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Abstract. We propose an improved restart strategy for randomized backtrack
search, and evaluate its performance by comparing to other heuristic and stochas-
tic search techniques for solving random problems and a tight real-world resource
allocation problem. The restart strategy proposed by Gomeset al. [1] requires the
specification of a cutoff value determined from an overall profile of the cost of
search for solving the problem. When no such profile is known,the cutoff value
is chosen by trial-and-error. The Randomization and Geometric Restart (RGR)
proposed by Walsh does not rely on a cost profile but determines the cutoff value
as a function of a constant parameter and the number of variables in the problem
[2]. Unlike these strategies, which have fixed restart schedules, our technique
(RDGR) dynamically adapts the value of the cutoff parameterto the results of
the search process. Our experiments investigate the behavior of these techniques
using the cumulative distribution of the solutions, over different run-time dura-
tions, values of the cutoff, and problem types (i.e., a real-world resource alloca-
tion problem and randomly-generated binary constraint satisfaction problems).
We show that distinguishing between solvable and over-constrained problem in-
stances in our real-world case-study yields new insights onthe relative perfor-
mance of the search techniques tested. We propose to use thischaracterization as
a basis for building new strategies of cooperative, hybrid search.

1 Introduction

We have developed a system for modeling and solving a resource allocation problem,
which is the assignment of Graduate Teaching Assistants (GTA) to courses in our de-
partment [3]. We exploit this system as a platform for developing and characterizing
new problem-solving strategies. The research we describe in this paper was motivated
and enabled by this project. However, our results are here extended beyond this partic-
ular application.

The Graduate Teaching Assistants Assignment Problem (GTAAP) is a critical and
arduous task that the department’s administration has to drudge through every semester.
By focusing our investigations on this particular real-world application, we have been
able to identify and compare the advantages and shortcomings of the various search
strategies we have implemented to solve this problem. Such an insight is unlikely to be
gained from testing toy problems, and surely difficult from testing random problems.



We show that the identified behaviors apply beyond our application. The contributions
of this paper are as follows: (1) The development of a new dynamic restart strategy for
randomized backtrack search, and (2) an empirical evaluation of the performance of this
new strategy and a comparison with other heuristic and stochastic search techniques on
a real-world problem and on randomly generated binary CSPs.

This paper is structured as follows. Section 2 describes theGTA assignment prob-
lem (GTAAP) and our implementations of a backtrack search, alocal search, and a
multi-agent search technique for solving it. Section 3 introduces our new proposed
dynamic restart strategy for randomized backtrack search and our implementation of
Walsh’s restart strategy [2]. Section 4 presents our experiments and our observations.
Finally, Section 5 concludes the paper and provides directions for future research.

2 GTA Assignment Problem

Given a set of graduate teaching assistants (GTAs), a set of courses, and a set of con-
straints that specify allowable assignments of GTAs to courses, the goal is to find a con-
sistent and satisfactory assignment [4–6]. Hard constraints (e.g., a GTA’s competence,
availability, and employment capacity) must be met, and GTA’s preferences for courses
(expressed on a scale from 0 to 5) must be maximized. Typically, every semester, the de-
partment has about 70 different academic tasks and can hire between 25 and 40 GTAs.
Instances of this problem, collected since Spring 2001, areconsistently tight and often
over-constrained. The objective is to ensure GTA support toas many courses as pos-
sible by finding amaximal consistent partial-assignment. Because the hard constraints
cannot be violated, the problem cannot be modeled as a MAX-CSP [7]. We provide a
constraint model of this problem by representing the courses as variables, the GTAs as
domain values, and the assignment rules as a number of unary,binary, and non-binary
constraints. We define the problem as the task of finding the longest assignment, as a
primary criterion, and maximizing GTAs’ preferences, as a secondary criterion. (We
model the latter as the value of the geometric mean of GTAs’ preferences in an assign-
ment.) We implemented a number of search strategies for solving this problem, which
we summarize below. These are a heuristic backtrack search (BT) with various ordering
heuristics, a greedy local search (LS), a multi-agent-based search (ERA), and a ran-
domized backtrack search with two restart strategies (RGR and RDGR). All strategies
implement the above two optimization criteria, except ERA,which models the GTAAP
as a satisfaction problem. We tested these search techniques on the real-world data-sets
shown in Table 1. Each course has a load that indicates the weight of the course. For
example, a value of 0.5 means this course needs one-half of a GTA. The total loadof
a semester is the cumulative load of the individual courses.Each GTA has a capacity
factor which indicates the maximum course weight he/she canbe assigned during the
semester. The sum of the capacities of all GTAs represents the total capacity.

Below, we review the search techniques to which we compare our new dynamic
restart strategy. These search techniques were implemented separately by students,
competing to produce the best results.



Table 1.Characteristics of the data sets.

Data set Spring2001bFall2001bFall2002Fall2002-NPSpring2003Spring2003-NP
Reference 1 2 3 4 5 6

Solvable? × √ × × √ √

#Variables 69 65 31 59 54 64
Max domain size 26 34 28 28 34 34
Total capacity 26 30 11.5 27 27.5 31
Total load 29.6 29.3 13 29.5 27.4 30.2
Ratio = TotalCapacity

TotalLoad
0.88 1.02 0.88 0.91 1.00 1.02

2.1 Heuristic backtrack search

Our heuristic backtrack (BT) search is a depth-first search with forward checking [8].
Because the problem may be over-constrained, we modified thebacktrack mechanism
to allow null assignments and proceed toward the longest solution in a branch-and-
bound manner (i.e., backtracking is not performed when a domain is wiped-out as long
as there are future variables with no empty domains). Our implementation is described
in detail in [5]. Note that adding dummy values to deal with over-constrained instances
is a bad choice in our context as it increases the branching factor (which is already too
large) and consequently worsens the thrashing behavior.

We have also implemented several ordering heuristics to improve the performance
of search. For variable ordering we implemented two heuristics for choosing the most
constrained variable first: least domain and ratio domain size to degree. We applied
these heuristics both statically (i.e., sequence of variables is determined before search
and not modified thereafter) and dynamically (i.e., the nextvariable is chosen after each
instantiation). For value ordering, we tested 3 different heuristics: random ordering, and
sorted by preference and by occurrence frequency in the domains. The combination of
these heuristics yielded 12 ordering strategies. Our experiments showed that dynamic
variable ordering is consistently superior to static ordering, but that the influence of the
other factors is not significant in the context of our application.

All these strategies exhibited a serious vulnerability to thrashing, which seriously
undermined their ability to explore wider areas of the search space. Indeed, although BT
is theoretically sound and complete,the size of the search space makes such guarantees
meaningless in practice. Figure 1 illustrates the gravity of thrashing for a problemwith
69 variables and 26 values. The percentage denotes the rationumber of variables− shallowest level

number of variables .
Indeed, the shallowest level of backtrack achieved after 24hours (26%) is not signifi-
cantly better than that reached after 1 minute (20%) of search, never revising the initial
assignment of 74% of the variables. Figure 2 shows, for each data set, the number of
variables, the longest solution (max depth), and the shallowest BT levels in terms of the
level and the percentage of backtracking in the search tree attained after 5 minutes and
6 hours.



Shallowest level
reached by BT after..

Number of variables: 69
Max depth: 57

1 min: 55 (20%)
24 hr: 51 (26%)

Fig. 1. BT search thrashing in large search
spaces.

Data # BT running for..
set Vars 5 min 6 hours

Max Shallowest Max Shallowest
depthlevel % depthlevel %

1 69 57 53 23% 57 51 26 %
2 65 63 55 15% 63 54 16 %
3 31 28 13 58% 28 3 90 %
4 59 49 48 18% 50 45 23 %
5 54 52 44 18% 54 41 24 %
6 64 62 54 15% 62 47 26 %

Fig. 2. BT search thrashing.

2.2 Local search

Zou and Choueiry designed and implemented a greedy, local search (LS) technique for
the GTAAP system [9–11]. It is a hill-climbing search using the min-conflict heuristic
for value selection [12]. It begins with a complete, random assignment (not necessarily
consistent), and tries to improve it by changing inconsistent assignments in order to
reduce the number of constraint violations. The effects of consistent assignments are
propagated over the domains of the variables with inconsistent assignments. This design
decision effectively handles non-binary constraints. Also, the local search is greedy in
the sense that consistent assignments are not undone. Moreover, a random-walk strategy
is applied to escape from local optima [13]. With a probability (1 − p), the value of a
variable is chosen using the min-conflict heuristic, and with probabilityp this value is
chosen randomly. Following the indications of [13] and after testing,p = 0.02 is used.
Finally, random restarts are used to break out of local optima.

2.3 ERA model

Zou and Choueiry also implemented a multi-agent-based search for solving the GTAAP
[9–11]. Liu et al. [14] proposed the ERA algorithm (Environment, Reactive rules, and
Agents), a multi-agent-based search for solving CSPs. Eachagent represents a variable.
The positions of an agent in the environmentE correspond to the values in the domain
of the variable. First, ERA places the agents randomly in their allowed positions in the
environment, then it considers each agent in sequence. For agiven agent, it computes
the constraint violations of each agent’s position. An agent moves to occupy a posi-
tion (zero position ) that does not break any of the constraints that apply to it. If
the agent is already in azero position , no change is made. Otherwise, the agent
chooses a position to move to, the choice being determined stochastically by the reactive
rules (R). The agents keep moving until they all reach azero position (i.e., a full,
consistent solution) or a certain time period has elapsed. After the last iteration, only
the CSP variable corresponding to agents inzero position are effectively instan-
tiated. The remaining ones remain unassigned (i.e., unbounded). This algorithm acts as
an ‘extremely’ decentralized local search, where any agentcan move to any position,



likely forcing other agents to seek other positions. Zou and Choueiry showed that the
extreme mobility of agents in the environment is the reason for ERA’s unique immunity
to local optima [9–11]. They found that ERA is indeed the onlysearch technique to
solve instances that remain unsolved by any other techniquetested. Zou and Choueiry
also uncovered the weakness of ERA on over-constrained problems, where a deadlock
phenomenon undermines its stability resulting in particularly short solutions. Finally,
they showed how this phenomenon can be advantageously used to isolate, identify, and
represent conflicts in a compact manner.

3 Randomized BT search with restarts

Unlike ERA and local search, general backtrack (BT) search is, in principle, com-
plete and sound. However, the performance of heuristic BT isunpredictable in practice
and seriously undermined by thrashing (i.e., searching unpromising parts of the search
space). Thrashing can be explained by incorrect heuristic choices made early in the
search process, and forces BT search to explore large ‘barren’ parts of the search tree.
As the problem size increases, the effects of thrashing become more important. Table 2
shows the performance of BT on data set 1 for various run times. Even after letting

Table 2.Performance of BT for various running times.

Data set 1(69 variables, over-constrained)
Running time 30 sec 5 min 30 min 1 hour 6 hours 24 hours

Shallowest BT level 54 53 52 52 51 51
Longest solution 57 57 57 57 57 57
Geometric mean of 2.15 2.17 2.17 2.21 2.27 2.27
preference values
# Backtracks 1835 47951 261536 532787 327476713070031
# Nodes visited 3526 89788 486462 989136 605963824146133
# Constraint checks 8.50E+073.17E+081.81E+093.58E+092.16E+108.70E+10

our best heuristic backtrack search run for over 24 hours, the quality of the solution, in
terms of solution length, is not improved. The improvement of the assignment quality,
in terms of the geometric mean of the preference values, is insignificant. Finally, we
notice that the assignment of the first 51 variables in the ordering was never undone.
Consequently, in practice, completeness a purely theoretical feature.

Another major problem of heuristic BT is the high degree of unpredictability in the
run-time of BT over a set of problem instances, even within the same problem type.
Gomes et al. nnoticed that this run-time can be often modeledby a heavy-tailed dis-
tribution [1]. They proposed to use randomization and restart strategies to overcome
this shortcoming of systematic search. First we review the main concepts, then we de-
scribe the two strategies that we tested. Gomes et al. demonstrated that randomization
of heuristic choices combined with restart mechanisms is effective in overcoming the
effects of thrashing and in reducing the total execution time of systematic BT search



[1]. Thrashing in BT search indicates that search is stuck exploring an unpromising part
of the search space, and thus incapable of improving the quality of the current solu-
tion. It becomes apparent that there is a need to interrupt search and to explore other
areas of the search space. It is important to restart search from a different portion of
the search space; otherwise it will end up traversing the same paths. Randomization
of branching during search is used to this end. Randomness can be introduced in the
variable and/or value ordering heuristics, either for tie-breaking or for variable and/or
value selection. After choosing a randomization method, the algorithm designer must
decide on the type of restart mechanism. This restart mechanism determines when to
abandon a particular run and restart the search. Here the tradeoff is that reducing the
cutoff time reduces the probability of reaching a solution at a particular run. Several
restart strategies have been proposed with different cutoff schedules. Some of the better
known ones are the fixed-cutoff strategy and Luby et al.’s universal strategy [15], the
randomization and rapid restart (RRR) of Gomes et al. [1], and the randomization and
geometric restarts (RGR) of Walsh [2]. Among the above listed restart strategies, RRR
and RGR have been studied and empirically tested in the context of CSPs. All of these
restart strategies are static in nature, i.e. the cutoff value for each restart is independent
of the progress made during search. Some restart strategies(e.g., fixed-cutoff strategy
of [15] and RRR [1]) employ an optimal cutoff value that is fixed for all the restarts
of a particular problem instance. The estimation of the optimal cutoff value requires a
priori knowledge of the cost distribution of that problem instance, which is not known
in most settings and must be determined by trial-and-error.This is clearly not practi-
cal for real-world applications. There are other restart strategies that do not need any
a priori knowledge (e.g., Luby et al.’s universal strategy [15] and Walsh’s RGR [2]).
They utilize the idea of an increasing cutoff value in order to ensure the completeness
of search. However, if these restart strategies do not find a solution after the initial few
restarts, then the increasing cutoff value leads to fewer restarts, which may yield thrash-
ing and diminishes the benefits of restart. We propose a restart strategy that dynamically
adapts the cutoff value for each restart based on the performance of previous restarts.
Our strategy looses the guarantee of completeness, which, anyway, is not achievable on
large problems.

3.1 Randomization and Geometric Restarts

Walsh proposed the Randomization and Geometric Restarts (RGR) strategy to automate
the choice of the cutoff value [2]. According to RGR, search proceeds until it reaches
a cutoff value for the number of nodes visited. The cutoff value for each restart is a
constant factor,r, larger than the previous run. The initial cutoff is equal tothe number
of variablesn. This fixes the cutoff value of theith restart atn.ri nodes. The geometri-
cally increasing cutoff value ensures completeness with the hope of solving the problem
before the cutoff value increases to a large value. We studied various values ofr and
report them in this paper. We combined this restart strategywith the backtrack search
of Section 2.1, randomizing the selection of variable-value pairs.



3.2 Randomization and Dynamic Geometric Restarts

We now introduce a simple but effective improvement to RGR. All static restart strate-
gies suffer from the problem of increasing cutoff values after each restart. While this
ensures completeness of the search, it results in fewer restarts, thus increasing the like-
lihood of thrashing and diminishing the probability of finding a solution. Our proposed
strategy, Randomization andDynamicGeometric Restarts (RDGR), aims to attenuate
this effect. It operates by not increasing the cutoff value for the following restartwhen-
ever the quality of the current best solution is not improvedupon. When the current
restart improves on the current best solution, then the cutoff value is increased geomet-
rically, similar to RGR. Because the cutoff value does not necessarily increase, com-
pleteness is no longer guaranteed. This situation is acceptable in application domains
(like ours) with large problem size where completeness is, anyway, infeasible in prac-
tice. Smaller cutoff values result in a larger number of restarts taking place in RDGR
than RGR, which increases the probability of finding a solution. All other implementa-
tion details are similar to RGR.

Let Ci be cutoff value for theith restart andr be the ratio used to increase the cutoff
value. In RGR the cutoff value is updated according to the equation:Ci+1 = r.Ci. We
use the following equation in RDGR:

Ci+1 =

{

r.Ci when the solution has improved at theith restart
Ci otherwise

(1)

In RGR, the cutoff value for each restart is determinedindependentlyof how search
performed at the previous step. However, this is not the casefor RDGR. Each time
search begins with a different random seed, it traverses different search paths. Some
paths may be more fruitful than others. RGR and RDGR follow the same cutoff sched-
ules for search paths that improve solutions. When this is not the case, RGR cutoff
values keep on increasing, thus making RGR more of a randomized BT search than a
randomized BT search with restarts. In contrast, RDGR keepscutoff at smaller values.
This explains the dynamic nature of RDGR. For problems that are not tight, solutions
are found within a few restarts. In such cases, RGR and RDGR exhibit similar behav-
iors. For tight and over-constrained problems, RDGR seems to dominate RGR as we
show in our experiments (Section 4).

4 Experiments and results

We tested and compared the above listed 5 search strategies,namely: BT (Section 2.1),
LS (Section 2.2), ERA (Section 2.3), RGR (Section 3.1), and RDGR (Section 3.2). BT
is deterministic and the other 4 search techniques (i.e., LS, ERA, RGR, and RDGR)
are stochastic. In the terminology introduced by Hoos and Stützle in [16], these are
optimization Las Vegas algorithms, RGR is probabilistically approximately complete
(PAC), and LS, ERA, and RDGR are essentially incomplete. We conducted the follow-
ing three sets of experiments:

1. Effect of running time on RGR and RDGR.



2. The influence of the choice of the ratior used in RGR and RDGR.
3. Relative performance of BT, LS, ERA, RGR, and RDGR.

We compare the performance of the algorithms using the following criteria:

1. Solution quality distributions(SQD) taking as reference the longest known solution
for each data set, as recommended by Hoos and Stützle in [16]. SQD’s are cumu-
lative distributions of the solution quality, similar to the cumulative distributions
of run-time in run-time distributions. The horizontal axesrepresents in percent the
relative deviation of the solution sizes from the longest known solutionsopt, com-

puted as(sopt−s)100
sopt

. Thus, the point 0% on thex-axis denotes the longest solution
and, the point 20% denotes a solution that is 20% shorter thatthe longest solution.

2. Descriptive statisticsof all the solutions found, for all search techniques. This in-
cludes the measures: mean, median, mode, standard deviation, minimum, and max-
imum of the solution.

3. 95% confidence intervalof the mean improvement. The confidence interval was
computed using the Mann-Whitney test. Table 3 reports the improvements of RDGR
over RGR and ERA.

Table 3. Improvements of RDGR with 95% confidence level.

Data setImprovements over RGRImprovements over ERA
Lower limit Upper limit Lower limit Upper limit

1 1.16 1.61 45.16 46.77
2 1.53 1.61 -6.15 -6.15
3 3.44 3.44 27.58 31.03
4 1.85 1.85 24.07 27.77
5 0 1.85 -3.7 -3.7
6 1.56 1.56 -6.25 -6.25

We tested these search techniques on the 6 real-world data-sets of the GTAAP of Table 1
and 4 sets of randomly generated problems. For the GTAAP datasets, we repeated our
experiments 500 times for all stochastic search techniques. Naturally, a single run is
sufficient for BT because it is deterministic. We found that the average run-time for all
stochastic algorithms stabilizes after 300 runs on all the GTAAP data sets, as shown
in Figure 3 for data set 1, which justifies our decision. We report the results for the
following data sets (the same qualitative observations hold across all data sets):

– Data set 1 as a representative of an over-constrained problem.
– Data set 5 as a representative of a tight but solvable problem.

For randomly generated problems, we used the model-B-type generator of Hemert [17].
We generated three types of randomly generated problems, each containing 100 in-
stances and each instance run for 3 minutes:
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– Under-constrained instances. The first type of randomly generated problems are
under-constrained binary CSPs with 40 variables, uniform domain size of 20 val-
ues, 0.5 proportion of constraints, and 0.2 constraint tightness.

– Over-constrained instances. The second type of randomly generated problems are
over-constrainedbinary CSPs with 40 variables, uniform domain size of 20 values,
0.5 proportion of constraints, and 0.5 constraint tightness.

– Instances at the phase transition. The third type of randomly generated problems
are from thephase transitionarea. These are binary CSPs with 25 variables, uni-
form domain size of 15 values, 0.5 proportion of constraints, and 0.36 constraint
tightness. We split these instance into two sets, each of 100instances, separating
solvable instances and unsolvable instances.

4.1 Effect of the running time on RGR and RDGR

To compare the performance of RGR and RDGR, we tested them on various running
times for the GTAAP data sets. The results are shown in Figures 4 and 5. In both
these figures, RDGR consistently outperforms RGR over different run-times. Further,
increasing the running time has no affect on the relative dominance of algorithms.

4.2 Influence of the ratior

We tested RGR and RDGR with different ratios, with 5 minutes running time. For the
GTAAP problem we tested the values: 1, 1.1,2

1

4 , 2
1

2 , 2, and 4. For the random CSPs we
tested the values: 1, 1.1,2

1

4 , 2
1

2 , 2, 3, and 4. Figures 6, 7, 8, and 9 show the influence of
the ratior used to increase the cutoff value in RGR and RDGR. In accordance with [2],
Figures 6 and 8 show that a value ofr=1.1 is the best among the values tested for RGR.
While, for RGR, this optimal ratio does not change with the problem type (i.e., GTAAP
vs. random problem), it does for RDGR. For the GTAAP, it isr=1.1 (Figure 7). For
randomly generated problems, it isr=2 (Figure 9).
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4.3 Relative performance of BT, LS, ERA, RGR, and RDGR

In this section we compare the relative performance of all the search techniques devel-
oped for the GTAAP system. Each stochastic algorithm was run500 times of 10 min
each on the GTAAP data set, and on 100 instances of random CSPsof 3 min each. Fig-
ures 10 and 11 show the relative performance of the search techniques on the GTAAP
system. And, Figures 12, 13, 14, and 15 show the relative performance for the random
problems. We do not show LS and ERA in Figure 13 because they goof the scale.

Improvement of RDGR over BT: Tables 4 and 5 show that the maximum value of the
solution sizes produced by RDGR is clearly greater than thatof the solution sizes
produced by BT. However, due to its stochastic nature, RDGR suffers from high
instability in its solution quality.

Superiority of RDGR over LS: The performance of RDGR is clearly superior to that
of LS (see Tables 4 and 5, and Figures 10, 11, 12, 14, and 15). Although the solution
quality is highly variable for both RDGR and LS, the low mean value of the solution
quality of LS ensures that RDGR remains superior to LS.
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Superiority of RDGR over ERA on over-constrained problems: On over-constrained
problems (Figures 10 and Table 3), the deadlock phenomenon prevents ERA from
finding solutions of quality comparable to those found by theother techniques [9–
11]. BT, LS, RDGR, and RGR do not exhibit such a dichotomy of behavior between
over-constrained cases and solvable instances.

Performance of ERA: On solvable problem instances (Figures 11 and 12), ERA dom-
inates all techniques. It is the only algorithm that finds complete solutions for nearly
all the runs. ERA completely dominates LS. However, on over-constrained prob-
lem instances (Figures 10) RDGR, RGR, BT and LS are superior to ERA due to
the deadlock phenomenon. At the phase transition (Figures 14 and 15), the behav-
ior of ERA is independent of the solvability of the problem. ERA performs only
better than LS, while RDGR, RGR and BT perform better than ERA. This differ-
ence in performance of ERA may have to do with the structure ofthe randomly
generated problems and the GTA problem. More tests are needed to understand
this phenomenon.

RDGR is more stable than RGR: Due to their stochastic nature, RDGR and RGR
techniques show a high instability in their solution quality. However, the standard
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Fig. 13.SQDs: over-constrained, random CSPs.

Phase transition, solvable
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Fig. 14. SQDs: solvable random CSPs, at phase
transition.

Phase transition, unsolvable
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Fig. 15. SQDs: unsolvable random CSPs, at
phase transition.

deviation column of Tables 4 and 5 show that RDGR is relatively more stable than
RGR.

Sensitivity of LS to local optima: LS sensitivity to local optima makes it particularly
unattractive in our context. Even BT outperforms LS.

Larger number of restarts in RDGR: On data set 1, the average number of restarts
is 74.5 for RDGR and 16.7 of RGR. On data set 5, the average number of restarts
is 56.9 for RDGR and 22.4 for RGR. This confirms our expectations stated in Sec-
tion 3.2 that RDGR performs more restarts than RGR.

The following three statements, where� denotes an algorithm dominance over another,
summarize the behavior of the 5 search strategies, also shown in Table 6:

– On solvable instances: ERA� RDGR� RGR� BT � LS
– On over-constrained instances: RDGR� RGR� BT � LS� ERA
– At the phase transition: RDGR� RGR� BT � ERA � LS



Table 4.Statistics of solution size for data set 1 (500 runs, 10 min each).

Data set 1(69 variables, over-constrained)

Search Mean MedianMode Standard dev.Minimum Maximum

BT 57 57 57 0 57 57
LS 47.12 48 49 4.44 30 55
ERA 30.99 31 32 4.37 18 45
RDGR 59.66 60 60 0.77 58 62
RGR 58.27 58 58 2.83 23 62

Table 5.Statistics of solution size for data set 5 (500 runs, 10 min each).

Data set 5(54 variables, tight but solvable)

SearchMeanMedianMode Standard dev.Minimum Maximum

BT 52 52 52 0 52 52
LS 42.88 44 46 3.94 29 50
ERA 53.99 54 54 0.04 53 54
RDGR 52.17 52 52 0.78 50 54
RGR 51.70 52 52 1.04 49 54

5 Conclusions and future work

By addressing a real-world application, we are able to identify, characterize, and com-
pare the behavior of various search techniques. While BT is stable, it suffers from
thrashing. LS is vulnerable to local optima. ERA shows difference in performance with
different problem types. ERA has an amazing ability to solveunder-constrained prob-
lems. However, ERA’s performance degrades on over-constrained problems due to the
deadlock phenomenon. This same deadlock phenomenon may be affecting ERA at the
phase transition. Restart strategies effectively preventthrashing, but their solution qual-
ity is highly variable. RGR operates by increasing cutoff values at every restart, which
makes is more increasingly vulnerable thrashing. RDGR attenuates this effect by mak-
ing the cutoff value depend upon the result obtained at the previous restart, thus increas-
ing the number of restarts in comparison to RGR. Consequently, RDGR exhibits a more
stable behavior than RGR while yielding at least as good solutions. In the future, we
plan to study the following directions:

1. Validate our findings on other real-world case-studies. And,

2. Design ‘progress-aware’ restart strategies, that is, strategies that can decide,during
a given restart, whether to continue or abandon this particular execution.

3. Design new search hybrids where a solution from a given technique such as ERA
is fed as a seed to another one such as heuristic backtrack search.



Table 6.Comparing the behaviors of search strategies.

Characteristics

General: Stochastic and incomplete
ERA Tight but solvable problems: Immune to local optima

Over-constrained problems:Deadlock causes instability and yields shorter solutions

General: Stochastic, incomplete, and quickly stabilizes
LS Tight but solvable problems:Liable to local optima, and fails to solve tight

CSPs even with random-walk and restart strategies
Over-constrained problems:Finds longer solutions than ERA

General: Stochastic, incomplete, immune to thrashing,
produces longer solutions than BT, immune to deadlock,

RDGRreliable on unknown instances, and
immune to local optima, but less than ERA

General: Stochastic, Approximately complete,
RGR less immune to thrashing than RDGR, and

yields shorter solutions than RDGR in general.

General: Systematic, complete (theoretically, rarely in practice),
BT liable to thrashing, yields shorter solutions than RDGR andRGR,

stable behavior, and more stable solutions than stochasticmethods in general
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