrality constraints are handled via a built-in search mechanism.
The benefits of the eplex solvers are
1. the enforcement of global consistency for linear constraints
2. the production of an optimal solution satisfying the linear constraints

For some years researchers have sought to characterise the classes of problems for which the different solvers are best suited. Problems involving only linear constraints are very well handled by eplex. Problems involving disjunctions of constraints are often best handled by ic. Often set covering problems are best handled by eplex and scheduling problems by ic. However in general there is no method to recognise for a new problem which solver is best.
Luckily in ECL \({ }^{i} \mathrm{PS}^{e}\) there is no need to choose a specific solver for each problem, since it is possible to apply both solvers. Moreover the solvers communicate with each other, thus further speeding up constraint solving. The ic solver communicates new tightened bounds to the eplex solver. These tightened bounds have typically been deduced from non-linear constraints and thus the linear solver benefits from information which would not otherwise have been available to it. On the other hand the eplex solver often detects inconsistencies which would not have been detected by the ic solvers. Moreover it returns a bound on the optimisation function which can be used by the ic constraints. Finally the optimal solution returned by eplex to the "relaxed" problem comprising just the linear constraints, can be used as a search heuristic that can focus the ic solver on the most promising parts of the search space.

\subsection*{17.3 A Simple Example}

\subsection*{17.3.1 Problem Definition}

We start with a simple example of linear constraints being posted to eplex and the other constraints being sent to ic.
The example problem involves three tasks (task1, task2, task3) and a time point time1. We enforce the following constraints:
- Exactly one of task1 and task2 overlaps with time1
- Both tasks task1 and task2 precede task3

\subsection*{17.3.2 Program to Determine Satisfiability}

For this example we handle the first constraint using ic, because it is not expressible as a conjunction of linear constraints, and we handle the second pair of linear constraints using eplex.
\(\otimes\) Note that since we use both solvers eplex and ic we will explicitly module qualify all numeric constraints to avoid ambiguity.

Each task has a start time Start and a duration Duration. We encode the (non-linear) overlap constraint in ic thus:
```

:- lib(ic).
overlap(Start,Duration,Time,Bool) :-
% Bool is 1 if the task with start time Start and duration
% Duration overlaps time point Time and O otherwise
ic: (Bool \#= ((Time \$>= Start) and (Time \$=< Start+Duration-1))).

```

The variable Bool takes the value 1 if the task overlaps the time point, and 0 otherwise. To enforce that only one task overlaps the time point, the associated boolean variables must sum to 1.
We encode the (linear) precedence constraint in eplex thus:
```

:- lib(eplex).
before(Start,Duration,Time) :-
% the task with start time Start and duration Duration is
% completed before time point Time
eplex: (Start+Duration \$=< Time).

```

To complete the program, we can give durations of 3 and 5 to task1 and task2, and have the linear solver minimise the start time of task3:
```

ic_constraints(Time,S1,S2,B1,B2) :-
% exactly one of task 1 with duration 3 and task 2 with
% duration 5 overlaps time point Time
ic: ([S1,S2]::1..20),
overlap(S1,3,Time,B1),
overlap(S2,5,Time,B2),
ic: (B1+B2 \#= 1).
eplex_constraints(S1,S2,S3) :-
% task 1 with duration 3 and task 2 with duration 5 are both
% completed before the start time of task 3

```
```

    before(S1,3,S3),
    before(S2,5,S3).
    hybrid1(Time, [S1,S2,S3], End) :-
% give the eplex cost variable some default bounds
ic:(End \$:: -1.OInf..1.0Inf),
% we must give the start time of task 3 ic bounds in order to
% suspend on changes to them
ic: (S3::1..20),
% setup the problem constraints
ic_constraints(Time,S1,S2,B1,B2),
% setup the eplex solver
eplex_constraints(S1,S2,S3),
eplex:eplex_solver_setup(min(S3),End,[sync_bounds(yes)],[ic:min,ic:max]),
% label the variables occurring in ic constraints
labeling([B1,B2,S1,S2]).

```

During the labeling of the boolean variables, the bounds on \(S 1\) and \(S 2\) are tightened as a result of ic propagation, which wakes the linear solver, which has been set to trigger on ic bound changes (ic:min, ic:max). Note that all variables occurring in the linear solver must then have ic attributes.
The ic bounds are passed to the linear solver before the problem is solved with the option sync_bounds(yes). The linear solver derives a new lower bound for End. In case this exceeds its upper bound, the search fails and backtracks.
Using this method of bound communication the bounds for all problem variables are retrieved from any bounds solvers before resolving the linear problem. If however only a small number of variable bounds have changed sufficiently to affect the relaxed solution this will be inefficient. Instead bound updates for individual variables and bound solvers may be transferred to the linear solver separately. This may be achieved (using the eplex instance's \(:: / 2\)) either explicitly within the search code or through demons attached to the appropriate solver bound changes.
Note that the optimisation performed by the linear solver does not respect the ic constraints, so a correct answer can only be guaranteed once all the variables involved in ic constraints are instantiated.
Henceforth we will not explicitly show the loading of the ic and eplex libraries.

\subsection*{17.3.3 Program Performing Optimisation}

When different constraints are sent to ic and to eplex, the optimisation built into the linear solver must be combined with the optimisation provided by the ECL \({ }^{i} \mathrm{PS}^{e}\) branch_and_bound library.
The following program illustrates how to combine these optimisations:
```

:- lib(branch_and_bound).

```

A simple way to combine eplex and ic is to send the linear constraints to eplex and the other constraints to ic. The optimisation primitives must also be combined.

Figure 17.2: A Simple Example
```

hybrid2(Time, [S1,S2,S3], End) :-
% give the eplex cost variable some default bounds
ic:(End \$:: -1.OInf..1.OInf),
% we must give the start time of task 3 ic bounds in order to
% suspend on changes to them
ic: (S3::1..20),
% setup the problem constraints
ic_constraints(Time,S1,S2,B1,B2),
eplex_constraints(S1,S2,S3),
% perform the optimisation
both_opt(labeling([B1,B2,S1,S2]),min(S3),End).
both_opt(Search,Obj,Cost) :-
% setup the eplex solver
eplex:eplex_solver_setup(Obj,Cost,[sync_bounds(yes)],[ic:min,ic:max]),
% minimize Cost by branch-and-bound
minimize((Search,eplex_get(cost,Cost)), Cost).

```

\subsection*{17.4 Sending Constraints to Multiple Solvers}

\subsection*{17.4.1 Syntax and Motivation}

Because of the cooperation between solvers, it is often useful to send constraints to multiple solvers. A linear constraint, such as \(X+2 \geq Y\), can be posted to eplex by the code eplex: (\(\mathrm{X}+2 \$>=\mathrm{Y}\)). The same constraint can be posted to ic by the code ic: (\(\mathrm{X}+2 \$>=\mathrm{Y}\)). The constraint can be sent to both solvers by the code
```

?- [ic,eplex]: (X+2 \$>= Y)

```

By sending constraints to both solvers, where possible, we can improve search algorithms for solving constraint problems. Through enhanced constraint reasoning at each node of the search tree we can:
- prune the search tree, thus improving efficiency
- render the algorithm less sensitive to search heuristics

The second advantage is a particular benefit of combining different solvers, as opposed to enhancing the reasoning power of a single solver. See [22] and [23] for experimental results and application examples using multiple solvers in this way.

\subsection*{17.4.2 Handling Booleans with Linear Constraints}

The overlap constraint example above is disjunctive and therefore non-linear, and is only handled by ic. However as soon as the boolean variable is labelled to 1 , during search, the constraint becomes linear.
The cooperation between the eplex and ic solvers could therefore be improved by passing the resulting linear constraint to eplex as soon as the boolean is labelled to 1 . This could be achieved using a constraint handling rule (see CHR) or a suspended goal (see chapter 14).
However the same improved cooperation can be achieved by a well known mathematical programming technique (see e.g. [30]) that builds the boolean variable into a linear constraint that can be sent to eplex even before the boolean is instantiated. This linear constraint effectively enforces the overlap constraint if the boolean is instantiated to 1 , but does not enforce it if the boolean is instantiated to 0 .
To achieve this we introduce sufficiently big multipliers, that when the boolean is set to 0 the constraint is satisfied for all values within the variables' bounds. This method is known as the bigM transformation.
It is illustrated in the following encoding of pos_overlap:
```

pos_overlap(Start,Duration,Time,Bool) :-
% if Bool is 1 then the task with start time Start and
% duration Duration overlaps time point Time
Max1 is maxdiff(Start,Time),
Max2 is maxdiff(Time,Start+Duration-1),
eplex: (Time+(1-Bool)*Max1 \$>= Start), % lin1
eplex: (Time \$=< Start+Duration-1+(1-Bool)*Max2). % lin2
maxdiff(Expr1,Expr2,MaxDiff) :-
% the maximum diffrence between Expr1 and Expr2 is the max val
% of (Expr1 - Expr2)
MaxDiff is max_val(Expr1 - Expr2).
max_val(Expr, Max) :-
% the maximum value of a variable is its upper bound
var(Expr),!,
get_var_bounds(Expr, _, Max).
max_val(Expr, Max) :-
% the maximum value of a number is itself
number(Expr),!,
Max = Expr.
max_val(Expr1 + Expr2, Max) :-
% the maximum value of (Exrp1 + Expr2) is the maximum value of
% Expr1 plus the maximum value of Expr2
Max is max_val(Expr1) + max_val(Expr2).
max_val(Expr1 - Expr2, Max) :-
% the maximum value of (Exrp1 - Expr2) is the maximum value of

```
```

    % Expr1 minus the minimum value of Expr2
    Max is max_val(Expr1) - min_val(Expr2).
    min_val(Expr, Min) :-
% the minimum value of a variable is its lower bound
var(Expr),!,
get_var_bounds(Expr, Min, _).
min_val(Expr, Min) :-
% the minimum value of a number is itself
number(Expr),!,
Min = Expr.
min_val(Expr1 + Expr2, Max) :-
% the minimum value of (Exrp1 + Expr2) is the minimum value of
% Expr1 plus the minimum value of Expr2
Max is min_val(Expr1) + min_val(Expr2).
min_val(Expr1 - Expr2, Max) :-
% the minimum value of (Exrp1 - Expr2) is the minimum value of
% Expr1 minus the maximum value of Expr2
Max is min_val(Expr1) - max_val(Expr2).

```

The linear constraints, which will enforce the overlap condition when the variable Bool is set to 1 , are labelled \(\operatorname{lin} 1\) and lin2. If the variable Bool is instantiated to 0 , then the variables (or values) Start, Time and Duration are free to take any value in their respective domains.
Notice that pos_overlap is logically weaker than overlap because
- it does not enforce the integrality of the boolean variable, (i.e. pos_overlap is a linear relaxation of the disjunctive constraint), and
- it does not enforce the negation of overlap in case the boolean is set to 0 .

The tighter cooperation is achieved simply by adding the pos_overlap constraint to the original encoding:
```

eplex_constraints_2(Time,S1,S2,S3,B1,B2) :-
% task 1 with duration 3 and task 2 with duration 5 are both
% completed before the start time of task 3
before(S1,3,S3),
before(S2,5,S3),
% task 1 with duration 3 overlaps time point Time if B1 = 1
pos_overlap(S1,3,Time,B1),
% task 2 with duration 5 overlaps time point Time if B2 = 1
pos_overlap(S2,5,Time,B2).
hybrid3(Time, [S1,S2,S3], End) :-
% give the eplex cost variable some default bounds

```
```

ic:(End \$:: -1.OInf..1.OInf),
% we must give the start time of task 3 ic bounds in order to
% suspend on changes to them
ic: (S3::1..20),
% setup the problem constraints
ic_constraints(Time,S1,S2,B1,B2),
eplex_constraints(Time,S1,S2,S3,B1,B2),
% perform the optimisation
both_opt(labeling([B1,B2,S1,S2]),min(S3),End).

```

Although it may at first glance seem better to enforce the integerality of all variables in the linear solver as well, this is in fact counter-productive for variables that will be explicitly labelled during search in hybrid algorithms. The external solver would then perform its own branch-andbound search in addition to the branch-and-bound search being performed within the ECL \({ }^{i} \mathrm{PS}^{e}\) program.

\subsection*{17.4.3 Handling Disjunctions}

The same technique, of introducing boolean variables and sufficiently large multipliers, can be used to translate any disjunction of linear constraints into linear constraints (and integrality constraints on the booleans) which can be handled by eplex.
Consider the negation of the overlap constraints above: if a task does not overlap a time point then it is either completed before the time point or starts after the timepoint. This disjunction can be expressed in eplex using two boolean further variables:
```

neg_overlap(Start,Duration,Time,Bool1,Bool2) :-
% if Bool1 is 1 then the task with start time Start and duration
% Duration starts after time point Time
Max1 is maxdiff(Time,Start-1),
eplex:(Time \$=< Start-1+(1-Bool1)*Max1),
% if Bool2 is 1 then the task with start time Start and duration
% Duration is completed before time point Time
Max2 is maxdiff(Start+Duration,Time),
eplex:(Time+(1-Bool2)*Max2 \$>= Start+Duration).
eplex_constraints_3(T,S1,S2,S3,B1,N1B1,N2B1,B2,N1B2,N2B2) :-
% task 1 with duration 3 and task 2 with duration 5 are both
% completed before the start time of task 3
before(S1,3,S3),
before(S2,5,S3),
% task 1 with duration 3 either overlaps time point Time,
% starts after it or is completed before it
pos_overlap(S1,3,T,B1),
neg_overlap(S1,3,T,N1B1,N2B1),

```
```

    eplex:(N1B1+N2B1 $= 1-B1),
    % task 2 with duration 5 either overlaps time point Time,
    % starts after it or is completed before it
    pos_overlap(S2,5,T,B2),
    neg_overlap(S2,5,T,N1B2,N2B2),
    eplex:(N1B2+N2B2 $= 1-B2),
    % exactly one of task 1 with duration 3 and task 2 with
    % duration 5 overlaps time point Time
    eplex:(B1+B2 $= 1).
    hybrid4(Time, [S1,S2,S3], End) :-
% give the eplex cost variable some default bounds
ic:(End \$:: -1.OInf..1.OInf),
% we must give the start time of task 3 and the non-overlap
% booleans ic bounds in order to suspend on changes to them
ic:(S3::1..20),
ic:([N1B1,N2B1,N1B2,N2B2]::0..1),
% setup the problem constraints
ic_constraints(Time,S1,S2,B1,B2),
eplex_constraints_3(Time,S1,S2,S3,B1,N1B1,N2B1,B2,N1B2,N2B2),
% perform the optimisation
both_opt(labeling([B1,N1B1,N2B1,B2,N1B2,N2B2,S1,S2]),min(S3),End).

```

Now the negation of the overlap will be enforced whenever either of the non-overlap booleans is set to 1 . Note that it is not strictly necessary to label the non-overlap booleans: whenever the start time of a task is labelled in such a way that the task falls to one side of the time point, the other non-overlap boolean will be forced to 0 by its linear non-overlap constraint. The constraint requiring a task to either overlap or fall to one side of the time point will then force the remaining non-overlap boolean to be 1 .
In fact in this simple example we gain nothing by including the neg_overlap constraints on the "direction" of non-overlap. As soon as a labeling decision has been made as to whether one task overlaps the time point, the earliest possible start time of both tasks is updated in the linear solver. Since the problem cost is minimized by starting all tasks as early as possible, the relaxed eplex solution will conicide with the integer solution.
As another simple example consider a naive program to choose values for the elements of a finite list (of length Length) such that each pair of values differs by at least 2. The diffe constraint on each pair X and Y of elements can be expressed as a disjunction in ic:
```

diff2ic(X,Y) :-
% X and Y must differ by at least 2
ic: ((X+2 \$=< Y) or (Y+2 \$=< X)).
list_diff2ic(List) :-
% each pair must differ by at least 2

```
```

(
fromto(List, [X|Rest], Rest, [])
do
(
foreach(Y, Rest),
param(X)
do
diff2ic(X,Y)
)
).

```

Alternatively it can be expressed in eplex using a boolean variable:
```

diff2eplex(X,Y,Length,B) :-
% if B is 1 then Y is at least 2 greater than X
eplex: (X+2+B*Length \$=< Y+Length),
% if B is 0 then X is at least 2 greater than Y
eplex: (X+Length \$>= Y+2+(1-B)*Length).
list_diff2eplex(List, Length, Bools) :-
% each pair must differ by at least 2
(
fromto(List, [X|Rest], Rest, []),
fromto(Bools, Out, In, []),
param(Length)
do
(
foreach(Y, Rest),
fromto(Out, [B|Bs], Bs, In),
param(X, Length)
do
diff2eplex(X,Y,Length,B)
)
).

```

Suppose each element \(E\) of the list must take a value between 1 and \(2 *(\) Length -1\()\), then any attempted labelling of the elements must fail. Sending the constraints to ic and labelling the elements of the list is inefficient.
```

ic_list(List) :-
length(List, Length),
Max is 2*(Length-1),
% each element must take a value between 1 and 2*(Length-1)

```
```

ic: (List::1..Max),
list_diff2ic(List),
labeling(List).

```

Sending the constraints to eplex and enforcing integrality of the booleans is more efficient.
```

eplex_list(List) :-
length(List, Length),
Max is 2*(Length-1),
% each element must take a value between 1 and 2*(Length-1)
eplex: (List::1..Max),
list_diff2eplex(List, Length, Bools),
% enforce Bools to be 0..1 and integer
eplex: integers(Bools),
eplex: (Bools::0..1),
% setup the eplex solver with a dummy objective function
eplex:eplex_solver_setup(min(0),Cost,[],[]),
% solve by linear solver
eplex:eplex_solve(Cost).

```

Better still is to post the constraints to both ic and eplex, and label the booleans.
```

hybrid_list(List) :-
% give the eplex cost variable some default bounds
ic:(Cost \$:: -1.OInf..1.OInf),
length(List, Length),
Max is 2*(Length-1),
% each element must take a value between 1 and 2*(Length-1)
ic: (List::1..Max),
list_diff2ic(List),
list_diff2eplex(List, Length, Bools),
% enforce Bools to be 0..1 (but not integer in eplex)
ic: (Bools::0..1),
% setup the eplex solver with a dummy objective function
eplex:eplex_solver_setup(min(0), Cost,[sync_bounds(yes)],[ic:min,ic:max]),
% minimize Cost by branch-and-bound
minimize((labeling(Bools),eplex_get(cost,Cost)),Cost).

```

\subsection*{17.4.4 A More Realistic Example}

For more complex applications, sending all "linearisable" constraints to both ic and eplex is rarely the best method. Sending too many constraints to ic can result in many wakings but
little useful propagation. Sending too many constraints to eplex can cause a big growth in the size of the constraint store, which slows down constraint solving with little improvement in the relaxed optimum. If the extra variables are constrained to be integer, then the (MIP) solver may enter a deep search tree with disastrous consequences for efficiency. In this example we briefly illustrate the point, though there is no space to include the whole program, and complete supporting results.
Consider the problem of generating test networks for IP (internet protocol). To generate such networks, it is necessary to assign capacities to each line. We assume a routing algorithm that sends each message along a "cheapest" path, where the cost is dependent on the bandwidth. Messages from a particular start to end node are divided equally amongst all cheapest paths.
\[
\begin{array}{ll}
\text { Flow Quantity: } & \text { Qty }=6 \\
\text { Minimum Cost Path: } & \text { MinCost }=1 \\
\text { Number of minimum cost paths: } & \text { Count }=2
\end{array}
\]

\section*{Path Flows}

Given a total quantity Qty of messages, between a particular start and end node, it is necessary to compute the quantity of messages QtyP along each path \(P\) between the two nodes. The variable CostP represents the cost of this path, and the variable MinCost represents the cost of the cheapest path. The variable Count represents the number of cheapest paths (between which the messages were equally divided). A boolean variable \(B P\) records whether the current path is a cheapest path, and therefore whether QtyP is non-zero. The encoding in ic is as follows:
```

ic: '\$>='(MinCost + 1, CostP,BP), % con3
ic: (QtyP*Count \$= BP*Qty) % con4

```

Note that it is not possible to test for equality between MinCost and CostP because they are not integers but real number variables.
These constraints are very precise but propagate little until the variables MinCost and CostP have tight bounds.
The challenge is to find a combination of ic and eplex constraint handling that efficiently extract the maximum information from the constraints. Linearising con3 so it can be handled by eplex does not help prune the search tree. Worse, it may significantly increase the size of the linear constraint store and the number of integer (boolean) variables, which impacts solver performance.

It is easy to send a constraint to more than one solver. Even disjunctive constraints can be encoded in a form that enables them to be sent to both solvers. However for large applications it is best to send constraints only to those solvers that can extract useful information from them. This requires experimentation.

Figure 17.3: Sending Constraints to Multiple Solvers

Once all the boolean variables are instantiated, the sum of QtyP for all the paths equals the total quantity Qty (because precisely Count paths have a non-zero PQty = Qty/Count). We therefore introduce a variable Qties constrained to be the sum of all the path quantities. If QtyList is a list of the path quantities, we can express the constraint thus Qties \(\$=\) sum (QtyList). We can now add a redundant constraint Qty \(\$=\) Qties. The above constraints are both linear and can be handled by eplex.
In practice this encoding dramatically enhances the efficiency of the test network generation. Experimentation with this program revealed that posting the redundant constraints to eplex yields a much more significant improvement than just posting them to ic.

\subsection*{17.5 Using Values Returned from the Linear Optimum}

In this section we explore ways of using the information returned from the optimum solution produced by the linear solver. We will cover two kinds of information. First we will show how reduced costs can be used to filter variable domains. Secondly we will show how solutions can be used as a search heuristic. We have termed this second technique probing.

\subsection*{17.5.1 Reduced Costs}

The reduced cost of a variable is a safe estimate of how much the optimum will be worsened by changing the value of that variable. For example when minimising, suppose a variable \(V\) takes a value of Val at the minimum Min found by the linear solver, and its reduced cost is \(R C\). Then if the value of \(V\) was fixed to NewVal the following holds of the new minimum NewMin: NewMin-Min \(\geq a b s(N e w V a l-V a l) \times R C\). Thus if \(R C\) is 3.0 and the value of \(V\) is changed by an amount Diff, then the minimum increases by at least \(3.0 \times\) Diff.
Note that the reduced cost is not necessarily a good estimate: it is often just 0.0 which gives no information about the effect of changing the variable's value.
Reduced cost pruning is a way of tightening the domains of variable in case we already have a worst case bound on the optimum (such as the previous best value, during a branch and bound search). The approach is described in [8].
This reasoning allows the eplex solver to integrate tightly with the ic solver because both solvers wake each other and communicate by tightening domains. In fact the eplex solver is performing domain propagation, just like any ic constraint.
Let us impose reduced cost pruning for a list of variables Vars. The variable being optimised is Opt.
```

rc_prune_all(Vars,min,Opt) :-
% get the current minimum value
eplex_get(cost,Curr),
(
foreach(Var,Vars),
param(Curr,Opt)
do
% apply reduced cost pruning to each variable
rc_prune(Var,min, Curr,Opt)
).

```

First we extract the current optimum Curr, and then we apply reduced cost pruning to each variable in the list. This is achieved as follows:
```

rc_prune(Num,_,_,_) :- nonvar(Num), !.
rc_prune(Var,min,Curr,Opt) :-
eplex_var_get(Var,reduced_cost,RC),
( RC =:=0.0 ->
true
;
% if the variable is still uninstantiated and has a
% non-zero reduced cost restrict its domain
eplex_var_get(Var,solution,Val),
ic: ((Var-Val)*RC+Curr \$=< Opt) % cons5
).

```

If the variable is already instantiated, then no pruning takes place. If the reduced cost is zero, then again no pruning takes place. Otherwise the variable is constrained by cons5, which prevents it from changing so far that the optimum Opt exceeds its upper bound. For maximisation problems a different constraint would be imposed.
To use reduced costs it is necessary to switch on reduced cost recording during the solver setup. Reduced cost pruning can then be implemented as a post goal. This is a goal that is executed immediately after each waking of the linear solver.
Here is a toy program employing reduced cost pruning:
```

test(X,Y,Z,Opt) :-
% set up variable bounds
ic: ([X,Y,Z]::1..10),
ic: (Opt:: -1.OInf..1.OInf),
% setup constraints
eplex: (5*X+2*Y+ Z \$>= 10),
eplex: (3*X+4*Y+5*Z \$>= 12),
% setup the linear solver with reduced cost recording enabled

```
```

% and a post goal to perform reduced cost pruning
eplex:eplex_solver_setup(
min}(X+Y+Z)
Opt,
[sync_bounds(yes),reduced_cost(yes)],
[new_constraint,inst,
post(rc_prune_all([X,Y,Z],min,Opt))]
),
% label the variables
labeling([X,Y,Z]).

```
(Note that a more precise and robust implementation of reduced cost pruning is available as an \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) predicate reduced_cost_pruning/2 available in the eplex library.)

\subsection*{17.5.2 Probing}

Probing is a method which, during search, posts more and more constraints to the linear solver until the linear constraints are logically tighter than the original problem constraints. This is always possible in theory, since any solution can be precisely captured as a set of linear constraints, viz: \(X _1=v a l _1, X _2=v a l _2, \ldots, X _n=v a l _n\)
The idea is to take the solution produced by the linear solver (which only enforces the linear constraints of the problem), and to extend this solution to a "tentative" assignment of values to all the problem variables. If all the constraints are satisfied by the tentative assignments, then a solution has been found. Otherwise a violated constraint is selected, and a new linear constraint is posted that precludes this violation. The linear solver then wakes and generates a new solution.
If the set of constraints become unsatisfiable, the system backtracks to the choice of a linear constraint to fix a violated constraint. A different linear constraint is added to preclude the violation and the search continues.
Probing is complete and terminating if each problem constraint is equivalent to a finite disjunction of finite conjunctions of linear constraints. The conjunction must be finite to ensure each branch of the search tree is finite, and the disjunction must be finite to ensure that there are only finitely many different branches at each node of the search tree.

\subsection*{17.5.3 Probing for Scheduling}

Probing can be applied to resource-constrained scheduling problems, and there is an ECL \({ }^{i} \mathrm{PS}^{e}\) library called probing_for_scheduling supporting this. The method is described in detail in the paper [7]. In the following we briefly discuss the implementation of probing for scheduling. The problem involves tasks with durations, start times and resources. Any set of linear constraints may be imposed on the task start times and durations. Assuming each task uses a single resource, and that there is a limited number MaxR of resources, the resource constraints state that only \(M a x R\) tasks can be in progress simultaneously.
The resource limit can be expressed by the same overlap constraints used in the first example above. All the constraints can therefore be handled by eplex alone. However the probing
algorithm does not send the resource constraints to eplex. Instead it takes the start times returned from the optimal eplex solution, and computes the associated resource profile. The resource bottleneck is the set of tasks running at the time the profile is at its highest.
The probing algorithm selects two tasks at the bottleneck and constrains them not to overlap, by posting a before constraint (defined in the example above) between one task and the start time of another.
The resource constraint is indeed expressible as a finite disjunction of finite conjunctions of before constraints, and so the algorithm is complete and terminating.
The computation of the resource profile is performed automatically by encoding the overlap constraints in the repair library, annotating them as described in chapter 13 ,
To make this work, the solutions returned from the linear solver are copied to the tentative values of the variables. This is achieved using a post goal as follows:
```

eplex_to_tent(Expr,Opt) :-
eplex_solver_setup(
Expr,
Opt,
[sync_bounds(yes),solution(yes)],
[ new_constraint,post(set_ans_to_tent) ]
).
set_ans_to_tent :-
eplex_get(vars,Vars),
eplex_get(typed_solution,Solution),
Vars tent_set Solution.

```

When conflicts are detected by the repair library further constraints repairing the violation are posted to the eplex solver, causing problem resolution and possibly further conflicts to be repaired.

\subsection*{17.6 Other Hybridisation Forms}

This module has covered a few forms of hybridisation between ic and eplex. There are a variety of problem decomposition techniques that support other forms of hybridisation. Three forms which employ linear duality are Column Generation, Benders Decomposition and Lagrangian Relaxation. All three forms have been implemented in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) and used to solve large problems, and the \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) library colgen, described in the next chapter, supports Column Generation. Often it is useful to extract several linear subproblems and apply a separate linear solver to each one. The eplex library offers facilities to support multiple linear solvers. Space does not permit further discussion of this feature.
Cooperating solvers have been used to implement some global constraints, such as piecewise linear constraints [21]. Linearisation of ic global constraints is another method of achieving tight cooperation.

Three kinds of information can be used
- Reduced Costs
- The solution (the value for each variable at the linear optimum)
- Dual values

Reduced costs allow values to be pruned from variable domains. The solution can be checked for feasibility against the remaining constraints, and even if infeasible can be used to support search heuristics. Dual values are used in other hybridisation forms, devised by the mathematical programming community.

Figure 17.4: Using information returned from the linear optimum

Finally many forms of hybridisation involve different search techniques, as well as different solvers. For example stochastic search can be used for probing instead of a linear solver, as described in [28].
In conclusion, \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) provides a wonderful environment for exploring different forms of hybridisation.

\subsection*{17.7 References}

The principles of hybridising linear and domain constraint solving and search are presented in [5. The techniques were first described in [3]. Hybrid techniques are the topic of the CPAIOR workshops whose proceedings are published in the Annals of Operations Research.

\subsection*{17.8 Hybrid Exercise}

Build a hybrid algorithm to create lists whose elements all differ by at least 2. Try lists of length \(3,5,7,8\). To test its performance, reduce the domains thus: ic:(List::1..TwoL-2) so the program tries all possibilities before failing.
Use the following skeleton:
```

differ(Length,List) :-
length(List,Length),
TwoL is 2*Length,
ic:(List::1..TwoL-1),
alldiff(List,TwoL,Bools),
[To be completed]
alldiff(List,Length,Bools) :-
( fromto(List,[X|Rest],Rest,[]),
fromto([],BIn,BOut,Bools),

```
```

            param(Length)
        do
        diffeach(X,Rest,Length,BIn,BOut)
    ).
    diffeach(X,List,Length,BIn,BOut) :-
(foreach(Y,List),
fromto(BIn,TB, [B|TB],BOut),
param(X,Length)
do
diff2(X,Y,Length,B)
).

```
(a) Create an IC algorithm using
```

diff2(X,Y,_,_) :- ic: ((X+2 \#=< Y) or (Y+2 \#=< X)).

```
(b) Create an eplex algorithm using
```

diff2(X,Y,Max,B) :-
eplex:(B::0..1),
eplex:( X+2 + B*Max \$=< Y+Max),
eplex:(X+Max \$>= Y+2 + (1-B)*Max).

```
(c) Try and find the best hybrid algorithm. (NB This is, unfortunately, a trick question ;-))

\section*{Chapter 18}

\section*{The Colgen Library}

This chapter provides a brief introduction to the use of the colgen library by comparing the solution of a simple 1-dimensional cutting stock problem - in which we wish to minimize the waste in cutting stock boards of length \(l\) to produce specified numbers of boards of various lengths \(l_{i}\) - by LP using lib (eplex) and hybrid column generation using lib (colgen).

\subsection*{18.1 The LP Model}

In modeling this problem as a MILP we could choose to introduce a variable \(x_{j}\) for each feasible way of cutting a board of length \(l\) into boards of length \(l_{i}\) with coefficients \(a_{i j}\) representing the number of boards of length \(l_{i}\) obtained from the cutting associated with \(x_{j}\) and a constraint \(\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}\) specifying the number of boards \(b_{i}\) required for each length \(l_{i}\); for realistic problems there will frequently be very many feasible cuttings and associated variables \(x_{j}\) and as these must be enumerated before problem solution can begin this approach may be impractical. We could instead introduce for each stock board used a set of variables \(x_{i, j}\) for each demand \(i\) indicating the cutting required, a variable \(w_{j}\) representing the resulting waste and a constraint \(\sum_{i=1}^{m} l_{i} x_{i, j}+w_{j}=l\) ensuring the cutting is valid. Although we do not know how many boards will be required in the optimal solution, we do have an upper bound on this number \(K_{0}=\sum_{i=1}^{m}\left\lceil b_{i} /\left\lfloor l / l_{i}\right\rfloor\right\rceil\) and introduce the above variable sets and constraint for \(K_{0}\) boards. The constraints \(\sum_{j=1}^{K_{0}} x_{i j} \geq b_{i}\) specify the number of boards \(b_{i}\) required for each length \(l_{i}\). Since all \(K_{0}\) boards may not be required we introduce a variable \(x_{j}\) denoting whether a board is used and modify the valid cutting constraint
\[
\sum_{i=1}^{m} l_{i} x_{i j}+w_{j}=l x_{j}
\]
so that unused boards have zero cost in the objective function. The complete problem formulation is then:
\[
\left.\begin{array}{rll}
\mathbf{P}: \text { minimize } z & =\sum_{j=1}^{K_{0}} w_{j} \\
& & \\
\text { subject to } \sum_{j=1}^{K_{0}} x_{i j} & \geq b_{i} & \forall i \\
\sum_{i=1}^{m} l_{i} x_{i, j}+w_{j} & =l x_{j} & \\
w_{j} & \in\{0, \ldots, l\} & \\
x_{i, j} & \in\left\{0, \ldots, h_{i}\right\} & \forall i \\
x_{j} & \in\{0,1\}
\end{array}\right\} \forall j
\]
where \(h_{i}=\left\lfloor l / l_{i}\right\rfloor\). This problem formulation is modeled and solved in \(\mathrm{ECL}^{i} \mathrm{PS}^{e}\) as follows:
```

:- lib(eplex).
% eplex instance creation
:- eplex_instance(cut_stock).
lp_cut_stock(Lengths, Demands, StockLength, Vars, Cost) :-
(
foreach(Li, Lengths),
foreach(Bi, Demands),
foreach([], XijVars0),
foreach(Maxi, Bounds),
fromto(0, KIn, KOut, KO),
param(StockLength)
do
KOut is KIn + fix(ceiling(Bi/floor(StockLength/Li))),
Maxi is fix(floor(StockLength/Li))
),
(
for(J, 1, K0),
foreach(Wj, Obj),
foreach(Xj:Used, Vars),
fromto(XijVars0, VIn, VOut, XijVars),
param(Lengths, StockLength, Bounds)
do
cut_stock:integers([Xj,Wj]),
% Xj variable bounds
cut_stock:(Xj::0..1),
% Wj variable bounds
cut_stock:(Wj::0..StockLength),
(
foreach(Li, Lengths),
foreach(Xij, Used),

```
```

    foreach(Li*Xij, Knapsack),
    foreach(XiVars, VIn),
    foreach([Xij|XiVars], VOut),
    foreach(Maxi, Bounds),
    param(Xj)
    do
        % Xij variable bounds
        cut_stock:integers(Xij),
        cut_stock:(Xij::0..Maxi)
    ),
    % cutting knapsack constraint
    cut_stock:(sum(Knapsack) + Wj =:= StockLength*Xj)
    ),
(
foreach(Bi, Demands),
foreach(Xijs, XijVars)
do
% demand constraint
cut_stock:(sum(Xijs) >= Bi)
),
cut_stock:eplex_solver_setup(min(sum(Obj))),
% optimization call
cut_stock:eplex_solve(Cost).

```

\subsection*{18.2 The Hybrid Colgen Model}

The cutting stock problem can be decomposed into a master problem in which an optimum combination of existing cuttings is found and a subproblem in which new cuttings are generated which could improve upon the current combination. For clarity we denote by \(Q\) the set of feasible cuttings and index variables \(\lambda_{\mathbf{q}}\) by the column of master problem constraint coefficients \(\mathbf{q} \in Q\) corresponding to the equivalent subproblem solution:
\[
\begin{aligned}
\text { MP : minimize } & =\sum_{\mathbf{q} \in Q} c_{\mathbf{q}} \lambda_{\mathbf{q}} \\
\text { subject to } \sum_{\mathbf{q} \in Q} \mathbf{q} \lambda_{\mathbf{q}} & \geq \mathbf{b} \\
\sum_{\mathbf{q} \in Q} \lambda_{\mathbf{q}} & \geq L_{0} \\
\sum_{\mathbf{q} \in Q} \lambda_{\mathbf{q}} & \leq K_{0} \\
\lambda_{\mathbf{q}} & \in 0,1 \quad \mathbf{q} \in Q \\
\text { SP : maximize } w & =\sum_{i=1}^{m} u_{i} q_{i}-c_{\mathbf{q}} \\
\text { subject to } \sum_{i=1}^{m} l_{i} q_{i} & \leq l \\
q_{i} & \in\left\{0, \ldots,\left\lfloor l / l_{i}\right\rfloor\right\} \quad i=1, \ldots, m
\end{aligned}
\]
where \(L_{0}=\left\lceil\sum_{i=1}^{m} b_{i} l_{i} / l\right\rceil\) and \(K_{0}=\sum_{i=1}^{m}\left\lceil b_{i} /\left\lfloor l / l_{i}\right\rfloor\right\rceil\) are initial bounds on the number of stock boards required, \(c_{\mathbf{q}}=l-\sum_{i=1}^{m} l_{i} q_{i}\), the subproblem objective function coefficients \(\mathbf{u}\) represent the benefit obtained by producing boards of each type, and the subproblem is simply a general
integer knapsack problem maximizing the benefit due to the boards produced by a cutting. The problem is modeled and solved as follows:
```

cg_cut_stock(Lengths, Demands, StockLength, Vars, Cost) :-
% column generation instance creation
colgen_instance(cut_stock),
(
fromto(Ids, [demand(Li)|IRest], IRest, [lower, upper]),
foreach(Li, Lengths),
foreach(Bi, Demands),
fromto(Q, [Qi|Rest], Rest, [Lower, Upper]),
foreach(Li*Qi, Knapsack),
fromto(0, LIn, LOut, L),
fromto(0, KIn, KOut, KO),
fromto(StockLength, CIn, COut, CMax),
param(StockLength)
do
LOut is LIn + Bi*Li,
KOut is KIn + fix(ceiling(Bi/floor(StockLength/Li))),
COut is min(Li-1, CIn),
% subproblem variable bounds
Max is fix(floor(StockLength/Li)),
ic:(Qi::0..Max),
% master problem column generation constraint
% for demand i
cut_stock:identified_constraint(implicit_sum(Qi) >= Bi,
demand(Li))
),
% master problem initial lower and upper bound constraints
LO is fix(ceiling(L/StockLength)),
cut_stock:identified_constraint(implicit_sum(Lower) >= L0,
lower),
cut_stock:identified_constraint(implicit_sum(Upper) =< K0,
upper),
% subproblem cost variable bounds
ic:(C::0..CMax),
% the subproblem knapsack constraint
ic:(sum(Knapsack) + C =:= StockLength),
% subproblem structure
SubProblem = sp_prob{
cost:C,
coeff_vars:Q,
aux: []
},
% optimization call

```
```

cut_stock:solver_setup(cutting(SubProblem, Ids), implicit_sum(C)),
cut_stock:solve(Cost),
cut_stock:get(non_zero_vars, Vars).

```
where we first create a colgen instance cut_stock, set up the variable domains of the subproblem and the demand constraints of the master problem, set up the initial master problem bound constraints and subproblem knapsack constraint, then solve and return the variables with non-zero values in the optimal solution. The definition of cutting cost as waste has been combined with the knapsack constraint, while the bounds placed on this cost exclude cuttings with sufficient waste to produce further boards, thus limiting the amount of search in subproblem solution. The chosen method of subproblem solution is:
```

cutting(SubProblem, Ids) :-
SubProblem = sp_prob{
cost:Cost,
coeff_vars:Vars,
aux: []
},
% sort variables in descending order of dual value
(
fromto(Ids, [Id|IRest], IRest, [lower, upper]),
fromto(Vars, [Var|Rest], Rest, [1, 1]),
foreach(Dual-Var, KeyedVars),
fromto(Soln, [Id-Var|SRest], SRest, [lower-1, upper-1])
do
cut_stock:get(dual(Id), Dual)
),
sort(1, >=, KeyedVars, Sorted),
% label vars with non-negative duals to maximum values,
% vars with negative duals to minimum
(
foreach(Dual-Var, Sorted)
do
( Dual >= 0 -> label_max(Var) ; label_min(Var) )
),
% create solution structure and post to problem instance
Sol = sp_sol{
cost:Cost,
coeff_vars:Soln,
aux: []
},
cut_stock:subproblem_solution(Sol).
label_max(Var) :-
get_var_bounds(Var, Lo, Hi),
( Var = Hi ;

```
```

    Hi1 is Hi - 1,
    set_var_bounds(Var, Lo, Hi1),
    label_max(Var) ).
    label_min(Var) :-
get_var_bounds(Var, Lo, Hi),
( Var = Lo ;
Lo1 is Lo + 1,
set_var_bounds(Var, Lo1, Hi),
label_min(Var) ).

```
we first rank the variables in order of decreasing dual value, label to maximize those with non-negative dual value and minimize those with negative dual value, then construct a sp_sol structure and post it to the master problem instance.

\section*{Bibliography}
[1] N. Beldiceanu, E. Bourreau, P. Chan, and D. Rivreau. Partial search strategy in CHIP. In 2nd International Conference on Metaheuristics - MIC 97, Sophia Antipolis, France, July 1997.
[2] N. Beldiceanu and E. Contjean. Introducing global constraints in CHIP. Mathematical and Computer Modelling, 12:97-123, 1994. citeseer.nj.nec.com/beldiceanu94introducing.html.
[3] H. Beringer and B. de Backer. Combinatorial Problem Solving in Constraint Logic Programming with Cooperating Solvers, pages 245-272. Elsevier, 1995.
[4] A. Bockmayr and T. Kasper. Branch and infer: A unifying framework for integer and finite domain constraint programming. INFORMS Journal on Computing, 10(3):287-300, 1998.
[5] A. Bockmayr and T. Kasper. Branch and infer: A unifying framework for integer and finite domain constraint programming. INFORMS Journal on Computing, 10(3):287-300, 1998.
[6] Ivan Bratko. Prolog Programming for Artificial Intelligence. International Computer Science. Addison-Wesley, 1986.
[7] H. H. El Sakkout and M. G. Wallace. Probe backtrack search for minimal perturbation in dynamic scheduling. Constraints, 5(4):359-388, 2000.
[8] F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In CP'g9, volume 1713 of \(L N C S\), pages 189-203. Springer, 1999.
[9] T. Frühwirth. Theory and practice of constraint handling rules. Logic Programming, 37(1-3):95-138, 1988.
[10] Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A generic arc-consistency algorithm and its specializations. Artificial Intelligence, 57(2-3):291-321, 1992.
[11] ILOG. CPLEX. www.ilog.com/products/cplex/, 2001.
[12] Robert Kowalski. Algorithm = logic + control. Communications of the ACM, 22(7):424436, 1979.
[13] C. Le Pape and P. Baptiste. Resource constraints for preemptive job-shop scheduling. Constraints, 3(4):263-287, 1998.
[14] T. Le Provost and M.G. Wallace. Generalized constraint propagation over the CLP Scheme. Journal of Logic Programming, 16(3-4):319-359, July 1993. Special Issue on Constraint Logic Programming.
[15] Olivier Lhomme, Arnaud Gotlieb, Michel Rueher, and Patrick Taillibert. Boosting the interval narrowing algorithm. In Joint International Conference and Symposium on Logic Programming, pages 378-392, 1996.
[16] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99-118, 1977.
[17] Kim Marriott and Peter J. Stuckey. Programming with Constraints. MIT Press, 1998.
[18] L. Michel and P. Van Hentenryck. Localizer: A modeling language for local search. Lecture Notes in Computer Science, 1330, 1997.
[19] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem. Management Science, 42(6):797-813, June 1996.
[20] Dash Optimization. XPRESS-MP. www.dash.co.uk/, 2001.
[21] P. Refalo. Tight cooperation and its application in piecewise linear optimization. In CP'g9, volume 1713 of LNCS, pages 375-389. Springer, 1999.
[22] R. Rodosek, M. G. Wallace, and M. T. Hajian. A new approach to integrating mixed integer programming and constraint logic programming. Annals of Operations Research, 86:63-87, 1999. Special issue on Advances in Combinatorial Optimization.
[23] R. Rodosek and M.G. Wallace. A generic model and hybrid algorithm for hoist scheduling problems. In Proceedings of the 4 th International Conference on Principles and Pract ice of Constaint Programming, pages 385-399, Pisa, 1998.
[24] Joachim Schimpf. Logical loops. In Peter. J. Stuckey, editor, Proceedings of the 18th International Conference on Logic Programming, pages 224-238. Springer, July/August 2002.
[25] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
[26] P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial systems using a branch and prune approach. SIAM Journal on Numerical Analysis, 1995.
[27] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Programming Series. MIT Press, Cambridge, MA, 1989.
[28] M.G. Wallace and J. Schimpf. Finding the right hybrid algorithm - a combinatorial metaproblem. Annals of Mathematics and Artificial Intelligence, 34(4):259-270, 2002.
[29] Matthew L. Ginsberg William D. Harvey. Limited discrepancy search. In Chris S. Mellish, editor, Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95); Vol. 1, pages 607-615, Montréal, Québec, Canada, August 20-25 1995. Morgan Kaufmann, 1995.
[30] H.P. Williams. Model Building in Mathematical Programming. Management Science. Wiley, 4th edition, 1999.

\section*{Index}
\(->/ 2,23\)
::/2
ic, \(73,74,95\)
ic_sets, 102
;/2, 22
\(=/ 2,11\)
\#/2
ic_sets, 102
\#::/2
ic, 73
\(\#</ 2\)
ic, 74
\# = / 2
ic, 74
\(\#=</ 2\)
ic, 74
\#>/2
ic, 74
\(\#>=/ 2\)
ic, 74
\(\# \backslash=/ 2\)
ic, 74,80
\$::/2
ic, 73, 95
\(\$</ 2\)
ic, 75,95
\(\$=/ 2\)
eplex, 181
ic, 75, 95
\(\$=</ 2\)
eplex, 181
ic, 75, 95
\(\$>/ 2\)
ic, 75, 95
\(\$>=/ 2\)
eplex, 181
ic, 75, 95
\(\$ \backslash=/ 2\)
ic, 74, 95
ac, 166
AC-3, 152
AC-5, 152
ac_eq/3, 74, 76
accept/3, 36, 37
aliasing, 17
all_disjoint/1, 104
all_intersection/2, 104
all_union/2, 104
alldifferent/1
ic, 79, 80
ic_global, 79, 80
alternative search methods, 117
arc consistency, 152, 154, 169
arity, 13
assignment, 117
atom, 12
backtrack count, 126
backtracking, 20
bagof/3, 23
bb_min \(/ 3,131\)
\(\mathrm{bb} _\)min \(/ 6,131\)
before, 193
behaviour of a constraint, 153
benders decomposition, 206
bigM transformation, 196
bin packing, 106
bind/2, 36
binding, 17
bounded backtrack search, 128
bounded reals, 11, 91-95 comparison, 92
bounds consistency, 155, 158
branch-and-bound, 120
branch_and_bound, 69
breal/2, 92
C++, 110
call, 23
cardinality constraint, 102
ccompile
coverage, 63
ccompile/1, 63
ccompile/2, 63
CHIP, 110
choice, 121
CHR, 170
chr, 69
clause, 18
clique, 172
close/1, 36
column generation, 206
combinatorial problems, 109
comment, 17
commit, 24
compilation
nesting compile commands, 9
compile, 5
compile/1, 10
complete search, [118, 121
conditional, 23
conditional spying, 51
conflict minimisation, 138
conflict sets, 136
conflict_constraints/2, 137
conjunction, 15
consistency check, 153, 156
consistent, 166
constraint, 151
Constraint Logic Programming, 109
constraint satisfaction problem, 152
constraints/1, 163
constructive disjunction, 169
constructive search, 118
coverage, 62, 63, 65
coverage counters, 62
cputime/1,43
credit search, 130
crossword, 166
CSP, 152
cumulative, 68
cut, 24
delayed goals viewer, development tool, [56
delete/5, 125
demon, 159
demon/1, 159
depth-bounded search, 129
depth-first search, 121
difference/3, 104
ic_sets, 103
\(\operatorname{dim} / 2,32\)
discrepancy, 132
disjoint/2
ic_sets, 103
disjointness constraint, 103
disjunction, 15, 22
disjunctive, 196
do \(/ 2,30\)
domain consistency, 154
domain splitting, 121
dual values, 206
ech, 69
edge_finder, 68
empty list, 12
entailment, 173
eplex, 68
eplex_get/2, 189
eplex_instance/1, 181
eplex_solve/1,181
eplex_solver_setup/1, 181
eplex_solver_setup/4, 187
eplex_var_get/3, 182
equality
symbolic, 15
error, 36
exec/2, 37
exec/3, 37
exec_group/3, 37
findall/3, 23
finite sets, 101
first solution, 128
first-fail principle, 124
floating point numbers, 11
flush/1, 36
forward checking, 154, 156
functor, 13
garbage_collect/0,43
generalised propagation, 166
generating test networks, 201
get_flag/2, 9
global constraints
ic, 7981
global reasoning, 174
goal, 14
greedy heuristic, 106
help, 7
heuristics, 120
hybrid optimization, 194
ic, 67
ic_global, 68
ic_search, 69, 124
ic_sets, 68
ic_symbolic, 69
implementing constraints, 151
in/2
ic_sets, 102
includes/2
ic_sets, 103
inclusion constraint, 103
incomplete search, 118, 127
incompleteness of propagation, 155
indomain/1, 83, 99, 104
infers/2, 166
infix, 13
input, 36
insetdomain/4, 104
inspecting terms, 52
instantiation, 17
integer numbers, 11
integer / 1,14
integers/1
eplex, 183
ic, 73, 74
intersection/3, 104
ic_sets, 103
interval arithmetic, 91
intset/3, 102
intsets/4, 102
is \(/ 2,11\)
knapsack, 106, 144
Kowalski, 109
labeling, 121
ic, 83
labeling/1, 83
lagrangian relaxation, 206
lib/1, 10
libraries, 10
library
coverage, 62
ic, \(95-100\)
ic_cumulative, 79
ic_edge_finder, 79
ic_edge_finder3, 79
ic_global, 7981
ic_sets, \(101-107\)
limited discrepancy search, 132
line coverage, 62
Linear Programming (LP), 177
linear relaxation, 197
list, 12
listen/2, 36
local search, 143
locate/2, 95-97, 99
locate/3, 95, 96
locate/4, 95
log_output, 36
logical variable, 16
logical variables, 16
mathematical modelling languages, 110
Mathematical Programming (MP), 177
membership constraint, 102
metacall, 23
middle-first, 125
Mixed Integer Programming (MIP), 177
modelling, 109, 164
modelling, LP problem, 180
modelling, MIP, 182
most, 166
most specific generalisation, 167
move-based search, 118
MSG, 167
multiple solvers, 195
\(n i l, 12\)
noclash, 163
node consistency, 152
notin/2
ic_sets, 102
null, 36
number, 11
objective function, 177
once/1, 128
open/3, 37
operator syntax, 13
optimisation, 59, 120
optimisation (numerical), 177
output, 36
overlap, 193
partition a search space, 121
path consistency, 152
performance, 59
piecewise linear, 206
postfix, 13
predicate, 14, 18
predicate browser, development tool, 49, 56
prefix, 13
pretty_printer, 65
printf/2, 36
priority, 158
probing, 140, 205
probing_for_scheduling, 205
probing_for_scheduling, 70
problem-specific heuristic, 125
product, 165
product_plan, 165
profile/1, 60
profiling, 59
program analysis, 5965
propagation rule, 170
propia, 69, 166
prune, 24
pruning, 120
queens, 123
query, 5, 9, 14
r_conflict/2, 137
random search, 118
random walk, 145
rational numbers, 11
read \(/ 1,36\)
read \(/ 2,36\)
reals/1
ic, \(73,74,95\)
reduced costs, 203
reduced_cost_pruning, 205
repair, 69, 135
reset_counters
coverage, 65
reset_counters/0, 65
resolution, 19
resolvent, 19
result
coverage, 63, 65
result/0, 65
result/1, 63, 65
result/2, 65
sameset/2
ic_sets, 103
search space, 117
search tree, 118
search/6, 127
select/3, 36
set variable, 101
set_flag \(/ 2,9,43\)
setof \(/ 3,23\)
shallow backtrack, 127
simpagation rule, 171
simplification rule, 170
simulated annealing, 146
socket/3, 36, 37
specification languages, 110
squash/3, 95, 96, 98
statistics/0, 9, 43
statistics \(/ 2,9,43\)
Steiner problem, 105
string, 12
structure, 13
subset constraint, 103
subset/2
ic_sets, 103
suspend, 67
suspend/3, 158, 159
suspension, 158
symdiff/3
ic_sets, 103
tabu Search, 147
tail, 22
tent_get/2, 137
tent_is/2, 137
tent_set/2, 137
term, 11
term inspector, development tool, 52, 58
timeout, 131
toplevel, 55
tracer filter, development tool, 51, 58
tracer, development tool, 47, 57
tracing program execution, 47
tree search, 118
trigger condition, 153, 159
types, 11
atom, 12
bounded real, 11
float, 11
integer, 11
list, 12
rational, 11
string, 12
structures, 13
unification, 17
union/3, 104
ic_sets, 103
unique, 166
update_struct/4, 30
use_module/1, 10
value selection, 123
variable selection, 122
variables, 16
scope, 19
warning_output, 36
weight constraint, 106
weight/3, 106
windows, 59
write/1, 36
write/2, 36
write_term/2, 36```

[^0]: ${ }^{1}$ http://www.icparc.ic.ac.uk/eclipse/reports/handbook/handbook.html

[^1]: ${ }^{1}$ and the $f d$ library which will not be addressed in this tutorial

[^2]: ${ }^{2}$ the other set solvers lib(conjunto) and lib(fd_sets) are similar but not addressed in this tutorial

