Motivation for ordering heuristics

- In BT, less of undoing-labels needs to be done under some orderings than others

- In lookahead:
 - failure could be detected earlier under some orderings than others
 - larger portions of the solution space can be pruned off under some orderings than others

- When searching for one solution, value ordering may speed up search as branches that have a better chance to reach a solution are explored first
Heuristics

- **Variable ordering**: Fail first principal (FFP)
 - This terminology is historic and currently considered incorrect. Better use: most constraining first.
- **Value ordering**: ‘get quickly to a solution’

Applying ordering heuristics: static, dynamic?

Variable ordering: Fail first principal (FFP)

- Least domain (LD)
- Minimal width ordering (MWO)
- Minimal bandwidth ordering (MBO)
- Maximal cardinality ordering (MCO)
- Minimal ratio domain size over degree (MDD)
Value ordering: ‘get quickly to a solution’

- Min-conflict heuristic: orders values according to the conflicts in which they are involved with the future variables
- Cruciality [Keng and Yu’89]
- Promise [Geelen’94], etc.

Fail first principal (FFP)

Aims at recognizing dead-ends as soon as possible so that search effort can be saved.

Several FFP measures:
- smallest domain size first (least domain, LD)
- smallest of ratio of domain size to degree of node
- etc.

Simple, cheap and effective
Suitable for both static and dynamic ordering
Minimal width ordering

Reduces the chance of backtracking: variables that have more unassigned values depending on them are labeled first. Variables at the front of the ordering are in general more constrained.

Finding minimum width ordering: $O(n^2)$.
Procedure Width of a graph G:
Remove from the graph all nodes not connected to any others
Set $k \leftarrow 0$
Do while there are nodes left in the graph:
 Set $k \leftarrow (k + 1)$
 Do while there are nodes not connected to more than k others:
 Remove such nodes from the graph, along
 with any edges connected to them.
Return k
end

The minimal width ordering of the nodes is obtained by taking the
nodes in the reverse order than they were removed.

Minimal bandwidth ordering

- Localizes/confines backtracking:
 the smaller the bandwidth, the sooner one could backtrack to
 relevant decisions
- Finding minimum bandwidth ordering is NP-hard:
 (Is there an ordering of a given bandwidth k?
 $\rightarrow \mathcal{O}(n^{k+1})$ (polynomial)

Notes:
(Zabih’90) finds a correlation between bandwidth and the
possibility to decompose the CSP (conjunctive decomposition)
Others (Amir?) consider tree-width.
Maximum Cardinality Ordering

An approximation of min. width ordering, $O(n)$

- Choose a node arbitrarily.
- Among the remaining nodes, choose the one that is connected to the maximum number of already chosen nodes, break ties arbitrarily,
- Repeat...
- Reverse the final order

Ordering heuristics: how, when?

How:
- Static variable, value ordering
- Dynamic variable (static value)
- Dynamic variable, dynamic value (dynamic vvp)

When:
- Finding one solution
- Finding all solutions
Search and ordering heuristics \textit{Choueiry \& Beckwith, 2001}

At a given level of the search tree, we encounter:

- \textit{static ordering}: vvp’s pertaining to the same variable across the whole level
- \textit{dynamic variable, static value ordering}: vvp’s pertaining to the same variable for nodes with a common parent, but possibly to different variables for nodes with different parents
- \textit{dynamic vvp ordering}: vvp’s pertaining to different variables

Static variable ordering, static value ordering

Level h

Level $h+1$
Dynamic variable ordering, static value ordering

Level h

Level $h+1$

Dynamic variable, static value

Dynamic vvp ordering

Level h

Level $h+1$

Dynamic variable-value pair
Ordering heuristics: careful in search

Choueiry & Beckwit, 2001

Lecture notes #5
October 16, 2003