Characterization of a New Restart Strategy for
Randomized Backtrack Search

Venkata Praveen Guddeti and Berthe Y. Choueiry

Constraint Systems Laboratory
Computer Science & Engineering
University of Nebraska-Lincoln
Email: {vguddeti, choueiry@cse.unl.edu

Abstract. We propose an improved restart strategy for randomizedtizaatk

search, and evaluate its performance by comparing to otheistic and stochas-
tic search techniques for solving random problems and arégi-world resource
allocation problem. The restart strategy proposed by Ganals [1] requires the
specification of a cutoff value determined from an overatifie of the cost of

search for solving the problem. When no such profile is knava cutoff value

is chosen by trial-and-error. The Randomization and GeomBestart (RGR)

proposed by Walsh does not rely on a cost profile but detestireecutoff value

as a function of a constant parameter and the number of Vesiabthe problem

[2]. Unlike these strategies, which have fixed restart salesd our technique
(RDGR) dynamically adapts the value of the cutoff paramaiehe results of

the search process. Our experiments investigate the lmetafthese techniques
using the cumulative distribution of the solutions, ovefedent run-time dura-

tions, values of the cutoff, and problem types (i.e., a veadld resource alloca-
tion problem and randomly-generated binary constrairisfsation problems).

We show that distinguishing between solvable and overtcaingd problem in-

stances in our real-world case-study yields new insightsherrelative perfor-

mance of the search techniques tested. We propose to ushdhécterization as
a basis for building new strategies of cooperative, hybeiteh.

1 Introduction

We have developed a system for modeling and solving a resa@lliacation problem,
which is the assignment of Graduate Teaching Assistanta)@Tcourses in our de-
partment [3]. We exploit this system as a platform for dep&ig and characterizing
new problem-solving strategies. The research we desaritiéd paper was motivated
and enabled by this project. However, our results are héendrd beyond this partic-
ular application.

The Graduate Teaching Assistants Assignment Problem (®&)A#\a critical and
arduous task that the department’s administration hasidgdrthrough every semester.
By focusing our investigations on this particular real-ldapplication, we have been
able to identify and compare the advantages and shortcenaihthe various search
strategies we have implemented to solve this problem. Sudahséght is unlikely to be
gained from testing toy problems, and surely difficult froesting random problems.



We show that the identified behaviors apply beyond our agfitin. The contributions
of this paper are as follows: (1) The development of a new dyoaestart strategy for
randomized backtrack search, and (2) an empirical evaluafithe performance of this
new strategy and a comparison with other heuristic and asithsearch techniques on
a real-world problem and on randomly generated binary CSPs.

This paper is structured as follows. Section 2 describe&the assignment prob-
lem (GTAAP) and our implementations of a backtrack searclocal search, and a
multi-agent search technique for solving it. Section 3ddtrces our new proposed
dynamic restart strategy for randomized backtrack seamdhoair implementation of
Walsh’s restart strategy [2]. Section 4 presents our erpants and our observations.
Finally, Section 5 concludes the paper and provides doestior future research.

2 GTA Assignment Problem

Given a set of graduate teaching assistants (GTAs), a setun$es, and a set of con-
straints that specify allowable assignments of GTASs to sesirthe goal is to find a con-
sistent and satisfactory assignment [4—6]. Hard conssréig., a GTA's competence,
availability, and employment capacity) must be met, and '&pleferences for courses
(expressed on a scale from 0 to 5) must be maximized. Typjesiery semester, the de-
partment has about 70 different academic tasks and canédtineebn 25 and 40 GTAs.
Instances of this problem, collected since Spring 2001¢ansistently tight and often
over-constrained. The objective is to ensure GTA supposstoany courses as pos-
sible by finding anaximal consistent partial-assignmeBecause the hard constraints
cannot be violated, the problem cannot be modeled as a MAR-ZE We provide a
constraint model of this problem by representing the cauasevariables, the GTAs as
domain values, and the assignment rules as a number of Uniaayy, and non-binary
constraints. We define the problem as the task of finding thgdst assignment, as a
primary criterion, and maximizing GTAs’ preferences, assaosdary criterion. (We
model the latter as the value of the geometric mean of GTAefgpences in an assign-
ment.) We implemented a number of search strategies foingptkiis problem, which
we summarize below. These are a heuristic backtrack seBigw(th various ordering
heuristics, a greedy local search (LS), a multi-agentdasarch (ERA), and a ran-
domized backtrack search with two restart strategies (RERRDGR). All strategies
implement the above two optimization criteria, except ERAjch models the GTAAP
as a satisfaction problem. We tested these search teclsrogube real-world data-sets
shown in Table 1. Each course has a load that indicates ttghtvef the course. For
example, a value of 0.5 means this course needs one-half ®Aa The total load of
a semester is the cumulative load of the individual courSash GTA has a capacity
factor which indicates the maximum course weight he/shebeaassigned during the
semester. The sum of the capacities of all GTAs represeatsttdd capacity

Below, we review the search techniques to which we compareew dynamic

restart strategy. These search techniques were implecthepfmarately by students,
competing to produce the best results.



Table 1.Characteristics of the data sets.

Data set Spring2001b-all2001bFall2002Fall2002-NH SpringZOOl&SpringZOOS-N P
Reference 1 2 3 4 5 6
Solvable? X vV X X v Vv
#Variables 69 65 31 59 54 64

Max domain size 26 34 28 28 34 34

Total capacity 26 30 115 27 275 31

Total load 29.6 29.3 13 29.5 27.4 30.2
Ratio = Toa%pacity | gg 1.02 | 0.88 0.91 1.00 1.02

2.1 Heuristic backtrack search

Our heuristic backtrack (BT) search is a depth-first searith fwrward checking [8].
Because the problem may be over-constrained, we modifieblatle¢rack mechanism
to allow null assignments and proceed toward the longesitisal in a branch-and-
bound manner (i.e., backtracking is not performed when aaiioia wiped-out as long
as there are future variables with no empty domains). Ouldmentation is described
in detail in [5]. Note that adding dummy values to deal witleeeonstrained instances
is a bad choice in our context as it increases the branchatgrf@vhich is already too
large) and consequently worsens the thrashing behavior.

We have also implemented several ordering heuristics toawgpthe performance
of search. For variable ordering we implemented two hdasisor choosing the most
constrained variable first: least domain and ratio domaie 8 degree. We applied
these heuristics both statically (i.e., sequence of vigis determined before search
and not modified thereafter) and dynamically (i.e., the nexiable is chosen after each
instantiation). For value ordering, we tested 3 differemnttfistics: random ordering, and
sorted by preference and by occurrence frequency in the idsnEhe combination of
these heuristics yielded 12 ordering strategies. Our @xgaits showed that dynamic
variable ordering is consistently superior to static orttgrbut that the influence of the
other factors is not significant in the context of our applma

All these strategies exhibited a serious vulnerabilityri@shing, which seriously
undermined their ability to explore wider areas of the deapace. Indeed, although BT
is theoretically sound and completke size of the search space makes such guarantees
meaningless in practicé&igure 1 illustrates the gravity of thrashing for a probheith
69 variables and 26 values. The percentage denotes théaijg-of variables — shallowest level
Indeed, the shallowest level of backtrack achieved aftend@4#s (26%) is not signifi-
cantly better than that reached after 1 minute (20%) of seaever revising the initial
assignment of 74% of the variables. Figure 2 shows, for eath skt, the number of
variables, the longest solution (max depth), and the slvabBT levels in terms of the
level and the percentage of backtracking in the search ttei@ed after 5 minutes and

6 hours.




Data| # BT running for..

set |Vars 5 min 6 hours
Max |Shallowes Max [Shallowest
depthlevel % ||depthlevel %
1 | 69| 57 |53 23%|| 57 | 51 26 %
Shallowest level 2 | 65| 63 |55 15%| 63 | 54 16 %
reached by BT after.. 3 31 28 | 13 58%l 28 3 90 %
P v 4 |59 49 | 48 18%| 50 | 45 23 %
Max depth: 5 5 | 54| 52 | 44 18%| 54 | 41 24 %
Number of variables; 69 6 64 62 | 54 15%l 62 | 47 26 %
Fig.1. BT search thrashing in large search
spaces. Fig. 2. BT search thrashing.

2.2 Local search

Zou and Choueiry designed and implemented a greedy, loaadts€LS) technique for
the GTAAP system [9-11]. It is a hill-climbing search usithg tmin-conflict heuristic
for value selection [12]. It begins with a complete, rand@signment (not necessarily
consistent), and tries to improve it by changing inconsistssignments in order to
reduce the number of constraint violations. The effectsanfststent assignments are
propagated over the domains of the variables with incomsisissignments. This design
decision effectively handles non-binary constraintsoAthe local search is greedy in
the sense that consistent assignments are not undone.Woracandom-walk strategy
is applied to escape from local optima [13]. With a prob&pill — p), the value of a
variable is chosen using the min-conflict heuristic, andhwitobabilityp this value is
chosen randomly. Following the indications of [13] and \afésting,p = 0.02 is used.
Finally, random restarts are used to break out of local cgtim

2.3 ERA model

Zou and Choueiry also implemented a multi-agent-basediséarsolving the GTAAP
[9-11]. Liu et al. [14] proposed the ERA algorithm (Enviroaent, Reactive rules, and
Agents), a multi-agent-based search for solving CSPs. &geht represents a variable.
The positions of an agent in the environméhtorrespond to the values in the domain
of the variable. First, ERA places the agents randomly iir tdeowed positions in the
environment, then it considers each agent in sequence. igea agent, it computes
the constraint violations of each agent’s position. An ageaves to occupy a posi-
tion (zero position ) that does not break any of the constraints that apply té it. |
the agent is already inzero position , ho change is made. Otherwise, the agent
chooses a position to move to, the choice being determinetiastically by the reactive
rules (R). The agents keep moving until they all reacteso position (i.e., afull,
consistent solution) or a certain time period has elapsér £he last iteration, only
the CSP variable corresponding to agentseno position are effectively instan-
tiated. The remaining ones remain unassigned (i.e., urde)nThis algorithm acts as
an ‘extremely’ decentralized local search, where any agantmove to any position,



likely forcing other agents to seek other positiodsu and Choueiry showed that the
extreme mobility of agents in the environment s the reasoERA'S unique immunity
to local optima [9-11]. They found that ERA is indeed the osdarch technique to
solve instances that remain unsolved by any other technégted. Zou and Choueiry
also uncovered the weakness of ERA on over-constrainedgmsbwhere a deadlock
phenomenon undermines its stability resulting in paréidylshort solutions. Finally,
they showed how this phenomenon can be advantageouslyaisedate, identify, and
represent conflicts in a compact manner.

3 Randomized BT search with restarts

Unlike ERA and local search, general backtrack (BT) seaschni principle, com-

plete and sound. However, the performance of heuristic Rihgedictable in practice
and seriously undermined by thrashing (i.e., searchingamising parts of the search
space). Thrashing can be explained by incorrect heurikidéices made early in the
search process, and forces BT search to explore large Hgraets of the search tree.
As the problem size increases, the effects of thrashingrbecenore important. Table 2
shows the performance of BT on data set 1 for various run tifBesn after letting

Table 2. Performance of BT for various running times.

Data set 1(69 variables, over-constrained)

Running time | 30se¢ 5minf 30min 1houf 6hourg 24 hours
Shallowest BT level 54 53 52 52 51 51
Longest solution 57| 57| 57| 57| 57| 57|

Geometric mean of 2.15 2.17 2.17 2.2 2.27 2.27
preference values
# Backtracks 1835 47951 261536 532787 3274767113070031
# Nodes visited 3526 89788 486462 989136 605963$24146133
# Constraint checks|8.50E+073.17E+081.81E+093.58E+092.16E+108.70E+1(

our best heuristic backtrack search run for over 24 houesgtfality of the solution, in
terms of solution length, is not improved. The improvemdrthe assignment quality,
in terms of the geometric mean of the preference valuessignificant. Finally, we
notice that the assignment of the first 51 variables in themmd was never undone.
Consequently, in practice, completeness a purely theatd&ature.

Another major problem of heuristic BT is the high degree gbnadictability in the
run-time of BT over a set of problem instances, even within shme problem type.
Gomes et al. nnoticed that this run-time can be often modeyea heavy-tailed dis-
tribution [1]. They proposed to use randomization and réstaategies to overcome
this shortcoming of systematic search. First we review th@moncepts, then we de-
scribe the two strategies that we tested. Gomes et al. deratetsthat randomization
of heuristic choices combined with restart mechanismsfecg¥e in overcoming the
effects of thrashing and in reducing the total executioretmh systematic BT search



[1]. Thrashing in BT search indicates that search is stughoging an unpromising part
of the search space, and thus incapable of improving thetgudithe current solu-
tion. It becomes apparent that there is a need to interr@ptiseand to explore other
areas of the search space. It is important to restart seeyohd different portion of
the search space; otherwise it will end up traversing theesaaths. Randomization
of branching during search is used to this end. Randomnesbe@troduced in the
variable and/or value ordering heuristics, either forttieaking or for variable and/or
value selection. After choosing a randomization method algorithm designer must
decide on the type of restart mechanism. This restart méshagetermines when to
abandon a particular run and restart the search. Here tthedifas that reducing the
cutoff time reduces the probability of reaching a solutidra garticular run. Several
restart strategies have been proposed with differentfcetbeédules. Some of the better
known ones are the fixed-cutoff strategy and Luby et al.'vensal strategy [15], the
randomization and rapid restart (RRR) of Gomes et al. [1, the randomization and
geometric restarts (RGR) of Walsh [2]. Among the abovediststart strategies, RRR
and RGR have been studied and empirically tested in the xiooft€SPs. All of these
restart strategies are static in nature, i.e. the cutofferédr each restart is independent
of the progress made during search. Some restart strafegipsfixed-cutoff strategy
of [15] and RRR [1]) employ an optimal cutoff value that is fixéor all the restarts
of a particular problem instance. The estimation of theroaticutoff value requires a
priori knowledge of the cost distribution of that problenstiance, which is not known
in most settings and must be determined by trial-and-eftus is clearly not practi-
cal for real-world applications. There are other restagtsgies that do not need any
a priori knowledge (e.g., Luby et al’s universal strate@i$][and Walsh’'s RGR [2]).
They utilize the idea of an increasing cutoff value in oraeehsure the completeness
of search. However, if these restart strategies do not firdudien after the initial few
restarts, then the increasing cutoff value leads to fewsarts, which may yield thrash-
ing and diminishes the benefits of restart. We propose artestategy that dynamically
adapts the cutoff value for each restart based on the peafurenof previous restarts.
Our strategy looses the guarantee of completeness, wimgiag, is not achievable on
large problems.

3.1 Randomization and Geometric Restarts

Walsh proposed the Randomization and Geometric RestaBR)Rtrategy to automate
the choice of the cutoff value [2]. According to RGR, searchogeds until it reaches
a cutoff value for the number of nodes visited. The cutofiueafor each restart is a
constant factor;, larger than the previous run. The initial cutoff is equatite number
of variablesn. This fixes the cutoff value of thé" restart atr.r* nodes. The geometri-
cally increasing cutoff value ensures completeness wéthtpe of solving the problem
before the cutoff value increases to a large value. We dlwdieous values of and
report them in this paper. We combined this restart stratégythe backtrack search
of Section 2.1, randomizing the selection of variable-ggiairs.



3.2 Randomization and Dynamic Geometric Restarts

We now introduce a simple but effective improvement to RGRs#tatic restart strate-
gies suffer from the problem of increasing cutoff valuegrétach restart. While this
ensures completeness of the search, it results in fewartgghus increasing the like-
lihood of thrashing and diminishing the probability of findia solution. Our proposed
strategy, Randomization a?ynamicGeometric Restarts (RDGR), aims to attenuate
this effect. It operates by not increasing the cutoff vatluetiie following restantvhen-
ever the quality of the current best solution is not improugdn When the current
restart improves on the current best solution, then theffouatue is increased geomet-
rically, similar to RGR. Because the cutoff value does natessarily increase, com-
pleteness is no longer guaranteed. This situation is aakepin application domains
(like ours) with large problem size where completenessngpay, infeasible in prac-
tice. Smaller cutoff values result in a larger number ofagsttaking place in RDGR
than RGR, which increases the probability of finding a solutiAll other implementa-
tion details are similar to RGR.

Let C; be cutoff value for thé" restart and be the ratio used to increase the cutoff
value. In RGR the cutoff value is updated according to theagqn: C; 1 = r.C;. We
use the following equation in RDGR:

o r.C; when the solution has improved at té restart (1)
*+1 7\ ¢, otherwise

In RGR, the cutoff value for each restart is determimatependentlpf how search
performed at the previous step. However, this is not the tasBDGR. Each time
search begins with a different random seed, it traversdsrdift search paths. Some
paths may be more fruitful than others. RGR and RDGR follogvdame cutoff sched-
ules for search paths that improve solutions. When this tsthe case, RGR cutoff
values keep on increasing, thus making RGR more of a randohBZ search than a
randomized BT search with restarts. In contrast, RDGR kesfusf at smaller values.
This explains the dynamic nature of RDGR. For problems thanat tight, solutions
are found within a few restarts. In such cases, RGR and RD@®#biesimilar behav-
iors. For tight and over-constrained problems, RDGR seentominate RGR as we
show in our experiments (Section 4).

4 Experiments and results

We tested and compared the above listed 5 search strategiasly: BT (Section 2.1),
LS (Section 2.2), ERA (Section 2.3), RGR (Section 3.1), ab5R (Section 3.2). BT
is deterministic and the other 4 search techniques (i.e. HFA, RGR, and RDGR)
are stochastic. In the terminology introduced by Hoos aridz&t in [16], these are
optimization Las Vegas algorithms, RGR is probabilisticapproximately complete
(PAC), and LS, ERA, and RDGR are essentially incomplete. @alacted the follow-
ing three sets of experiments:

1. Effect of running time on RGR and RDGR.



2. The influence of the choice of the ratizused in RGR and RDGR.
3. Relative performance of BT, LS, ERA, RGR, and RDGR.

We compare the performance of the algorithms using theviatig criteria:

1. Solution quality distribution§SQD) taking as reference the longest known solution
for each data set, as recommended by Hoos and Stitzle in§Q&)’'s are cumu-
lative distributions of the solution quality, similar togtcumulative distributions
of run-time in run-time distributions. The horizontal axepresents in percent the
relative deviation of the solution sizefrom the longest known solutio#,,,;, com-
puted as==»t=*11% Thys, the point 0% on the-axis denotes the longest solution
and, the poin{ZO% denotes a solution that is 20% shortethibdbngest solution.

2. Descriptive statisticef all the solutions found, for all search techniques. This i
cludes the measures: mean, median, mode, standard deyiatiomum, and max-
imum of the solution.

3. 95% confidence intervalf the mean improvement. The confidence interval was
computed using the Mann-Whitney test. Table 3 reports tipeorements of RDGR
over RGR and ERA.

Table 3. Improvements of RDGR with 95% confidence level.

Data seflmprovements over RGRmprovements over ERA
Lower limit| Upper limit||Lower limit| Upper limit

1 1.16 1.61 45.16 46.77
2 1.53 1.61 -6.15 -6.15
3 3.44 3.44 27.58 31.03
4 1.85 1.85 24.07 27.77
5 0 1.85 -3.7 -3.7

6 1.56 1.56 -6.25 -6.25

We tested these search techniques on the 6 real-world éstafthe GTAAP of Table 1

and 4 sets of randomly generated problems. For the GTAAPsd#sawe repeated our
experiments 500 times for all stochastic search techniguasirally, a single run is

sufficient for BT because it is deterministic. We found the &verage run-time for all

stochastic algorithms stabilizes after 300 runs on all tid&P data sets, as shown
in Figure 3 for data set 1, which justifies our decision. Weoréephe results for the

following data sets (the same qualitative observationd hotoss all data sets):

— Data set 1 as a representative of an over-constrained pnoble
— Data set 5 as a representative of a tight but solvable prablem

For randomly generated problems, we used the model-B-tgpergtor of Hemert [17].
We generated three types of randomly generated problerok, asataining 100 in-
stances and each instance run for 3 minutes:
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Fig. 3. Moving average for CPU run-times for data set 1.

— Under-constrained instance$he first type of randomly generated problems are
under-constrained binary CSPs with 40 variables, unifoomain size of 20 val-
ues, 0.5 proportion of constraints, and 0.2 constraintiigés.

— Over-constrained instancehe second type of randomly generated problems are
over-constrainedbinary CSPs with 40 variables, uniform domain size of 20 @aju
0.5 proportion of constraints, and 0.5 constraint tighsnes

— Instances at the phase transitiofihe third type of randomly generated problems
are from thephase transitiorarea. These are binary CSPs with 25 variables, uni-
form domain size of 15 values, 0.5 proportion of constraiatsl 0.36 constraint
tightness. We split these instance into two sets, each ofirifi@nces, separating
solvable instances and unsolvable instances.

4.1 Effect of the running time on RGR and RDGR

To compare the performance of RGR and RDGR, we tested thenaroug running
times for the GTAAP data sets. The results are shown in Fgdrand 5. In both
these figures, RDGR consistently outperforms RGR overrdifferun-times. Further,
increasing the running time has no affect on the relativeidante of algorithms.

4.2 Influence of the ratior

We tested RGR and RDGR with different ratios, with 5 minut@sning time. For the
GTAAP problem we tested the values: 1, 21, 22, 2, and 4. For the random CSPs we
tested the values: 1, 147, 22, 2, 3, and 4. Figures 6, 7, 8, and 9 show the influence of
the ratior used to increase the cutoff value in RGR and RDGR. In accaelaith [2],
Figures 6 and 8 show that a valuerefl.1 is the best among the values tested for RGR.
While, for RGR, this optimal ratio does not change with thelppem type (i.e., GTAAP

vs. random problem), it does for RDGR. For the GTAAP, it#l.1 (Figure 7). For
randomly generated problems, itis2 (Figure 9).
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Fig. 7. Effect of r: RDGR on GTAAP.

4.3 Relative performance of BT, LS, ERA, RGR, and RDGR

In this section we compare the relative performance of allstharch techniques devel-
oped for the GTAAP system. Each stochastic algorithm wassAthtimes of 10 min
each on the GTAAP data set, and on 100 instances of random&@SRsin each. Fig-
ures 10 and 11 show the relative performance of the searbhitpees on the GTAAP
system. And, Figures 12, 13, 14, and 15 show the relativepagnce for the random
problems. We do not show LS and ERA in Figure 13 because they the scale.

Improvement of RDGR over BT: Tables 4 and 5 show that the maximum value of the
solution sizes produced by RDGR is clearly greater thandh#ie solution sizes
produced by BT. However, due to its stochastic nature, RD@ERs from high

instability in its solution quality.

Superiority of RDGR over LS: The performance of RDGR is clearly superior to that
of LS (see Tables 4 and 5, and Figures 10, 11, 12, 14, and lthpudh the solution
quality is highly variable for both RDGR and LS, the low meatue of the solution
quality of LS ensures that RDGR remains superior to LS.



Percentage of test runs

RDGR on Random CSPs

RGR on Random CSPs

—+-Under-constrained
-#- Over-constrained
4A- Phase transition, solvable

@
2
A -x-Phase transition, unsolvable E .
s
: A S 5
i A 2
IX |- £
01771 -m S 40
HE 8
I X e
T x & .
i - —+—Under-constrained
0 20 -#- Over-constrained
o 0 4 Phase transition, solvable
—<-Phase transition, unsolvable
0
0

25 3 35 4
Ratio

Fig. 9. Effect of r: RDGR on random CSPs.
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Fig. 10.SQDs: GTAAP, over-constrained. Fig. 11.SQDs: GTAAP, solvable.

Superiority of RDGR over ERA on over-constrained problems: On over-constrained
problems (Figures 10 and Table 3), the deadlock phenomeamreemts ERA from
finding solutions of quality comparable to those found bydtteer techniques [9—
11]. BT, LS, RDGR, and RGR do not exhibit such a dichotomy dfdxéor between
over-constrained cases and solvable instances.

Performance of ERA: On solvable problem instances (Figures 11 and 12), ERA dom-
inates all techniques. It is the only algorithm that finds ptete solutions for nearly
all the runs. ERA completely dominates LS. However, on @a@rstrained prob-
lem instances (Figures 10) RDGR, RGR, BT and LS are superi&RA due to
the deadlock phenomenon. At the phase transition (Figutesd 15), the behav-
ior of ERA is independent of the solvability of the problenRA performs only
better than LS, while RDGR, RGR and BT perform better than ER#s differ-
ence in performance of ERA may have to do with the structurthefrandomly
generated problems and the GTA problem. More tests are ddedenderstand
this phenomenon.

RDGR is more stable than RGR: Due to their stochastic nature, RDGR and RGR
techniques show a high instability in their solution qualiiowever, the standard
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Fig. 14. SQDs: solvable random CSPs, at phige 15. SQDs: unsolvable random CSPs, at
transition. phase transition.

deviation column of Tables 4 and 5 show that RDGR is relatinebre stable than
RGR.

Sensitivity of LS to local optima: LS sensitivity to local optima makes it particularly
unattractive in our context. Even BT outperforms LS.

Larger number of restarts in RDGR: On data set 1, the average number of restarts
is 74.5 for RDGR and 16.7 of RGR. On data set 5, the average ewuaflvestarts
is 56.9 for RDGR and 22.4 for RGR. This confirms our expectestistated in Sec-
tion 3.2 that RDGR performs more restarts than RGR.

The following three statements, wheredenotes an algorithm dominance over another,
summarize the behavior of the 5 search strategies, alsasinovable 6:

— On solvable instances: ERA RDGR >~ RGR >~ BT ~ LS
— On over-constrained instances: RDGRRGR ~ BT ~ LS -~ ERA
— At the phase transition: RDGR RGR > BT >~ ERA >~ LS



Table 4. Statistics of solution size for data set 1 (500 runs, 10 mahka

| Data set 1(69 variables, over-constrained) |
|Search]| Mean [MediariMode |Standard dejMinimum|Maximum

BT 57 57 57 0 57 57
LS 47.12 48 49 4.44 30 55
ERA 30.99 31 32 4.37 18 45
RDGR || 59.66 60 60 0.77 58 62
RGR 58.27 58 58 2.83 23 62

Table 5. Statistics of solution size for data set 5 (500 runs, 10 mahka

| Data set 5(54 variables, tight but solvable) |
|Searc{Mear{Mediar{Mode|Standard dejMinimum|Maximum

BT 52 52 52 0 52 52
LS 428§ 44 46 3.94 29 50
ERA |[53.99 54 54 0.04 53 54
RDGR||52.17 52 52 0.78 50 54
RGR ||51.79 52 52 1.04 49 54

5 Conclusions and future work

By addressing a real-world application, we are able to ifigraharacterize, and com-
pare the behavior of various search techniques. While BTaisle, it suffers from
thrashing. LS is vulnerable to local optima. ERA shows défece in performance with
different problem types. ERA has an amazing ability to seimder-constrained prob-
lems. However, ERA's performance degrades on over-cansttgroblems due to the
deadlock phenomenon. This same deadlock phenomenon mdfgbiing ERA at the
phase transition. Restart strategies effectively pretreashing, but their solution qual-
ity is highly variable. RGR operates by increasing cutoffies at every restart, which
makes is more increasingly vulnerable thrashing. RDGRhatttes this effect by mak-
ing the cutoff value depend upon the result obtained at teeiqus restart, thus increas-
ing the number of restarts in comparison to RGR. Consequ&1tGR exhibits a more
stable behavior than RGR while yielding at least as goodtiswois. In the future, we
plan to study the following directions:

1. Validate our findings on other real-world case-studiesd A

2. Design ‘progress-aware’ restart strategies, thatriategjies that can decidayring
a given restart, whether to continue or abandon this paatiexecution.

3. Design new search hybrids where a solution from a givemigoe such as ERA
is fed as a seed to another one such as heuristic backtrack sea



Table 6. Comparing the behaviors of search strategies.

| Characteristics |

ERA |Tight but solvable problems: Immune to local optima

General: Stochastic and incomplete

Over-constrained problems:Deadlock causes instability and yields shorter solufions

LS |Tight but solvable problems: Liable to local optima, and fails to solve tight

General: Stochastic, incomplete, and quickly stabilizes

CSPs even with random-walk and restart strategies
Over-constrained problems:Finds longer solutions than ERA

RDGRreliable on unknown instances, and

General: Stochastic, incomplete, immune to thrashing,
produces longer solutions than BT, immune to deadlock,

immune to local optima, but less than ERA

RGR |less immune to thrashing than RDGR, and

General: Stochastic, Approximately complete,

yields shorter solutions than RDGR in general.

BT |[liable to thrashing, yields shorter solutions than RDGR B@&R,

General: Systematic, complete (theoretically, rarely in practice)

stable behavior, and more stable solutions than stochasticods in general
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