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• Classical Constraint Reasoning
– “Simple” problems

• NASA Applications
– “Complex” problems

• NASA Technology
– Pushing Constraint Reasoning

• Open Research Areas: A Challenge
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Classical Constraint Reasoning
• Binary CSPs

– scope=2, bit-matrix representation of constraints
• Static CSPs

– Solve fixed problem
• “Homogeneous” constraints

– Binary constraint matrices
– Interval reasoning, Temporal reasoning
– A few on DEs, real-valued functions, heterogeneous

• Application integration considerations
– “Infinite” resources to solve CSP problems
– Stand-alone systems
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Classical Constraint Reasoning
• CP 2004 papers (full-length)

– Binary CSPs: 7
• 1 of these is counting rather than satisfaction

– AllDiff CSPs: 2
– Linear constraints: 4

• 3 of these have optimization criteria
– SAT: 3
– MAXSAT: 2
– Quantified CSP/Quantified SAT: 3
– Consistency of single constraint class: 7
– Set Constraints: 3
– Portfolio optimization:1
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Classical Constraint Reasoning
• CP 2004 papers (full-length)

– Local search algorithms: 3
• applicable to heterogeneous problems

– Global search algorithms: 1
• applicable to heterogeneous problems

– Heterogeneous constraints (non-scheduling): 2
– Time + resource constraints: 6

• 2 of these have optimization criteria
• What’s missing this year? (but has been work in the past)

– Dynamic CSPs
– “Complex” constraints, e.g. DEs
– Uncertainty
– Integration story
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• Constraint Reasoning used in Missions
– MER - Mars Exploration Rover Science Planning Tool

‘03-04
– Life in the Artacama (LITA) Desert Rover ‘04

• Onboard memory (renewable resource)
• Power
• Route planning
• Causal constraints (AI Planning)

time1 2 3 5 6
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• Constraint Reasoning used in Missions
– DS1: RAX – Remote Agent Experiment ‘99

• Spacecraft pointing constraints
• Onboard memory (renewable resource)
• Thrust accumulation constraints

– EO-1 ScienceCraft ‘04
• Thermal duty cycle constraint
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• Constraint Reasoning used in Missions
– Automated telescope scheduling (ATIS) ‘99

• sin h = sin q sin d + cos q cos d cos (q-L-a)
– Hubble Space telescope scheduling ‘94

• Orbit period constraints
• Sun and Earth occlusion constraints
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• Mission-oriented research
– Earth-observing satellite scheduling project (EOS)
– SOFIA flight scheduling project (SOFIA)
– Contingent Planning for Mars rover operations
– Personal Satellite Assistant (PSA)
– Spoken Interface Prototype for PSA
– Space Interferometry testbed (SIM)
– Unmanned Helicopter Surveillance Scheduling

• Mission-directed Research
– UAV Autonomy Architecture
– Intelligent Deployable Execution Agent (IDEA)
– LORAX Rover Power budgeting
– Image processing planning (ImageBot)
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• Some common themes
– Heterogeneous constraints and optimization

• Mixes of discrete, continuous
• Small -arity and large -arity

– Complex constraints
• DEs, tightly coupled constraints (e.g. resources)
• Qualitative and quantitative uncertainty

– Dynamic constraints
• Added and retracted all the time!

– Integrated constraint solvers
• Solvers in Planners, schedulers
• Both ground systems, on-board systems
• Distributed solvers
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NASA Technology
• Constraint-based Planning

– Generalization of classical AI planning
– Heavy use of constraint based modeling and

constraint reasoning
– PLASMA: Plan State Management

Architecture
•  Ground tools and onboard systems

• Modeling issues
• Constraint propagation
• Temporal Flexibility and Resources
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• A  Domain Model:
• defines parts of the plan
• defines necessary relationships among them for valid plans

• The Plan Database :
• maintains current plan
• maintains mapping between plan and constraint network
• supports plan modification and constraint inference

• The Planner:
• checks status of current plan
• decides how to modify the plan
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Constraint-Based Planning
Application Architecture
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• Class: general object description
– Object: class instance
– Predicate: state an object can be in
– Rules: relationships between objects

• Variables
– Predicates represented by variables

• Start, end (timepoints), duration
• Parameters of predicates

• Rules are templates for constraints on variables
– Sequencing of states on same object imposes

constraints
– Appearance of state in plan constrains other states



Ames
Research
Center Sample Model Fragment

• Camera::TakePic{
•  // 1.Attitude must be constant throughout
•  contained_by(Attitude.pointAt at);
•  eq(at.location, rock);

• // 2. Engine must be off throughout
• contained_by(Engine.off o);

•  // 3. Preceded by readying operation
•  met_by(Ready r);

•  // 4. Succeded by stowing the instrument
•  meets(Stow c);
• }
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Sample Model Fragment

Camera

Attitude

Engine

 takePic ?Target

 off

 ready

 pointAt ?Target2

 ready

1.

2.

4.3.
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• Timelines are class instances, and enforce temporal mutual
exclusion over an object’s state

• Parameterized Predicates describe actions and states
• Time Intervals have Start, End and Duration
• Token is a Parameterized Predicate over a Time Interval
• Constraints defined between Time Points, Parameters

Camera

Attitude

 off

 pointAt Sun

Engine  thrusting Hi

 takePic ?Target

 off

 ready

 pointAt ?Target2
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• Every partial plan is mapped to a CSP
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Flaw/Decision Model
Variable Decisions (resolve unbound variables):

•Specify (var, val) / Reset (var)

Token Decisions (resolve inactive tokens):
• Activate(Token t) / Deactivate(Token t)
• Merge (Token t1, Token t2) / Split(Token t1)
• Reject(Token t1) / Reinstate (Token t1)

Object Decisions (resolve when Object hasTokensToOrder):
• Constrain(Object o, Token t) / Free(Token t)
• Constrain(Object o, Token t1, Token t2) / Free(Token t1)
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• All Flaws/Decisions can be viewed as CSP variable
assignment options
– Token decisions: merge + rejection straightforward, sequencing

requires enumeration of options
– Object assignment options straightforward

• As partial plan evolves, CSP changes according to rules
– Thus, Planning is equivalent to solving a DCSP
– Unlike “classical” DCSP (Mittal & Falkenhainer 1990)

• Allowed to create new CSP variables, modify domains of
existing variables

• Have rules describing CSP modifications to consult during
solving
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Camera

Attitude

 off

 pointAt Sun

Engine  thrusting Hi

?Target

Unscheduled subgoals

Sun Moon Star

Unbound Variables/Values

 takePic ?Target
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 ready  pointAt ?Target2

Camera

Attitude

 off

 pointAt Sun

Engine  thrusting Hi

 takePic ?Target

 offSun Moon Star

Unbound Variables/Values
Unscheduled subgoals

?Target ?Target2
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 ready  pointAt ?Target2

Camera

Attitude

 off

 pointAt Sun

Engine  thrusting Hi

 takePic ?Target

 off

Sun Moon Star

Unbound Variables/Values
Unscheduled subgoals

?Target ?Target2
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Objects with and without Tokens

Rock name(rock4)

x(3)

y(9)

Object Member Variables (Static w.r.t. Time)

Navigator

Object

At(lander) Going(lander, rock4) At(rock4)

Member Variables (Variable w.r.t. Time)

Instrument

Object

Stowed

Member Variables (Variable w.r.t. Time)

Unstow Place(rock4) TakeSample(rock4)
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Object - Token Relationships
Object

Object

Token

Token

canBeAssigned (m:n)

isAssigned (1:n)

hasA (1: n)
supports (1: n)

parentOf (1: n)

canBeMerged(m:n)

Constrained
Variable

Constraint

hasA (1: n)
hasA (1: [4, n])

constrainedBy (m: n)
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Token State Transition Model
INCOMPLETE

INACTIVEACTIVE REJECTED

MERGED

Close (Typically an internal decision)

(Typically an internal state)

Reject

Reinstate

Merge Split

Activate

De-activate
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• Modeling & Constraint Architecture
– How to do the CSP representation?

• Heterogeneous constraint propagation
– Scheduling consistency enforcement
– “Heterogeneous” consistency

• What if half my CSP is AC and the other half BC?

• Heuristics
– Do binary CSP heuristics apply?
– Do static CSP heuristics apply?

• Hardness of problems
– Does phase transition work apply?
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• Temporal constraints or systems of linear
constraints?
– Feasibility of linear constraints: Gaussian

elimination
– A general mechanism for all such constraints
– ...but STNs more efficiently handled with

Shortest path algorithms
– Requires specialized propagation to general

linear constraint solver
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• Temporal and Resource Constraints
– Laborie 2001, Muscettola 2002 & 2004, Frank 2004

• Constraint checks and consistency enforcement
• Temporal and resource constraints

– Works for scheduling problems
– ...but problematic for planning problems

• Actions that impact one of a set of resources
• Possible unification of actions
• As-yet ungenerated actions

– Polynolmial time, but expensive

time1 2 3 5 6
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• That pesky duration constraint

– A “hybrid” consistency representation
• STNs enforce Bounds consistency
• ...but other constraints act on duration...
• ...requiring mapping between bounds-consistent start & end,

arc-consistent duration variable
– ...or a more complex model?

• Epillitis (Tsamardinos et al. 2003) directly handles disjunctive
STNs (DTNs)

• ...but some algorithm tailoring required for efficiency
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• Satellite scheduling

– Consider satellite scheduling with
• known orbit
• discrete observation choices
• pointable instrument

– No reason to constantly solve trigonometric constraints!
• Can pre-compile feasible slews

– If you do x can’t slew in time to do y
• Treat this constraint as a binary CSP

– We did this wrong the first time
• We failed to learn from Verfaillie et al.
• ...and we paid!



Ames
Research
Center Consistency Matters
• Equivalence classes and GAC

– Faster to propagate equivalence class than lots of
“connected” binary equalities

– ...but now DFS required to maintain connected equalities
– ...and since many equalities hold on timepoints...

• The same holds for AllDiff
– ...but need to maintain cliques of AllDiff variables...
– ...and where’s AllDiff in our models?

A{r,g,b} B
{r,g,b}

C {r,g,b}

D
{r,g,b}

E
{r,g,b}

A{r,g,b} B
{r,g,b}

C {r,g,b}

D
{r,g,b}

E
{r,g,b}
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• Representing Token Insertion Decisions (Frank et
al. 2000)
– Timelines enforce mutex; Where can a token go?
– Dynamic variable domains

• Can’t store “domain” of a token
• What does this do to nonchron. search and nogood reasoning?

– Forward checking rather than AC to generate slots on-
the-fly

• Other representations have other problems

Engine  thrusting Hi  thrusting Low  thrusting Hi

 thrusting Hi
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Constraints
• Distinguished constraint classes

– Generic, Temporal, Equivalence classes, Resources
• Rules engine

– Adds and removes constraints
• Triggering propagation via events

– Scheduling of execution can be defined by user

Choose next
 constraint

Enforce 
Constraint

Eq. Class 1

Resource 2

STN 3Eq. Class 2

Resource 4 STN 7

Less-Than 2

Assign
VariableAdd Constraint

STN 7

Scheduler
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 Rover Rock Sampling

!!!!!!!!!!9

!!!!!!!!!!8

!!!!!!!!!!7

!!!!!!!!!!6

!!!!!!!!!!5

!!!!!!!!!!4

!!!!!!!!!!3

!!!!!!!!!!2

!!!!!!!!!!1

!!!!!!!!!!0

9876543210!

Task for Spirit this next Sol:
1. Start at Lander. 
2. Take Rock Sample at (3, 9) 
3. Communicate: Direct or via Lander
4. Battery charge initially 1000

Task for Spirit this next Sol:
1. Start at Lander. 
2. Take Rock Sample at (3, 9) 
3. Communicate: Direct or via Lander
4. Battery charge initially 1000

Path 1: -2000Path 1: -2000

Path 2: -1500Path 2: -1500
Path 3: -400Path 3: -400

Direct: -600
Lander: -40

Direct: -600
Lander: -40
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• Scheduling propagation
• Optimizastion
• Heuristics
• New “Hybrids”
• Limits of the application
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...SO WHAT?

• Constraints MATTER.
– Used in “real” systems.
– Solves “real” problems.

• ...but the context MATTERS too.
– Space isn’t manufacturing isn’t academia.
– Robotics isn’t biology isn’t telecom.
– Remember your customer.
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