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Abstract. Techniques for decomposing the constraint network of a Con-
straint Satisfaction Problem (CSP) have yielded the identification of new
tractable classes of CSPs [1]. In this paper, we propose three new decom-
position techniques, namely HINGE+, CUT, and TRAVERSE, where
HINGE+ is a generalization of HINGE by Gyssens et al. [2]. Further, we
combine CUT and TRAVERSE into a new strategy, which we call Cut-
and-Traverse (CaT). We introduce these techniques and compare them
according to the criteria introduced by Gottlob et al. [1].

1 Introduction

Many important practical problems such as scheduling, resource allocation, de-
sign and product configuration can be modeled as a Constraint Satisfaction
Problem (CSP), where a set of decisions need to be made, each decision has a
number of options, and the allowable combinations of these options are restricted
by a set of constraints. Because a CSP is in general NP-complete, search remains
the ultimate mechanism for solving it. Decomposition is a common strategy for
improving the performance of search [3]. Recently, decomposition techniques
borrowed from the area of databases (i.e., acyclic conjunctive queries) have been
used to characterize tractable classes of CSPs [4, 2, 5, 1]. The basic principle is to
decompose the CSP into sub-problems that are organized in a tree structure. The
subproblems are then solved independently, and the solutions are propagated in
a backtrack-free manner along the tree [6] to yield a solution to the initial CSP.
We propose new decomposition techniques and we position them in the context
of the hierarchy specified by Gottlob et al. [1], which unifies major decomposition
strategies reported in the literature and compares them in terms of generality.
The main techniques are the biconnected decomposition (BICOMP) [6], hinge
decomposition (HINGE) [2, 5], tree clustering (TCLUSTER) [4], hinge decom-
position combined with tree clustering (HINGETCLUSTER) [2], and hypertree de-
composition (HYPERTREE) [7]. These techniques can be further characterized
by the width of the tree they generate and the their computational complex-
ity. Among the above methods, HYPERTREE is the most general and yields
trees with the smallest possible width. However, its cost is high. HINGE is a
more efficient but less general strategy than HYPERTREE. In this paper, we



generalize HINGE into HINGE+, and introduce CUT as a variation of HINGE.
Further, we propose a new technique, TRAVERSE, which we combine with CUT
to yield a new technique CaT. In summary, HINGE+ generalizes HINGE, and
CaT generalizes CUT.

This paper is organized as follows. Section 2 reviews the preliminaries of
CSPs. Section 3 introduces HINGE+. Section 4 describes CUT, which is a vari-
ation of HINGE+. Section 5 introduces a new technique called TRAVERSE.
Section 6 combines CUT and TRAVERSE into CaT. Section 7 establishes the
formal relationships among these techniques and also with respect to HINGE
and HYPERTREE. Finally, Section 8 concludes the paper.

2 Background

A CSP is defined as a tuple P = (V ,D, C) where V is a set of variables, D is a
set of value domains for the variables, and C is a set of constraints that restrict
the acceptable combination of values to variables. Every constraint Ci ∈ C is
a relation over a set Si of variables, and specifies the set of allowed tuples as
a subset of the Cartesian product of the domains of Si. We denote the set of
variables involved in constraint Ci by Scope(Ci), and the union of the scopes of
a set of constraints {Ci} by Var({Ci}). A solution to the CSP is an assignment
of values to all variables such that all the constraints are simultaneously satisfied.
To solve a CSP we need to determine whether the CSP has a solution and, if
so, find one solution. Although CSPs are NP-complete in general, some of the
CSPs are tractable due to their restricted structure. The CSP can be represented
with a constraint network, which is, in general, a hypergraph. The constraint
hypergraph of a CSP P = (V ,D, C) is given by H = (V ,S), where S is a set of
hyperedges corresponding to the scopes of the constraints in the CSP. Figure 1
shows the hypergraph Hcg of a CSP with 22 variables and 16 constraints. The
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Fig. 1. A constraint hypergraph Hcg.
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Fig. 2. The primal graph of Hcg .

primal graph of a constraint hypergraph H = (V ,S) is a graph G = (V , E)
where E is a set of edges relating any two variables that appear in the scope
of a constraint in the CSP. Figure 2 shows the primal graph of Hcg. Further,
we say that a hypergraph is connected when its corresponding primal graph is
connected. Each connected component of the primal graphs defines a connected
component of the hypergraph.



Acyclic CSPs are those CSPs whose associated constraint hypergraph is
acyclic. A constraint hypergraph H is acyclic iff its primal graph G is chordal
(i.e., any cycle of length greater than 3 has a chord) and conformal (i.e., there
is a one-to-one mapping between each maximal clique of the primal graph and
the scope of the constraints) [8]. Hcg of Figure 1 is not acyclic.

Following [9], a join tree JT (H) for a constraint hypergraph H is a tree whose
nodes are the edges of H such that whenever the same vertex X ∈ V appears in
two hyperedges s1 and s2 ∈ S, then s1 and s2 are connected, and X appears in
each node on the unique path linking s1 and s2 in JT (H). In other words, the
set of nodes in which X appears includes a (connected) subtree of JT (H). The
width d of a join tree is the maximum number of hyperedges in all the nodes of
the join tree. Figure 3 shows a join tree of Hcg of width d=2.
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Fig. 3. A join tree of Hcg.

A structural decomposition technique computes an equivalent join tree for a
given constraint hypergraph. Each node in this tree is a sub-problem for which
we find all solutions. Then, while applying directional arc-consistency to the
join tree, we can solve the CSP in a backtrack-free manner. The complexity of
solving the sub-problems is O(|S|ldd log l), where l is the maximum size of a
constraint in S and d the width of the join tree. Figure 4 shows the hierarchy,
proposed by Gottlob et al. of known decomposition techniques [1]. This hierarchy
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Fig. 4. The hierarchy of constraint tractability of [1].

characterized the relationships between these decomposition techniques in terms
of the following criteria, where C(Di, k) is a class of CSPs for which there exists



a decomposition of width ≤ k by the decomposition method Di that can be
solved in polynomial time [1]1:

1. Generalization. D2 generalizes D1 if there exists a constant δ such that, for
each level k, C(D1, k) ⊆ C(D2, k) holds. In practical terms, this means that
whenever a class C of constraints is tractable according to method D1, it is
also tractable according to D2.

2. Beating. D2 beats D1 if there exists an integer k such that C(D2, k) is not
contained in class C(D1, m) for any m. Intuitively, this means that some
classes of problems are tractable according to D2 but not according to D1.

3. Strong generalization. D2 strongly generalizes D1 if D2 generalizes D1 and
D2 beats D1. This means that D2 is really the more powerful method given
that, whenever D1 guarantees polynomial runtime for constraint solving,
then D2 also guarantees tractable constraint solving. However, there are
classes of constraints that can be solved in polynomial time by using D2 but
are not tractable according to D1.

4. Strongly incomparable. D1 and D2 are strongly incomparable if both D1

beats D2 and D2 beats D1.

3 Hinge+ decomposition (HINGE+)

As specified by Gyssens et al. [2], HINGE decomposes the constraint hypergraph
into a join tree where each node (called 1-hinge) is a set of hyperedges and two
nodes that are adjacent in the tree share exactly one hyperedge. Figure 5 shows
a decomposition of Hcg of Figure 1 by HINGE where d = 12. The resulting
decomposition guarantees a set of properties (i.e., inheritance, decomposition,
and inseparability) that they define. They also attempted to generalize their
approach to k-hinges, where a k-hinge is a node in the join tree connected to other
nodes with at most k hyperedges. However, they showed that their algorithm for
1-hinge cannot be generalized to achieve a correct result. The width of the join
tree of Figure 5 is particularly high. We noticed that by allowing the nodes of
the tree to connect through more than one hyperedge (as suggested by k-hinge
of Jeavons et al. [5]), we can obtain better decompositions such as the one we
show in Figure 6. We introduce the concept of k-cut to achieve such a result,
which yields HINGE+, our improvment on HINGE.

Consider a constraint hypergraph H = (V ,S) and a set of hyperedges F ⊆ S.
We define Hr = (Vr,Sr), denoted Remain-hg(F,H), as the remaining constraint
hypergraph obtained after removing F from H. More formally:

Vr = V \ Var(F )

Sr =
⋃

h∈S

h \ Var(F ).

1 In this hierarchy methods that are not related are guaranteed not comparable.
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Definition 1 (i-cut). Given a connected constraint hypergraph H = (V ,S)
where |S| ≥ i+1, a i-cut of H is a set of hyperedges F that satisfies the following
conditions:

1. F ⊂ S and |F | = i; and
2. The remaining constraint hypergraph has at least 2 components.

Definition 2 (Max-Size(F , H)). Given an i-cut F of a constraint hypergraph
H = (V ,S), Max-Size(F , H) is the largest number of hyperedges in a connected
component in Remain-hg(F,H).

Therefore, given a constraint hypergraph H, HINGE continuously finds 1-cuts
(connecting 1-hinges). We improve HINGE by finding 1-cuts through k-cuts,
where k is a specified maximum cut-size. The difficulty here is to choose among
the i-cuts for a given i (1< i ≤ k), as there may be more than one possible
choice. We solve this problem by choosing the i-cut that yields the minimum
value of Max-Size. Now we define the join tree resulting from HINGE+:

Definition 3 (k-hinge+-tree). Given a constraint hypergraph H = (V ,S), a
k-hinge+-tree of H is a tree, T = (N, A), with nodes N and labeled arcs A, such
that:

1. Each tree node p ⊆ S;
2. For each hyperedge h ∈ S, there exists a tree node p such that h ∈ p;
3. Two adjacent tree nodes p1 and p2, there exists an i-cut C (1≤ i ≤ k) that

Var(p1) ∩ Var(p2) = Var(C); and
4. For each variable Y ∈ V, the set {p ∈ N | Y ∈ Var(p)} induces a connected

subtree of T .

Given a constraint hypergraph H and a constant number k, the hinge+ decom-
position algorithm shown in Figure 1 returns a k-hinge+-tree by finding 1-cuts
through k-cuts. In Algorithm 1, k is the maximum cut size. The worst case of
the algorithm occurs when there are no i-cuts 1≤ i ≤ (k − 1). In the worst case,



Input: A hypergraph H = (V,S) and a maximum cut-size k.

Output: An k-hinge+-tree T for (V,S).

1 i← 1;
2 Scuts ← ∅;
3 Ni ← {S};
4 Mark every hyperedge in S as ‘unchosen’;
5 foreach j from 1 to k step by 1 do
6 Mark the nodes in Ni as j-non-minimal;
7 while not all nodes of Ni are marked j-minimal do
8 Choose a j-non-minimal node F in Ni;
9 j-combinations ← all combinations of j ‘unchosen’ hyperedges in F ;

10 j-cuts ← ∅;
11 foreach j-combination X ∈ j-combinations do
12 Γ ← {G ∪X | G is a connected component in Remain-hg(X,F )};
13 if (|Γ | > 1) and (∀ Cq ⊆ Scuts, ∃Γp ∈ Γ such that Cq ⊆ Γp);

then
14 j-cuts ← j-cuts ∪ {X};

end
end

15 if j-cuts 6= ∅ then
16 choose a j-cut C with smallest Max-Size(j-cut, F );
17 Mark the hyperedges in C as ‘chosen’;
18 Scuts ← Scuts ∪ {C};
19 Γ ← {G ∪ C | G is a connected component in Remain-hg(C,F )};
20 Ni+1 ← (Ni \ {F}) ∪ Γ ;
21 Mark C as a j-cut of every element in Γ ;
22 Let γ: {FN1, . . . , FNq} → Γ such that ∀FNi ∩ γ(FNi) 6= ∅;
23 Ai+1 ← (Ai \ {({F, F ′}, C) | ({F, F ′}, C) ∈ Ai})

∪{({γ(FN), FN}, C) | ({F, FN}, C) ∈ Ai}
∪{({Γ0, Γy}, C) | Γ0 is an arbitrary chosen element from Γ ,

Γy ∈ Γ and Γy 6= Γ0};
24 Mark all the new nodes added to Ni+1 as j-non-minimal;

else
25 Mark F as j-minimal;

end
26 i← i + 1;

end
end

27 T ← (Ni, Ai);

Algorithm 1: Algorithm of HINGE+.



line 11 loops at most |S|k times, and each loop can be performed in O(|V||(S|)
time. So the worst time complexity of HINGE+ is O(|V||(S|k+1). Since k is
used to limit the cut size, Algorithm 1 remains polynomial. Figure 6 shows a
2-hinge+-tree for Hcg.
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Fig. 7. Applying HINGE+ on Hcg with k = 2.

4 Cut decomposition (CUT)

Notice that, in general, the arcs incident to a given node in a join tree may be
labeled by two or more distinct cuts. For example, in the join tree of Figure 7,
the arcs incident to the node {s4, s5, s6, s11, s12} are labeled with three different
cuts, namely {s4, s5}, {s6, s12}, and {s11}. In this section, we consider a variation
of HINGE+ called CUT, which restricts to at most 2 the number of different
cuts labeling the arcs incident to any given node in the join tree. This is achieved
by replacing the conditions in line 13 with the following ones:

1. |Γ | > 1;
2. ∀ Cq ∈ Scuts, there exists Γp ∈ Γ such that Cq ⊆ Γp; and
3. For every two sets of hyperedges Ci and Cj ∈ Scuts, if Ci 6= Cj , and Ci ⊆

Γi, Cj ⊆ Γj , then Γi 6= Γj .

The above conditions guarantee that no more than two cuts label the arcs in-
cident to a node in the join tree obtained by CUT. (This feature allows us to
further traverse each tree node from one cut to another cut and is exploited
in Section 5.) The complexity of CUT is the same as that of HINGE+, and it
thus is polynomial. Figure 8 shows the result of applying CUT to the constraint
hypergraph Hcg of Figure 1 with k =2.

5 Traverse decomposition (TRAVERSE)

Given a constraint hypergraph H = (V ,S) and a set of hyperedges F ⊆ S,
TRAVERSE returns a unique join tree obtained by Algorithm 2 via ‘sweeping’
through the constraint hypergraph starting from the hyperedges in F . We denote
by Traverse-I(H, F ) the result obtained by applying Algorithm 2 with F on
H.
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Fig. 8. Applying CUT on Hcg.

Definition 4 (Neighboring hyperedges). The neighboring hyperedges of a
set of hyperedges F in a constraint hypergraph H = (V ,S) with F ⊆ S, denoted
Neighbors(F,S), is a set given by:

{e | e ∈ F, e 6⊆ F, and Var({e}) ∩ Var(F ) 6= ∅}. (1)

Input: a constraint hypergraph H = (V,S) and a set of hyperedges F ⊆ S .

Output: an equivalent join tree T for H.

1 N ← ∅; A← ∅;
2 Mark any hyperedge e ∈ S as ‘unvisited’;
3 Fv ← {e | Var({e}) ⊆ Var(F )};
4 N ← N ∪ {Fv};
5 Fjv ← Fv;
6 Mark any hyperedge in Fjv as ‘visited’;
7 while not all hyperedges in S are ‘visited’ do
8 F ′ ← Neighbors(Fjv, the set of all ‘unvisited’ hyperedges);
9 Fv ← {e | Var(e) ⊆ Var(F ′) };

10 N ← N ∪ {Fv};
11 A ← A ∪ {(Fjv , Fv)};
12 Fjv ← Fv;
13 Mark every hyperedge in Fjv as ‘visited’;

end
T ← (N, A);

Algorithm 2: Algorithm for TRAVERSE-I.

The loop in line 7 of the Algorithm 2 executes at most |S| times, and each
execution can be performed in O(|V||(S|) time. Therefore, the complexity TRA-
VERSE is |V||S|2) and is polynomial. Figure 9 shows the join tree computed by
traverse decomposition from {s1} in Hcg.

TRAVERSE always computes a join tree that is a connected chain, provided
the constraint hypergraph is connected. The result of the decomposition depends
on F the starting set of hyperedges. If we traverse Hcg of Figure 1 starting from
{s6, s9, s12}, Algorithm 2 yields a join tree of width d = 10. Starting from {s1},
the width is d = 3 (see Figure 9).
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We can combine CUT with TRAVERSE to improve the k-hinge+-tree com-
puted by CUT. To this end, we need to modify the Algorithm 2 in order to
allow it to sweep the constraint hypergraph between two cuts. In order to tra-
verse a constraint hypergraph from one set of hyperedges to another set of hy-
peredges, which will be used in Section 6, we only need to revise Algorithm 2
to Algorithm 3. We denote by Traverse-II(H, C1, C2) the result of applying
Algorithm 3 C1 to C2 on H The complexity of Algorithm 3 is also O(|V||S|2).

Input: a constraint hypergraph H = (V,S), a set of hyperedges C1 and another
set of hyperedges C2.

Output: an equivalent join tree T for H.

N ← ∅; A← ∅;
Mark any hyperedge e ∈ S as ‘unvisited’;
Fd ← {e | Var(e) ⊆ Var(C2)};
Fv ← {e | Var(e) ⊆ Var(C1)};
N ← N ∪ {Fv};
Mark any hyperedge in Fjv as ‘visited’;
while (Fv 6= Fd) and (not all hyperedges in S are ‘visited’) do

F ′ ← Neighbors(Fjv \ Fd, the set of all ‘unvisited’ hyperedges ∪Fd );
Fv ← {e | Var(e) ⊆ Var(F ′)};
N ← N ∪ {Fv};
A ← A ∪ {(Fjv , Fv)};
Fjv ← Fv;
Mark every hyperedge in Fjv as ‘visited’;

end
T ← (N, A);

Algorithm 3: Algorithm for TRAVERSE-II.

6 Cut-and-Traverse decomposition (CaT)

In this section, we introduce CaT, which combines CUT with TRAVERSE. The
algorithm for CaT is given in Algorithm 4.

Theorem 1. Given a constraint hypergraph H and a constant number k, the
CaT algorithm computes an equivalent join tree for H.



Input: A hypergraph H = (V,S) and a maximum cut-size k.

Output: An equivalent join tree T for H.

Cut H into a tree with tree nodes P1, . . ., Pm by CUT;
N ← ∅; A← ∅;
foreach i from 1 to m do

switch the number of cuts labeling the arcs incident to Pi;
do

case 0
(Ni, Ai)← Traverse-I(Pi, any hyperedge in Pi)

;
case 1

(Ni, Ai)← Traverse-I(Pi, C) where C is the only cut labeling the
arcs incident to Pi

;
case 2

(Ni, Ai)← Traverse-II(Pi, C1, C2) where C1 and C2 are the cuts
labeling the arcs incident to Pi

;

end
N ← N ∪ {Ni};
A← A ∪ {Ai};

end
T ← (N, A);

Algorithm 4: The algorithm for CaT.

Proof. Algorithm 4 first applies CUT to computes T1 a k-hinge+-tree equivalent
to a constraint hypergraph H = (V ,S). The arcs incident to any tree node in T1

are labeled with at most two cuts. The algorithm traverses each tree node in T1

by applying TRAVERSE. If there is only one tree node in T1, then CaT becomes
TRAVERSE, which exactly computes an equivalent join tree for H. If there are
at most 2 tree nodes in T1, then each tree node contains at least 1 cut and at
most 2 cuts. Since the result of TRAVERSE on each tree node containing 1 cut
is a chain-like join tree that begins with one cut, the result of TRAVERSE on
each tree node containing 2 cuts is also a chain-like join tree that begins with one
cut and ends with another cut. The sub join trees for all tree nodes are exactly
connected through these cuts, which guarantees the connectedness property of
the combined join tree of these sub join trees. Thus, the CaT algorithm computes
an equivalent join tree for H. 2

HYPERTREE [9] computes an optimal hypertree of H with a width within a
given bound k; the algorithm returns failure if no such decomposition exists. In
our approach, the constant k only restricts the size of cuts; it does not restrict
the width of the join tree computed by CaT. Therefore, CaT is more flexible
than HYPERTREE.



Given a constraint hypergraph H = (V ,S) and a constant number k, CaT
first computes an k-hinge+-tree T1 by CUT, which can be implemented in
O(|V||(S|k+1). The traverse process can be performed in O(|V ||(S|2). Therefore,
the complexity of CaT is O(|V||S|k+1 + |V ||S|2). Since k ≥ 1, the complexity of
CaT is O(|V||S|k+1).

Figure 10 and Figure 11 show the equivalent trees of Hcg computed by CaT
and HYPERTREE. In this case, the width of the decompositions obtained by
CaT and HYPERTREE are the same and equal to 2.
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Fig. 10. Applying CaT on Hcg.
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Fig. 11. Applying HYPERTREE on
Hcg.

7 Characterization

In this section, we compare HINGE, HINGE+, CUT, TRAVERSE, CaT and
HYPERTREE in terms of the criteria proposed by Gottlob et al. in [1]. Finally,
we enrich the new constraint tractability hierarchy proposed by these researchers.

Theorem 2. CaT strongly generalizes CUT.

Proof. The first step of CaT is CUT. The second step of CaT is TRAVERSE.
TRAVERSE will improve or keep the same decomposition result by CUT, thus
CaT generalizes CUT. For Hcg shown in Figure 1, CaT computes a join tree
with width 2 when limiting cut size to 2, as shown in Figure 10. CUT computes
a join tree with width 4 when limiting cut size to 2, as shown in Figure 8. Thus,
CaT beats CUT. Therefore, CaT strongly generalizes CUT. 2

Theorem 3. HINGE+ strongly generalizes HINGE.

Proof. When k = 1, HINGE+ is exactly the same as HINGE. When k > 1,
HINGE+ first performs HINGE, then continuously finds 2-cuts through k-cuts,
which will improve or keep the same decomposition result by HINGE. Thus,
HINGE+ generalizes HINGE. For Hcg shown in Figure 1, HINGE+ computes a



join tree with width 5 when limiting cut size to 2, as shown in Figure 7, while
HINGE computes a join tree with width 12, as shown in Figure 5. Thus, CaT
beats CUT. Therefore, HINGE+ strongly generalizes HINGE. 2

Also, Since HYPERTREE always compute an optimal decomposition, while
HINGE+, CUT and CaT are based on heuristic function, HYPERTREE gener-
alizes these methods. For TRAVERSE, the decomposition result depends on the
set of hyperedges it begins with, thus it cannot compare with HINGE, HINGE+,
CUT, and CaT.

Gottlob et al. [1] introduces the following comparison criteria to compare 2
different decomposition methods D1 and D2.

To compare HINGE, HINGE+, CUT, TRAVERSE, CaT and HYPERTREE
with each other, we give two additional constraint hypergraphs borrowed from [1].

For any n > 0, let triangles(n) be the graph (V, E) define as follows. The
set of vertices V contains 2n + 1 vertices p1, . . . , p2n+1. For each even index
i, 2 ≤ i ≤ 2n, {pi, pi−1}, {pi, pi+1}, and {pi−1, pi+1} are edges in E. No other
edges belong to E. Figure 12 shows the triangle(3). The hypertree width of
triangles(n) is 2. In fact, a hypertree (T, χ, λ), where T is a simple chain of n

vertices v1, . . . , vn, and, for each vi(1 ≤ i ≤ n), χ(vi) = {p2i−1, p2i, p2i+1} and
λ(vi) contains the two edges {p2i−1, p2i} and {p2i, p2i+1}, is a width 2 hypertree
decomposition of triangles(n).

For any n > 0, let book(n) be a graph having 2n + 2 vertices and 3n + 1
edges that form n squares (pages of the book) having exactly one common edge
{X, Y }. It is easy to see that the hypertree width of book(n) is 2. Figure 13
shows the graph book(4).

p2

p1 p3 p5 p7

p6p4

Fig. 12. Triangle(3). Fig. 13. Book(4).

Theorem 4. HYPERTREE strongly generalizes CaT.

Proof. HYPERTREE computes a join tree with the smallest possible width for a
constraint hypergraph. Because CaT a heuristic decomposition method, it only
chooses one possible decomposition. Therefore, HYPERTREE always produces a
join tree whose width is at most as large as CaT. Thus HYPERTREE generalizes
CaT. For triangle(3) shown in Figure 12, HYPERTREE computes a hypertree
with width 2 as shown in Figure 14, while CaT computes a join tree with width
3 when limiting cut size to 2, as shown in Figure 15. Note that here we denote
s1 as the hyperedge {P1, P2}, s2 as the hyperedge {P2, P3}, s3 as the hyperedge
{P1, P3}, s4 as the hyperedge {P3, P4}, s5 as the hyperedge {P4, P5}, s6 as the
hyperedge {P3, P5}, s7 as the hyperedge {P5, P6}, s8 as the hyperedge {P6, P7},
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Fig. 14. Applying HYPERTREE on
triangle(3).
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Fig. 15. Applying CaT on triangle(3).

and s9 as the hyperedge {P5, P7}. Thus, HYPERTREE beats CaT. Therefore,
HYPERTREE strongly generalizes CaT. 2

Theorem 5. HYPERTREE strongly generalizes TRAVERSE.

Proof. HYPERTREE computes a join tree for a constraint hypergraph with the
smallest hypertree width. TRAVERSE computes one possibility of an equivalent
join tree for a constraint hypergraph. Therefore, for a same constraint hyper-
graph, HYPERTREE always produces a join tree whose width is smaller than or
equal to the width of the join tree that TRAVERSE computes. HYPERTREE
thus generalizes TRAVERSE. For Hcg shown in Figure 1, TRAVERSE computes
a join tree with width 3, as shown in Figure 9, while HYPERTREE computes
a join tree with width 2, as shown in Figure 11. Thus, HYPERTREE beats
TRAVERSE. Therefore, HYPERTREE strongly generalizes TRAVERSE. 2

Theorem 6. HYPERTREE strongly generalizes HINGE+.

Proof. HYPERTREE computes a join tree for a constraint hypergraph with the
smallest hypertree width. HINGE+ computes one possible equivalent join tree of
a constraint hypergraph. Therefore, for a same constraint hypergraph, HYPER-
TREE always produces a join tree whose width is smaller than or equal to the
width of the join tree that HINGE+ computes. Thus HYPERTREE generalizes
HINGE+. For Hcg shown IN Figure 1, HINGE+ computes a join tree with width
4 when limiting cut size to 2, as shown in Figure 7, while HYPERTREE com-
putes a hypertree tree with width 2, as shown in Figure 10. Thus, HYPERTREE
beats HINGE+. Therefore, HYPERTREE strongly generalizes HINGE+. 2

Theorem 7. TRAVERSE and CUT are strongly incomparable.

Proof. For Hcg shown in Figure 1, TRAVERSE computes a join tree with width
3, as shown in Figure 9, while CUT computes a join tree with width 4 when limit-
ing cut size to 2, as shown in Figure 8. Thus, TRAVERSE beats CUT. For book(4)
shown in Figure 13, a traverse decomposition from hyperedges {X1, X, Y, Y1} has
width 3, while a cut decomposition limiting cut size to 2 has width 2. Thus, CUT
beats TRAVERSE. Therefore, TRAVERSE and CUT are strongly incomparable.
2

Theorem 8. TRAVERSE and HINGE+ are strongly incomparable.



Proof. For Hcg as shown in Figure 1, TRAVERSE computes a join tree with
width 3, as shown in Figure 9, while HINGE+ computes a join tree with width
5 when limiting cut size to 2, as shown in Figure 8. Thus, TRAVERSE beats
HINGE+. For book(4) shown in Figure 13, a traverse decomposition starting from
hyperedges {X1, X, Y, Y1} has width 3, while a hinge+ decomposition limiting cut
size to 2 has width 2. Thus, HINGE+ beats TRAVERSE. Therefore, TRAVERSE
and HINGE+ are strongly incomparable. 2

Figure 16 shows a constraint tractability hierarchy based on the above compari-
son results and Gottlob et al.’s conclusion [1]. This hierarchy is not yet complete.

HYPERTREE
[Gottlob et al., 2002]

+HINGE

HINGE
[Gyssens et al., 1994]

CaT

CUT

TRAVERSE

D2 is strongly more general than D 1

D2 indicates thatD1

Fig. 16. Comparing our techniques to previous ones.

Table 1 summarizes the complexity of the decomposition techniques we discuss
in this section.

Table 1. Complexity of decomposition methods.

Technique Complexity

HYPERTREE

Normal form: opt-d-decomp [7] O(|S|2d|V|2)
Reduced normal form [10] Best case: O(|S|d|V|+ |S|2|V|)

HINGE O(|V||S|2)

HINGE+ O(|V||S|k+1)

CUT O(|V||S|k+1)

TRAVERSE O(|V||S|2)

CaT O(|V||S|k+1)

Solving the CSP after decomposition O(|S|ldd log l)

|V|: number of variables (i.e., vertices)
|S|: number of constraints (i.e., hyperedges)
d: width of the join tree resulting from a decomposition
k: maximum cut-size
l: maximum size of a constraint in S



8 Conclusion

In this paper, we proposed new techniques to further improve the decomposition
result of HINGE. We presented a different view of HINGE and generalize this
method as HINGE+. Then we introduced a variation of HINGE+ called CUT.
We also proposed a new decomposition method called TRAVERSE, which can
be further combined with CUT as CaT. We showed that HINGE+, CUT, TRA-
VERSE, and CaT can be performed in polynomial time. We compared HINGE,
HINGE+, CUT, TRAVERSE, CaT and HYPERTREE with each other. We en-
riched the constraint tractability hierarchy introduced by Gottlob et al. in [1] by
adding the comparison results.

In the future, we plan to compare HINGE+, CUT, TRAVERSE, and CaT
with HINGETCLUSTER and HINGE+BICOMP+HYPERTREE.
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