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Introduction


Sometimes it is helpful to use incomplete local search methods to find the solutions to CSPs.  Especially if the size of the problem does not lend itself well to backtrack search.  However, there is a problem evaluating the performance of these local search algorithms, especially using randomly generated CSPs.  The problem is that typical random CSP generators generate a mix of solvable and unsolvable problems.  Thus when an incomplete solver terminates without a solution , it is difficult to know whether this was because no solution exists to the problem or because the algorithm was unable to find the correct solution in the solution space.  This is especially hard when the size of the problem prohibits solving by a complete solver.


One solution to this problem is to create random problem generators that generate only solvable CSPs.  In the past, the problem with this approach has been that while it is easy to imbed a correct solution into a problem, this often tends to bias the distribution of the problem instances toward problems which are more easily solved (Achlioptas et al. 2000).


Achlioptas et al. suggest a new type of problem generator that has a more even distribution in “Generating Satisfiable Problem Instances” (2000).

Quasigroups with holes


The generator is based on a concept know as a quasi group.  These are the same as Latin squares.  A Latin square is a square with n rows and n columns.  In each cell is placed one of n colors in such a way that no color appears twice in any row or column.   One problem associated with Latin squares is as follows: given an nxn  square which is partially colored (i.e. some cells are not colored) find a way of coloring the uncolored cells so that the resulting square is a Latin Square.  This can clearly be formulated as a CSP.  Achlioptas et al. propose the following problem generator: start with a Latin square chosen at random uniformly from all nxn Latin squares.  A recent paper describes how this is accomplished (Jacobson and Matthews 1996).  Now punch some holes in your Latin square.  That is:  pick some number, h, of holes, pick a pattern of h cells uniformly at random from all such patterns, and remove the colors from the corresponding cells on the Latin square.  This partially unpainted square can be colored to be a Latin square, since it is a Latin square with some of its colors missing.


Along with this new generator the authors make several claims.  The first is that in terms of computational complexity, the problems for fixed n exhibit an easy-hard-easy pattern as the number of holes goes from small to large.  One important part of this claim is that the authors say it extends to incomplete problem solvers.  This, they say, is something that could not be determined for sure previously due to confusion about whether or not the problems the incomplete solvers were working on were actually solvable.  Furthermore, the authors claim that the “hard” problem instances occur where there is a transition in the backbone of the problem from large to small.  The backbone of a CSP is the set of variables of that CSP that retain the same value in every solution.  Intuitively, if the backbone is large, there are few solutions and a solver can detect inconsistencies quickly, whereas when the backbone is small, the problem has many solutions, and few variable assignments will lead to conflicts.  In both cases the cost of finding one solution to the CSP is small.  It is thus in the middle area, in the phase transition, where the problems become difficult.

My project


My task was to implement the random Latin square generator (which is not trivial) and to try to observe the behavior described by the authors on both a complete and an incomplete solver.

The random generator


The random generator works by creating a space consisting of Latin squares (and “improper” squares, which are similar) which is connected.  That is the authors of the paper describing the algorithm give moves for going from one square to another, and the moves are such that there is a way to get from each square to every other square (Jacobson, Matthews, 1996).  To understand these moves you must first understand the concept of the incidence cube for an nxn Latin square.  The incidence cube is an nxnxn cube whose 3 axes correspond to rows, columns and symbols on the Latin square.  There is a 1 at coordinate (a,b,c) of the cube if the Latin square from which it is derived has the cell at row a and column b colored c.  Otherwise the entry is a 0.

We move from one square to another by a so-called “plus-minus-one” move:  pick a cell in the incidence cube which contains a 0.  It is easy to see that along each of the three lines running through this cell, there is exactly one 1.  We now have a zero and three 1s.  These four points define a 2x2x2 sub-cube.  The plus-minus-one move adds 1 to the zero which we picked, and alternates subtracting and adding one at each of the other points on the sub-cube.

It may be that there is now a –1 in the incidence cube.  We call such a cube “improper”.  Note that a plus-minus-one move from a proper cube results in one or fewer negative ones in the resultant cube.  Plus-minus one moves from improper cubes are constructed to preserve this property.  Notice that along each of the three lines containing the –1, there are two 1s.  Pick one along each line.  This gives you a 2x2x2 sub-cube.  Perform the plus-minus-one move on this sub-cube that changes the negative one to a one.


These two types of moves together connect the space of proper and improper incidence cubes.  The paper shows that given enough random state transitions, the probability distribution among the cubes converges to the uniform probability.  Thus pick a large number N.  Make many state transitions.  Once you land on the Nth proper cube, return its corresponding Latin square.


My implementation follows faithfully the method given in the paper.  The only place where there is room is in the exact number of transitions you perform.  The authors admit that they do not yet fully understand how many transitions must be made in order to have convergence to the uniform distribution to a suitable degree.  I chose 10000.  It seemed that I should choose a number that gave each entry a chance to be shuffled around a bit  Since 8 entries are changed per move,  (n^3)/8 moves are required if we hope to move all of them.  I focused on numbers no greater than 40, so 10000 was a sufficiently large number of state transitions, at least to fit this rule of thumb.


The Latin squares generated by this method were then given h holes, uniformly at random, where h is a number specified by the user (In truth, the user specifies n, and the percentage of  cells that he wants uncolored).

Search Algorithms


I ran the quasigroups with holes (QWH) problems generated by this algorithm on two problem solvers.  The first was an implementation of forward checking I wrote, tailored to the QWH problem.  The second was an implementation of the Walksat algorithm that finds satisfying models for Boolean expressions in conjunctive normal form (3).  I chose to test the latter because one of the main points of the paper by Achlioptas et al. is that an easy-hard-easy pattern is clearly observable even on incomplete problem solvers.  Walksat is the incomplete method they use.


The version of forward checking that I implemented is optimized in the following way:  Associate a domain with each row in the partially completed Latin square.  This domain is the set of colors that have not yet been used in that row.  Similarly, columns have domains.  Say we have a variable (corresponding to an uncolored cell).  It’s domain, after filtering due to assignments to past variables, is the set of colors that are neither on the same row nor the same column as it.  This is the intersection of the domain of its column and the domain of its row.  Thus, when filtering the domains of the future variables, I need only change the domain of the row and column on which my current variable resides.  This takes constant time rather than time proportional to n.  Thus we get a speedup of a factor of roughly n.


Even given this huge speedup, my algorithm was not much good at finding solutions to Latin squares bigger than 20x20 or so.  Even so,  the easy-hard-easy pattern is clearly visible as n remains fixed, and the number of holes increases:
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The trend continues for higher values of n, but here we meet many solution which were cut off prematurely for time considerations, and so they do not accurately depict the 


Note that some of these values are unreliable.  Each experiment (with fixed n and fixed number of holes) was run twenty times.  However, in the “hard” region, the forward checking algorithm often timed out before finding a solution.  I tried to compensate for this by displaying  the median number of backtracks, since this is constant given actual number of backtracks for the slow cases or the number at which they were cut off (since the numbers at which they were cut off is higher than the median anyway).


Next we have the Walksat algorithm.  This was quite an adventure.  The major work on my part regarding this algorithm was writing a program that maps a QWH problem into a Boolean expression in conjunctive normal form (CNF).  I partially borrowed the map given by Kautz, Ruan et al (4).  However, it was not clear what that exact map was.  Mine worked as follows:  There is one literal per row, column, color triple.  Consider row r.  If it does not contain color c, then we add a clause saying that color c must occur in row r.  This clause consists of all triples (r,column,c) where the column does not already contain color c.  We do a similar thing for columns.  Finally,  we add clauses that say that no two of the colors that we want to assign to a given row or column can be assigned to the same cell.


I noticed that many variables could not be found in any of the clauses.  Thus I also renumbered the literals so that only those that appeared in a clause were considered.  Thus, where Walksat had to consider n^3 variables before this reduction, it must now only consider those corresponding to uncolored cells.


I noticed when I first tried feeding the QWH problem to Walksat that it was getting horrendous results, never anything close to what the paper claims.  It almost never found a solution.  However, after several hours of playing with various parameters, such as the amount of noise in the path the algorithm takes through the solution space, the heuristic for taking the next solution, the length of the path before restarting, and the number of restarts, I was able to get the algorithm to the point where it generally finds a solution for most parameters for the Latin square.  However, the results are not as fast as those from Achlioptas et al.  My guess is that this stems either from a different map from the original problem to a CNF expression, or from a different set of parameters for Walksat algorithm or from a combination of the two.


My results:
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Phase Transitions

Finally, the paper mentions that there is a phase transition in the size of the backbone when n is fixed and the number of holes increases.  I was able to observe this for small n:
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 I have no doubt that the trend continues for larger n.  However, for large n, it is hard to evaluate the size of the backbone at the transition point since you must find every solution to find the backbone, and it is hard to find any solution at the transition point.  Also, past the transition point there are many solutions, and finding the backbone requires enumerating all of them, and so takes a very long time.  In fact, it seems that the number of solutions to a 57x57 QWH problem with 45% of its cells uncolored would be so enormous that the backbone would be impossible to calculate.  Somehow, however, the authors do manage to calculate this total.


The last thing to notice is that the phase transition occurs at the peak of problem hardness.  Again, this was verified for small n, and is exemplified by the following curves:
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Conclusions


I apparently lacked some of the sophisticated problem solving techniques employed by Achlioptas et al.  This is exemplified by the relatively small values of n for which I was able to verify the claims of the authors.  Nonetheless, it does appear that the QWH problem is a valid method of testing incomplete CSP solvers, and that the qualitative behavior of the size of the backbone of the computational cost of a program solving the problem are as the authors claimed.
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