A New Method for the Global Solution of Large
Systems of Continuous Constraints

Dr. Mark S. Boddy and Dr. Daniel P. Johnson

Honeywdll Laboratories
3660 Technology Drive
Minneapolis, MN 55418 USA
{boddy | drdan} @htc.honeywell.com
phone: 612-951-7403
phone: 612-951-7427

Abstract. Scheduling of refineriesis ahard hybrid problem. Application of the
Constrained Envelope Scheduling (CES) approach required development of the
Gradient Constraint Equation Subdivision (GCES) algorithm, a novel global
feasibility solver for the large system of quadratic constraints that arise as sub-
problems. We describe the implemented solver and its integration into the
scheduling system. We include discussion of pragmatic design tradeoffs criti-
cally important to achieving reasonable performance.

1 Introduction

We are conducting an ongoing program of research on modeling and solving complex
hybrid programming problems (problems involving a mix of discrete and continuous
variables), with the end objective of implementing improved finite-capacity schedul-
ers for a wide variety of different application domains, in particular manufacturing
scheduling in the refinery and process industries.

In this report we present an algorithm which is guaranteed either to find a feasible
solutions or to prove globa infeasibility for a quadratic system of continuous equa
tions generated as a subproblem in the course of solving finite-capacity scheduling
problems in a petroleum refinery domain.

2 Motivation

Prediction and control of physical systems involving complex interactions between a
continuous dynamical system and a set of discrete decisions is a common need in a
wide variety of application domains. Effective design, simulation and control of such
hybrid systems requires the ability to represent and manipulate models including both
discrete and continuous components, with some interaction between those compo-
nents.

For example, refinery operations have traditionally been broken down as follows

(seefigure 1):

* Crude receipts and crude blending, which encompasses everything from the initial
receipt of crude oils through to the crude charge provided to the crude distillation
unit (CDU).

» The refinery itself, involving processing the crude through a variety of processing
units and intermediate tanks to generate blendstocks, which are used as compo-
nents to produce the materials sold by the refinery.

 Product blending, which takes the blendstocks produced by the refinery and blends
them together so as to meet requirements for product shipments (or liftings).

Fig. 1. Example of refinery operation, divided into traditional planning and scheduling opera-
tional areas.

Refinery operators have recognized for years that solving these problems inde-
pendently can result in global solutions that are badly suboptimal and difficult to
modify rapidly and effectively in response to changing circumstances. Standard
practice is to aggregate the production plans across multiple periods, but current
solvers are able to handle only afew planning periods.

Constructing a model of refinery operations suitable for scheduling across the
whole refinery requires the representation of asynchronous events, time-varying con-
tinuous variables, and mode-dependent constraints. In addition, there are key quad-
ratic interrelationships between volume, rate, and time, mass, volume and specific
gravity, and among tank volumes, blend volumes and blend qualities. This leads to a
system contai ning quadratic constraints with equalities and inequalities.

A refinery planning problem may involve hundreds or thousands of such variables
and equations. The corresponding scheduling problem may involve thousands or tens

of thousands of variables and constraints. Only recently has the state of the art (and,
frankly, the state of the computing hardware) progressed to the point where schedul -
ing the whole refinery on the basis of the individual processing activities themselves
has entered the realm of the possible.

2.1 Constraint Envelope Scheduling

The scheduling process for a refinery involves a complex interaction between dis-
crete choices (resource assignments, sequencing decisions), a continuous temporal
model, and continuous processing and property models. Discrete choices enforce new
constraints on the continuous models. Those constraints may be inconsistent with the
current model, thus forcing backtracking in the discrete domain, or if consistent, may
serve to constrain choices for discrete variables not yet assigned.

Constraint envelope scheduling [1] is a least-commitment approach to constraint-
based scheduling, in which restrictions to the schedule are made only as necessary It
uses an explicit representation of scheduling decisions (e.g., the decision to order two
activities to remove a resource conflict) which permits identification of the source,
motivation, and priority of scheduling decisions, when conflicts arise in the process of
schedule construction or modification.

The resulting approach supports a continuous range of scheduling approaches,
from completely interactive to completely automatic. We have built systems across
this entire range of interaction styles, for a variety of applications including aircraft
avionics [2], image data analysis and retrieval [3], spacecraft operations scheduling,
and discrete and batch manufacturing [6], among others, with problem sizes ranging
up to 30,000 activities and 140,000 constraints.

2.2 Hybrid Solversfor Mixed Variable Problems

In [4], we presented an architecture for the solution of hybrid constraint satisfaction or
constrained optimization problems. There is also a set of requirements for a continu-
ous solver which is a key part of the overall solution engine. The most difficult re-
guirement once quadratic or nonlinear continuous constraints are present is that it
must be capable of efficiently establishing the global feasibility or infeasibility of the
continuous problem.

In past research, we have built hybrid constraint solvers with linear solvers cus-
tomized for temporal models, and with general linear programming solvers, specifi-
cally the CPLEX linear programming libraries.

More recently, we have implemented the GCES quadratic solver that uses CPLEX
as a subroutine, and integrated that as well. The result is that we have now imple-
mented a hybrid solver, using the architecture described in [4], that combines a dis-
crete solver with a continuous solver capable of handling quadratic (and thus through
rewriting, arbitrary polynomial and rational) constraints.

2.3 Related work

In the past few years, hybrid programming has become a very active research area.
Here, we touch only upon afew of the basic approaches.

The most common approach has been the use of Mixed Integer Linear Program-
ming (MILP). Typically schedules are models using multi-period aggregation. Anin-
creasing body of work (e.g. [11], [7]) show that simple integer models lack efficiency
and performance (not, of course, expressive power).

Newer approaches seek to integrate constraint or logic programming with continu-
ous solvers, typically linear programming. Heipcke introduces variables that associate
the two domains [7]. Hooker [8] has been devel oping solution methods for problems
expressed as a combination of logical formulas and linear constraints. Grossman [9]
has introduced disjunctive programming. Van Hentenryck [12] uses box consistency
to solve continuous problems.

There are major design issues with any of these approaches: the kind of integration
(variables, constraints, functional decomposition), the level of decomposition (fre-
guency of integration), and the contral structure.

One of the keys to providing an integrated solver for hybrid models is the proper
handling of the tradeoffs and interactions between the discrete and continuous do-
mains. Heipcke's thesis provides a very flexible system for propagating across both.
The approach outlined by Boddy, et. al. [4] uses discrete search to direct the continu-
ous solver.

3 Subdivision Search

The Gradient Constraint Equation Subdivision (GCES) solver accepts systems of
quadratic equations, quadratic inequalities, and variable bounds, and will either find a
feasible solution or will establish the global infeasibility of the system within the
normal limits of numerical conditioning.

3.1 Overview

The method presented here is based on adaptively subdividing the ranges of the vari-
ables until the equations are sufficiently linear on the subdivided region that linear
methods are sufficient to either find a feasible point, or to prove the absence of any
solution to the original equation.

Within each subdivided region, the method uses two local algorithms, one to de-
termine if there is no root within the region, and one to determine if a feasible point
can be found. If both methods fail, then that region is subdivided again. The algo-
rithm ends successfully once afeasible point is found, or all regions have been proven
infeasible.

Kantorovich's theorem on Newton’s method establishes that for small enough re-
gions, one can use linear methods to either find a feasible solution, or to prove infea
sibility. R. E. Moore [10] proposed this as the basis for a global solver in the context

of the field of interval arithmetic. Cucker and Smale [5] have proven rigorous per-
formance bounds for such an agorithm with a grid search.

The GCES infeasibility test uses a enveloping linear program known as the Linear
Program with Minimal Infeasibility (LPMI) which uses one-sided bounds for the up-
per and lower limits of the gradients of the equations within the region. Its infeasibil-
ity rigorously establishes the infeasibility of the original nonlinear constraints. GCES
currently uses a stabilized version of Successive Linear Programming (SLP) to deter-
mine feasibility. Alternatives are under current investigation.

As the ranges are subdivided, we also have introduced the use of continuous con-
straint propagation methods to refine the variable bounds. This technique interacts
well with the local linearization methods as the reduced bounds often improve the ef-
ficiency of the linearizations. The Newton system by Van Hentenryck [13] is a suc-
cessful example of a global solver that involves the use of only subdivision and
propagation.

3.2 Basic Algorithm

Let f(x):0" — O™ be aquadratic function of the form

B () =C + 3 AX + 3 Bgixp% - 1)
1 1j

With an abuse of notation, we shall at times write the functions as
f(X) =C+ Ax+Bxx .

We then put upper and lower bounds 1bOO™,ub00™ on the functions, and lower

and upper bounds u® 0O",v° 00" on the variables. (These bounds are allowed to be
equal to express equalities.) The problem we wish to solve will have the form

PO:{x: u®<x<\O, Ibsf(x)sub} 2

We define the infeasibility of a constraint k at apoint x to be

A (¥) = max((fi (x) —uby)., (b — i (X)).) ©)

where the positive and negative parts are defined as (X), =max(x,0) and
(X)_ = min(x,0).
Theinfeasibility (resp. max infeasibility) of the system at apoint x is

AX) =Y A(¥), (resp. A7 (X) = max (By (X))).)
k

In the course of solving the problem above, we will be solving a sequence of sub-
sidiary problems. These problems will be parameterized by a trial solution X and a

set of point bounds {u,v} :u<X<v.
Given the point bounds, we define the gradient bounds

F=(B),u+(B)_v, G=(B),v+(B)_u ®)

(where the positive and negative parts are taken element-wise over the quadratic
tensor) so that whenever u< x<v wewill have F < Bx<G .
The gradient rangeis given by

G(u,v) =G-F =|B|(v-u) (6)

and the maximum infeasibility is given by

AU,V) =Y (Gg —Fig)(v —u) =[Bl(v-u)(v-u) .)
ki

The centered representation of afunction relative to agiventrial solution X is

f(x)=C + A(X—X) + B(x - X)(x - X))

where A= A+(B+B*)X, C =C+AX+BXX .

By also defining U=u-X, Vv=v-X, F=F-BX, and G =G -BX the bound-

ing inequalities will be equivalent to the centered inequalities

<SX-X<V ©)

In order to develop our enveloping linear problem, we then bound the quadratic
equations on both sides by decomposing X — X into two nonnegative variables
zw=0, z-w=x-X, W< (X-X)_<0<(x-X), <z,toget

Fz-Gws F(x-X), +G(x—-X)_ (10)
<B(X-X)(x—-X) <
G(x-X), +F(x-X)_<Gz-Fw.

The subsidiary problems are then
A) the basic quadratic feasibility problem PO of equation (2).

B) the basic quadratic problem with the bounding inequalities

Pbd(u,v) ={x: usxs<v, lb< f(x)<ug (11)

C) the linearization problem with the bounding inequalities included
LLP(X,u,v) ={x: T<x-X<V, Ib<C +A(x-X)<ub} (12)

D) the enveloping linear programming minimal infeasibility (LPMI) problem
minZ(G - F)(z+w) 0 (13
T<X-X<V .
lb<C +A(x-X)+Gz-FwU

:z,w: ub=C +A(X—X)+Fz-Gw[]

X=X=z2-wW

LPMI (X,u,v) =

z+w < max(v],[a])

mOoOooomOooono

moOood

zZzw=0

We note here two properties of the LPMI:

e Pbd(u,v) O LPMI(X,u,V), which justifies the use of the LPMI to establish infea-
sibility of the quadratic system).

e If X’ OLPMI(X,u,v) isasolution of the LPMI, then A(X') < A(u,v), which justi-
fies the use of the term maximum infeasibility.

Aswe search for asolution for a problem POO, we split the region up into nodes,
each of which is given by a set of bounds {u,V} .

For any problem, the theory of Newton’s method ([5] pp128) tells us that thereisa
constant 6 >0such that for any A(u,v) <é, if Pbd(u,v)is feasible then the se-
quence of trial solutions generated by the linearization, x™* = LLP(X™,u,v), will
convergeto asolution x* = Pbd(u,V).

On the other hand there is a constant & >0such that for any A(u,v)<é6, if
Pbd(u,V) isinfeasible then LPMI (X,u,v) will beinfeasible.

So an abstract view of the algorithm can be presented:

1) Among the current node candidates, choose the node {u,v} with initial trial so-
lution u < X < v which hasthe minimal max infeasibility A”(X) .

2) Use bound propagation through the constraints to find refined
bounds(u’,v}:u<u’,v <v. If the resulting bounds are infeasible, declare the node
infeasible.

3) Iterate X™1 = LLP(X™,u,v) until the values either converge to a feasible point

or fail to converge sufficiently fast. If the values converge to a feasible point, declare
success.
4) Evaluate xO LPMI (X,u,Vv) for infeasibility, if so, declare the node infeasible.

5) If (2), (3), (4) are dl inconclusive for the node, subdivide the node into smaller
regions by choosing a variable and subdividing the range of that variable to generate
multiple subnodes. Project the trial solution into each region, and try again.

3.3 Propagation

We currently implement two classes of propagation rules, chosen for their simplicity
and speed. The first applies to any linear or quadratic function, the second is for so-
called "mixing equations’.

For the general propagation method, suppose we have the two-sided quadratic
function inequality

b < Fil() =C+ 5 Agx + 5 Bigix;X < ub, (14)
1 1

a set of point bounds u<x<v, and we wish to refine the bounds for a variable
X; . We rearrange the inequalities into the form

(15
b =Cy =3 AdXi = > BgixjX < %Am *+ > (B +Bua)X +ByXg E‘J

izJ izd,]#d [EN]

Subk—Ck—AZAkiXi— ZBKJIXIXI

i%J i2d J2d

By applying the current bounds u < x<v, this will have the form of the following
bounding problem-- Given f,< < f; and),<) <}),, where) = 5X;, then find
bounds u’j; < x; <V} which can be done through a simple case-by-case analysis.

A common equation for refinery and chemical processes is a mixing equation of
the form

Xo(Yi Yo+t Yn) = XY + XYoot XY, (16)

where y; 20,y, 20,...,y,20.

Here we are given materials indexed by{12,...,n), and recipe sizes (or rates, or
masses, or ratios, whatever mixing unit of interest) {y;, ¥,,...,¥,) for a mix of the
materials. The equation represents a Ssimple mixing model for a property x, of the re-
sulting mix given values {X;, X,,..., X,) for the property of each of the materials.

Since the resulting property will be a convex linear combination of the individual
properties, if we are given bounds a <x <b,a, <x,<b,,...,a,<Xx,<b, then

min(ay,ay,...,a,) < Xy < max(b,b,,...,b,) .

3.4 Subdivision strategies

A critical factor in the performance is the choice of variable to subdivide. We evalu-
ated nine different strategies. The intent of all the strategies considered was to reduce
the amount of nonlinearity within the subdivided regions. The better strategies were
considered to be those that required fewer subnodes to be generated and searched.

The definitions of the strategies are given in the following table, along with the
number of nodes searched for a simplified refinery scheduling problem involving
about 2,000 congtraints (500 nontrivially quadratic) and 1,500 variables. Due to the
nature of the scheduling method, seven problems are sequentially solved in each run,
each problem being a refinement of the previous problem. Solve time for the best
strategy K was about 24 minutes on an 866 MHZ Pentium workstation with 256K
RAM.

General conclusions are difficult because of the limited testing done, but our expe-
rience has been that those methods based on worst-case guarantees such as subdivid-
ing the variable with the largest gradient range do more poorly than adaptive methods
which compute some measure of the actual deviation from linearity.

Table 1. Resultsof subdivision strategy tests

Strategy Description Result
F | Subdivide variable with maximum gradient | Failed, terminated
range after 6 hours
| Subdivide variable with maximum reduced | Failed, terminated
cost of infeasibility in LPMI after 6 hours
H | Subdivide variable with maximum range, as | Success after 1269
weighted by LPMI reduced cost of infeasibil- | nodes searched
ity
A | Subdivide variable whose range contributes | Success after 837
most to maximum gradient range nodes searched
J | Subdivide variable with largest z +Ww; "dis- | Success after 531
crepancy” in LPMI nodes searched
N | Find constraint with largest infeasibility, and | Success after 234
subdivide that variable with largest gradient | nodes searched
range
B | Find constraint with largest infeasibility, and | Success after 123
subdivide that variable whose range contrib- | nodes searched
utes most to maxi mum gradient range
K | Find constraint with largest infeasibility, and | Success after 89
subdivide that variable with largest z +w; | nodes searched
"discrepancy” in LPMI

3.5 Other Practical Aspects

As aways, performance of the solver is critically dependent on the scaling of the
variables. Not wishing to also take on the challenge of auto-scaling methods, the de-
sign choice was made in the current solver implementation to input typical magni-
tudes of the variables along with the bounding information, and to use those typical
magnitudes for scaling.

We also looked at different strategies for subdividing the range of the chosen vari-
able. The second-best approach was to divide the range into three pieces, taking one
piece out of the interior of the range that contained the current linearization point.
The best current strategy is to simply divide the range into five equal pieces.

The solver was coded in Java with interfaces to the CLPEX linear programming li-
brary and ran on standard 750MHz Pentium Windows workstations. The final test
was on an instance of our refinery scheduling problem and had 13,711 variables with
17,892 constraints and equations, with 2,696 of the equations being nonlinear. The
resulting system of equalities and inequalities was solved in 45 minutes.

3.6 Next Steps

Nonlinear functions: Given the fact that we have a solver that can work with
quadratic constraints, the current implementation can handle an arbitrary polynomial
or rational function through rewriting and the introduction of additional variables.
The issue is a heuristic one (system performance), not an expressive one. The GCES
framework can be extended to include any nonlinear function for which one has ana-
lytic gradients, and for which one can compute reasonable function and gradient
bounds given variable bounds.

Efficiency: While we have achieved several orders of magnitude speedup through
the pragmatic measures described above (propagation, splitting strategy for sub-node
generation, converging approximation), there is much yet to be done. In addition to
further effort in the areas listed here, we intend to investigate the use of more sophis-
ticated scaling techniques, and the adoption of generally-available nonlinear solvers
for node solving.

Optimality: The current solver determines global feasibility, which is polynomial-
equivalent to global optimality. We would like to add global optimality directly to the
solver, first by replacing the current SLP feasibility subroutine by an NLP subroutine
capable of finding local optimums within each feasible subregion, then by adding
branch-and-bound to the overall subdivision search.

Scheduling Domains: In addition to refinery operations, we intend to extend our
current implementation to hybrid systems which appear in other application domains,
including batch manufacturing, satellite and spacecraft operations, and transportation
and logistics planning.

Other Domains: The current hybrid solver is intended to solve scheduling prob-
lems. Other potential domains that we wish to investigate include abstract planning
problems, and the control of hybrid systems, and linear hybrid automaton (LHA).

Summary

We have implemented a finite-capacity scheduler and an associated global equa-
tion solver capable of modeling and solving scheduling problems involving an entire
petroleum refinery, from crude oil deliveries, through several stages of processing of
intermediate material, to shipments of finished product. This scheduler employs an
architecture described previously [4] for the coordinated operation of discrete and
continuous solvers. There is a considerable work remaining on all fronts. Nonethe-
less, the current solver has shown the ability to master problems previously found in-
tractable.

References

[1] Boddy, M., Carciofini, J., and Hadden, G.: Scheduling with Partial Orders and a Causal
Model, Proceedings of the Space Applications and Research Workshop, Johnson Space
Flight Center, August 1992

[2] Boddy, M., and Goldman, R.: Empirical Results on Scheduling and Dynamic Backtracking,
Proceedings of the International Symposium on Artificial Intelligence, Robotics, and Auto-
mation for Space, Pacadena, CA, 1994

[3] Boddy, M., White, J., Goldman, R., and Short, N.: Integrated Planning and Scheduling for
Earth Science Data Processing, Hostetter, Carl F., (Ed.), Proceedings of the 1995 Goddard
Conference on Space Applications of Artificial Intelligence and Emerging Information
Technologies, NASA Conference Publication 3296, 1995, 91-101

[4] Boddy, M., and Krebshach, K.: Hybrid Reasoning for Complex Systems, 1997 Fall Sympo-
sium on Model -directed Autonomous Systems

[5] Cucker, F., and Smale, S.: Complexity Estimates Depending on Condition Number and
Round-off Error, Jour. of the Assoc. of Computing Machinery, Vol 46 (1999) 113-184

[6] Goldman, R., and Boddy, M.: Constraint-Based Scheduling for Batch Manufacturing, |EEE
Expert, 1997

[7] Heipcke, S.: Combined Modeling and Problem Solving in Mathematical Programming and
Constraint Programming, PhD Thesis, School of Business, University of Buckingham, 1999

[8] Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and Con-
straint Satisfaction, Wiley, John & Sons, 2000

[9] Lee, S., and Grossmann, I.. New Algorithms for Nonlinear Generalized Disjunctive Pro-
gramming, Computers and Chem. Engng., 24(9-10), 2125-2141, 2000.

[10] Moore, R.,: Methods and Applications of Interval Analysis, by Ramon E. Moore, Society
for Industrial & Applied Mathematics, Philadelphia, 1979.

[11] Smith, B., Brailsford, S., Hubbard, P., and Williams, H.: The Progressive Party Problem:
Integer Linear Programming and Constraint Programming Compared, Working Notes of the
Joint Workshop on Artificial Intelligence and Operations Research, Timberline, OR, 1995

[12] Van Hentenryck, P., McAllister, D., and Kapur, D.: Solving Polynomial Systems Using a
Branch and Prune Approach, SIAM Journal on Numerical Analysis, 34(2), 1997.

