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Abstract. Shaving algorithms, like singleton arc consistency
(sac), are currently receiving much interest. They remove val-
ues which are not part of any solution. This paper proposes
an e�cient shaving algorithm for enforcing stronger forms of
consistency than sac. The algorithm is based on the notion
of weak k-singleton arc consistency, which is equal to sac if
k = 1 but stronger if k > 1. This paper defines the notion,
explains why it is useful, and presents an algorithm for en-
forcing it. The algorithm generalises Lecoutre and Cardon’s
algorithm for establishing sac. Used as pre-processor for mac
it improves the solution time for structured problems. When
run standalone for k > 1, it frequently removes more values
than sac at a reasonable time. Our experimental results indi-
cate that at the sac phase transition, it removes many more
values than sac-1 for k = 16 in less time. For many problems
from the literature the algorithm discovers lucky solutions.
Frequently, it returns satisfiable csps which it proves inverse
consistent if all values participate in a lucky solution.

1 Introduction

The notion of local consistency plays an important role in
constraint satisfaction, and many such notions have been pro-
posed so far. For the purpose of this paper we restrict our
attention to binary Constraint Satisfaction Problems (csps).

A csp having variables X is (s, t)-consistent [6] if any con-
sistent assignment to the s variables in S can be extended to
some consistent assignment to the s+ t variables in S[T , for
any sets S ✓ X and T ✓ X\S such that |S | = s and |T | = t.
Local consistency notions are usually enforced by removing
tuples and/or recording nogoods. As s increases enforcing
(s, t)-consistency becomes di�cult because it requires iden-
tifying and recording O
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s

´
= O (ns

d

s) nogoods, where
n is the number of variables in the csp and d is the maximum
domain size. For example, (2, 1)-consistency, also known as
path consistency [9], is in the most benign class beyond s = 1
but it is considered prohibitive in terms of space requirements.
The space complexity issues arising with increasing s are the
reason why practical local consistency algorithms keep s low.
Usually, this means setting s to 1, which means enforcing con-
sistency by removing values from the domains.

Shaving algorithms also enforce consistency by removing
values from the domains. They fix variable-value assignments
and remove values that inference deems inconsistent. They
terminate if no values can be removed. A shaving algorithm,
which is currently receiving much attention, is singleton arc
consistency (sac) [4; 5; 11; 1; 8].
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Another computational complexity source of (s, t)-consis-
tency is the requirement that each consistent assignment to
the s variables in S be extendable to a consistent assignment
to the s+t variables in S[T , for each set S ✓ X having Cardi-
nality s and any set T ✓ X \S having Cardinality t. Relaxing
this requirement by substituting some for any would make it
considerably more easy to enforce the resulting consistency
notion, which we call weak (s, t)-consistency.

At first glance weak (s, t)-consistency may seem too weak
to do useful propagation. However, it has strong advantages:

1. We don’t have to find a consistent extending assignment to
the variables of all sets T of size t. This is especially useful
if the problem is already (s, t)-consistent or if s is small.

2. By cleverly selecting T we may still find inconsistencies. For
example, if there is no consistent assignment to the vari-
ables in S[T for the first set T then the current assignment
to the variables in S cannot be extended.

3. By increasing t we can enforce levels of consistency which,
in a certain sense, are stronger and stronger.

This paper proposes to exploit these strengths, proposing an
algorithm which switches between enforcing weak and full
consistency, taking the best from both worlds. Given a con-
sistent assignment to the variables in S, the algorithms only
seek a consistent assignment to S [ T for a, cleverly chosen,
first set T , for which such consistent assignment is unlikely to
exist. Should there be a consistent assignment then the cur-
rent assignment to S is weakly consistent and otherwise it is
inconsistent. If s = 1 then this allows us to prune the value
that is currently assigned to the variable in S.

From now on let s = 1. We apply the idea of switching
between weak and full consistency to k-singleton arc consis-
tency, which generalises sac [4; 5; 11; 1; 8]. Here, a csp, P,
is k-singleton arc consistent (weakly k-singleton arc consis-
tent) if for each variable x, and each value v in its domain,
the assignment x

:= v can be extended by assigning values
to each (some) selection of k � 1 other variables such that P
can be made arc consistent. Sac is equivalent to k-singleton
and weak k-singleton arc consistency if k = 1 but weaker if
k > 1. Switching between weak and full k-singleton arc con-
sistency allows us, in a reasonable time, to enforce stronger
levels of consistency, which go beyond sac. Using an algo-
rithm which enforces weak k-singleton arc consistency as a
pre-processor for mac [12] allows the solution of csps which
cannot be solved by other known algorithms in a reasonable
amount of time. Our algorithm is inspired by Lecoutre and
Cardon’s algorithm for enforcing sac [8]. Like theirs it fre-
quently detects lucky solutions [8] (solutions discovered while
enforcing consistency), making search unnecessary for certain



satisfiable problems. Going beyond sac, our algorithm de-
tects certain unsatisfiable problems without search, including
problems that can be made sac. A problem is inverse consis-
tent if all values participate in some solution. Our algorithms
make and prove many problems inverse consistent, including
(un)modified radio link frequency assignment problems, and
forced random binary problems. Sometimes this is done more
quickly than it takes sac-1 to make these problems sac.

We start by recalling definitions of constraint satisfaction,
by recalling existing notions of consistency, and by introduc-
ing new consistency notions. This includes weak k-singleton
arc consistency. Next we describe an algorithm for enforcing
it. Finally, we present experimental results and conclusions.

2 Constraint Satisfaction

A binary constraint satisfaction problem (csp), P, comprises a
set of n variables X, a finite domain D(x) for each x 2 X, and
a set of e binary constraints. The maximum domain size is d.
Each constraint is a pair h�, ⇢ i, where � = hx, y i 2 X

2 is the
scope, and ⇢ ✓ D(x)⇥D(y) is the relation of the constraint.
Without loss of generality we assume that x 6= y for any scope
hx, y i. We write P 6= ? if P has no empty domains.

Let h hx, y i , ⇢ i be a constraint. Then v 2 D(x) and w 2
D(y) are arc consistent if { v }⇥D(y)\⇢ 6= ; and D(x)⇥{w }\
⇢ 6= ;. The arc consistent equivalent of P, denoted ac(P), is
obtained from P by repeatedly removing all arc inconsistent
values (and, if needed, adjusting constraint relations).

The density of P is defined 2 e/(n2 � n). The tightness of
constraint h hx, y i, ⇢ i is defined | ⇢ |/|D(x)⇥D(y) |.

An assignment is a partial function with domain X. A k-as-
signment assigns values to k variables (only). By abuse of
notation we write {x1 = f(x1), . . . , xk

= f(x
k

) } for k-assign-
ment f . Let f = {x1 = v1, . . . , xk

= v

k

} be a k-assignment.
We call f consistent if k = 1 and v1 2 D(x1) or k > 1
and h v

i

, v

j
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i , ⇢ i such that
1  i, j  k. A consistent n-assignment is a solution. P|

f
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obtained from P by substituting D(x
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} for D(x
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) for
all i such that 1  i  k.

3 Consistency

Definition 1 ((s, t)-consistency). A csp with variables X

is (s, t)-consistent if for any variables S = {x1, . . . , xs

} ✓ X

and any variables {x

s+1, . . . , xs+t

} ✓ X \ S, any consistent
s-assignment to x1, . . . , x

s

is extendable to some consistent
(s + t)-assignment to x1, . . . , x

s+t

.

Enforcing (s, t)-consistency may require processing (al-
most) all assignments to all combinations of s variables and
all assignments to all combinations of t additional variables.
As s and t become large, enforcing (s, t)-consistency usually
results in a large average running time and (generally) re-
quires O (ns

d

s) space for recording nogoods. The following
relaxes (s, t)-consistency by substituting some for the second
occurrence of any in the definition of (s, t)-consistency.

Definition 2 (Weak (s, t)-Consistency). A csp with vari-
ables X is weakly (s, t)-consistent if for any variables S =
{x1, . . . , xs

} ✓ X and some variables {x

s+1, . . . , xs+t

} ✓
X \ S, any consistent s-assignment to x1, . . . , x

s

is extend-
able to some consistent (s + t)-assignment to x1, . . . , x

s+t

.

A csp is inverse k-consistent [6] if it is (1, k�1)-consistent.
Inverse consistency does not require additional constraints
and can be enforced by shaving. A csp is inverse consistent
if it is inverse n-consistent. It is weakly inverse k-consistent if
it is weakly (1, k� 1)-consistent. Then (weak) inverse K-con-
sistency implies (weak) inverse k-consistency if K � k.

A csp is called k-consistent if it is ( k�1, 1 )-consistent and
it is called arc consistent if it is 2-consistent. The following
formally defines singleton arc consistency.

Definition 3 (Singleton Arc Consistency). A csp, P,
with variables X is called singleton arc consistent (sac) if

(8x1 2 X )(8v1 2 D(x1) )( ac(P|{ x1=v1 }) 6= ? ) .

The following seems a natural generalisation of sac.

Definition 4 (k-Singleton Arc Consistency). A csp P
with variables X is called k-singleton arc consistent if

(8x1 2 X )(8v1 2 D(x1) )(8{x2, . . . , xk

} ✓ X \ {x1 } )

(9h v2, . . . , vk

i 2 D(x2)⇥ . . .⇥D(x
k

) )

( ac(P|{ x1=v1,...,xk=vk }) 6= ? ) .

We define weak k-singleton arc consistency (weak k-sac)
by substituting an existential quantifier for the last univer-
sal quantifier in Definition 4. Then weak 1-sac is equivalent
to 1-sac and sac, and (weak) K-sac implies (weak) inverse
k-consistency and (weak) k-sac if K � k.

4 A Weak k-SAC Algorithm

This section presents our algorithms, which use greedy
search to establish a weakly k-sac equivalent of the input
csp P. They exploit that ac(P|{ x1=v1,...,xl=vl }) 6= ? implies
ac(P|{ xi1=vi1 ,...,xik

=vik }) 6= ?, for any {x

i1 , . . . , x

ik } ✓
{x1, . . . , xl

}. This generalises the sac algorithms in [8], which
use greedy search, exploiting that ac(P|{ x1=v1,...,xl=vl }) 6= ?
implies ac(P|{ xi1=vi1 }) 6= ?, for any {x

i1 } ✓ {x1, . . . , xl

}.
The algorithms are depicted in Figure 1. The outer while

loop of wksac is executed while there are changes, while there
is no inconsistency, and while no lucky solution has been
found. (Removing the statement solved := true in extendable
prohibits finding lucky solutions.) The second outer while

loop selects the next variable, x. The inner-most while

loop removes singleton inconsistent values. For any remain-
ing value, v, wksac tries to extend the assignment x = v,
to some K-sac assignment, for some K � k by executing
extendable(k � 1,wksac, solved , X \ {x }). If this fails then v

is removed. The underlying arc consistency algorithm is ac.
Like sac3 and sac3+ [8] extendable also searches for as-

signments of length greater than k. This allows the discovery
of lucky solutions [8] as part of consistency processing. If it
finds a k-sac assignment then extendable allows no digres-
sions when trying to find an extending K-sac assignment, for
K > k. This can be generalised to more digressions.

The space complexity of wksac is equal to the space com-
plexity of mac plus the space required for storing the ar-
ray wksac[ ·, · ]. The space complexity of wksac[ ·, · ] is O (n d),
which cannot exceed the space complexity of mac. Therefore,
the space complexity of wksac is equal to the space complexity
of mac. The outer loop of wksac is executed O (n d) times. For



each of the O (n d) values, finding an extending k-sac assign-
ment takes O

`
d

k�1
T

´
time, where T is the time complexity

of ac. For each k-sac assignment it takes O ((n� k) T ) time
for trying to find a lucky solution. Therefore, wksac’s time
complexity is O

`
n
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d
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T + (n� k) n

2
d

2
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´
.

Termination and correctness proofs are straightforward.
The following two propositions provide the basis for a cor-
rectness proof. Proofs are omitted due to space restrictions.

Proposition 1. If extendable(k � 1,wksac, solved , X \ {x })
succeeds then the assignment x = v extends to a K-sac as-
signment, for some K � k. Otherwise x = v is inconsistent.

Proposition 2. If wksac(k, X) succeeds then it computes a
solution or some weakly k-sac equivalent of the input csp. If
it fails then the input csp is unsatisfiable.

function wksac(in k, in X) do

local variables consistent, change, solved;

consistent

:

= ac(); change

:

= true; solved

:

= false;

while consistent and change and ¬solved do

foreach value v in the domain of each variable x do

wksac[ x, v ]

:

= false;

od;

change

:

= false; vars

:

= X;

while consistent and ¬change and ¬solved and vars 6= ; do

Select and remove any variable x from vars;

vals

:

= { v 2 D(x) : ¬wksac[ x, v ] };
while vals 6= ; and consistent and ¬change do

Select and remove any v from vals;

assign v to x;

if ac() and extendable(k � 1, wksac, solved, X \ { x })
undo ac(); unassign v; wksac[ x, v ]

:

= true;

else

remove v from D(x);

change

:

= true; undo ac(); unassign v; consistent

:

= ac();

fi;

od;

od;

od;

return consistent;

od;

function extendable(in k, in/out wksac, in/out solved, in X) do

local variables consistent, extendable, values;

if X = ;
solved

:

= true; /* Remove line if not used for solving. */

return true;

else

select any x from X;

values

:

= D(x);

extendable

:

= false;

while ¬extendable and values 6= ; do

select and remove any v from values;

assign v to x;

if ac() and extendable(k � 1, wksac, solved, X \ { x }) then

wksac[ x, v ]

:

= true; extendable

:

= true;

fi;

undo ac(); unassign v;

od;

return extendable or k  0;

fi;

od;

Figure 1. Algorithms for enforcing weak k-sac.

The algorithms in Figure 1 do not represent e�cient imple-
mentations. The following are suggestions for improvement.

The computation time usually improves if extendable first
selects variables from the set vars used by wksac, and if it
first selects v 2 D(x) such that wksac[ x, v ] = false.

Finally, note that a good variable ordering is essential. For
example, given a csp consisting of k connected components,
it makes no sense to select one variable from each compo-
nent since any assignment to these variables is consistent,
not allowing any pruning. The conflict directed variable order
dom/w

deg

[3] is good for our algorithms. This heuristic uses
the current degrees and the numbers of previously failed revi-
sions, selecting a variable that quickly leads to a dead-end [3].

Remember that k = 1. If extendable has not been called yet
then a dead-end immediately proves the assignment x = v

inconsistent. Otherwise, it immediately proves x = v weakly
K-sac, for some K � k. Ties are broken lexically. Values for x

are selected preferring value v such that wksac[ x, v ] = false,
breaking ties using the order svoh2 [10]. Other variable and
value orders usually result in worse results.

For certain csps and K > k > 0, wksac may prune more
for k than for K. However, experimental evaluation of the
algorithm indicates that this usually is not the case.

5 Experimental Results

To investigate their behaviour, we experimentally compared
sac-1, and wksac for k 2 { 1, 2, 4, 8, 16 }. We (1) investigate
their shaving capabilities for problems known from the liter-
ature, (2) investigate their behaviour for random problems,
and (3) investigate their use as a preprocessor for mac [12].

All algorithms were implemented in C. They were run on
a Linux 2.8GHz PC, having 500Mb of RAM. The underlying
arc consistency algorithm is ac-3. Some authors prefer op-
timal arc consistency algorithms, but we feel that ac-3 is a
good general purpose algorithm. For example, the best solvers
in the binary and overall categories of the First International
CSP Solver Competition are based on ac-3 [13].

Shaving Problems from the Literature The algo-
rithms have been applied to known problems, including forced
random binary problems frb, rlfap, modified rlfap, at-
tacking prime queen problems qa1, and job-shop instances
enddr1-10-by-5-10 and enddr2-10-by-5-2 (they are called
js-1 and js-2 in [8]). All problems are described in [2] and
may be downloaded from http://cpai.ucc.ie/.

Table 1 lists the main results for the first experiment. It
lists the problem instances, and for each instance: the num-
ber of variables, the number of values, the number of re-
moved values, and the time this took for sac-1 and wksac
for k 2 { 1, 2, 4, 8, 16 }. The satisfiable instances are indicated
by a + in the column sat. An i in the column del indicates
that the csp has been made and proved inverse consistent.
The column min (max) lists the minimum (maximum) Car-
dinalities of sets of lucky solutions, which were found in the
process of enforcing weak 1-sac. These sets are found when
there are no more constraints among the future variables, in
which case the number of solutions is equal to the product of
the domain sizes. The column count lists the total number of
such solutions. Due to the number of sets of lucky solutions
and their size, it was impossible, for some problem classes,
to compute the actual number of lucky solutions, in which
case the entry for column count has a question mark. [8] also
report the finding of lucky solutions. [8] report 0 lucky solu-
tions for qa-5, qa-6, 1 for scen5 and enddr2-10-by-5-2, 4 for
enddr1-10-by-5-10, 10 for graph14, and 16 for scen2, which
is less than the numbers reported here. Perhaps these di↵er-
ences are caused by di↵erences in variable and value ordering.

Many values in the job-shop problems are inverse consis-
tent. At the First International CSP Solver Competition they
were di�cult to solve by mac [13]. This may explain why it
is di�cult to enforce higher level of k-sac using search: for
k 2 { 8, 16 } it takes too much time. For the attacking prime



Table 1. Results of shaving problems from the literature using sac-1 and wksac for di↵erent values of k

SAC-1 lucky k = 1 k = 2 k = 4 k = 8 k = 16
Instance sat vars vals del time count min max del time del time del time del time del time

frb30-15-1 + 30 450 0 0.04 0 0 0 0 0.10 0 0.10 0 0.09 i 410 6.55 i 410 0.54
frb30-15-2 + 30 450 0 0.04 0 0 0 0 0.10 0 0.09 0 0.10 i 413 7.02 i 413 1.16
frb35-17-1 + 35 595 0 0.05 0 0 0 0 0.14 0 0.14 0 0.14 0 1.72 i 559 3.19
frb35-17-2 + 35 595 0 0.06 0 0 0 0 0.14 0 0.14 0 0.14 0 0.90 i 552 7.54
frb40-19-1 + 40 760 0 0.08 0 0 0 0 0.21 0 0.21 0 0.21 0 0.51 i 701 15.05
frb40-19-2 + 40 760 0 0.07 0 0 0 0 0.22 0 0.21 0 0.21 0 0.52 i 717 28.18
scen-1 + 916 36200 0 20.90 42 1 1 0 6.46 0 6.47 0 6.47 0 6.48 0 6.48
scen-2 + 200 8004 0 4.89 56 1 1 i 0 1.28 i 0 1.28 i 0 1.29 i 0 1.29 i 0 1.28
scen-5 + 400 15768 13814 0.97 46 1 1 i 13814 0.28 i 13814 0.28 i 13814 0.28 i 13814 0.28 i 13814 0.28
scen-11 + 680 26856 0 15.17 6 1 1 0 4.88 0 4.89 0 4.88 0 4.78 76 4803.89
scen1-f8 + 916 29496 6704 6.29 17 1 1 6704 2.55 6704 2.55 6704 2.56 6704 2.55 6704 2.58
scen2-f24 + 200 4025 0 0.57 25 1 1 0 0.27 0 0.27 0 0.27 0 0.32 0 0.42
scen3-f10 + 400 12174 3726 2.20 22 1 1 3726 1.43 3726 1.43 3738 1.56 3738 1.54 3746 1.78
scen6-w1 + 200 8020 1580 2.78 58 1 1 1580 0.78 1580 0.77 1616 0.76 1616 0.76 1616 0.80
scen7-w1-f4 + 400 14568 6286 1.88 62 1 1 6286 1.10 6286 1.10 6318 0.90 6318 0.89 6326 1.15
scen1-f9 - 916 28596 7628 5.24 0 0 0 7628 2.47 7628 2.47 7640 4.75 28596 2.46 28596 2.89
scen2-f25 - 200 3918 106 0.58 0 0 0 106 0.35 106 0.36 110 0.40 3918 0.54 3918 1.50
scen3-f11 - 400 11966 3934 1.59 0 0 0 3934 1.79 3934 1.79 3980 1.85 11966 1.36 11966 0.41
scen6-w1-f2 - 200 7716 2082 2.34 0 0 0 2082 1.25 2082 1.25 7716 0.40 7716 0.18 7716 0.22
scen6-w1-f3 - 200 7518 2474 1.59 0 0 0 2474 0.59 2474 0.59 7518 0.07 7518 0.07 7518 0.09
scen11-f1 - 680 26524 332 13.94 0 0 0 332 4.47 332 4.47 332 4.39 26524 3097.10
qa-5 + 26 631 9 0.16 0 0 0 9 0.10 9 0.10 9 0.10 12 0.45 i 386 24.06
qa-6 + 37 1302 48 2.19 0 0 0 48 0.78 48 0.80 48 0.81 67 1.86 127 1923.01
qa-10 + 101 10015 373 311.92 0 0 0 373 93.91 373 94.64 393 440.62 416 306.66 —
enddr1-10-by-5-10 + 50 5760 0 16.07 ? 532 15.3e6 0 5.85 0 5.83 0 5.83 — —
enddr2-10-by-5-2 + 50 6315 0 25.95 ? 21 50.5e3 0 10.68 0 10.70 0 10.70 — —

queen problems wksac is removing more values as k increases,
but for k = 16 it needs too much time.

For these structured problems the new algorithms are about
as e�cient as sac-1 for k = 1, if not better. All unsat-
isfiable modified rlfap instances (the unsatisfiable unmodi-
fied instances are proved inconsistent by arc consistency) are
proved inconsistent by wksac for k � 8, whereas sac-1 fails to
prove some of these instances inconsistent. Note that instance
scen11-f1 is very di�cult and, to the best of our knowl-
edge, has not been classified; days of mac search could not
solve it. However, enforcing weak 8-sac proves it inconsistent
within an hour. Finally, some satisfiable problems (they are
not all listed in Table 1) are made and proved inverse consis-
tent within a few seconds. Here a problem is proved inverse
consistent if all values participate to some lucky solution. For
example, scen2 is proved to be already inverse consistent,
graph2, scen3, scen4, and scen5 are made and proved in-
verse consistent by making them weak k-sac (k � 1), and all
fifteen instances from the classes frb-30-15, frb-35-17, and
frb-40-19 are made and proved inverse consistent by making
them weakly k-sac for k = 8 or k = 16.

Shaving Random Problems We now study the be-
haviour of the algorithms for random model B problems [7].
A model B class is typically denoted hn, d, D, T i, where n

is the number of variables, d is the uniform domain size, D

is the density, and T is the uniform tightness. Results are
presented for the same class of problems as presented in [1;
8]. For each tightness t = 0.05 i, 2  i  18, the average shav-
ing time is over 50 random instances from h 100, 20, 0.05, t i.

Figure 3 does not depict all data. For T  0.50 all algo-
rithms remove less than 0.06, and for T � 0.8 they remove
about 1989.6 values on average. Figure 3 confirms that sac
and weak 1-sac are equivalent. Comparing sac-1 and w1sac

in Figure 2, w1sac is better in time when T is small and large.
However, near the sac complexity peek sac-1 is about three
times quicker than w1sac. The majority of the problems in
that region are unsatisfiable and most values are sac. Typi-
cally, sac-1 will find that a value is sac and stop. The extra
work put in by w1sac in trying to find a lucky solution will
fail at a shallow level. This work cannot do pruning and does
not lead to many values that were not known to be sac.

The weak k-sac algorithms only behave di↵erently near
the sac phase transition. The higher k the more values are
removed. At T = 0.7, the nearest point to the sac phase tran-

sition, weak16sac outperforms sac-1 marginally in time and
significantly in the number of removed values. At T = 0.65
w16sac removes about 114.2 values on average, whereas all
other algorithms remove between 2 and 3 values on average.
However, w16sac spends (much) more time. Clearly the algo-
rithms cannot be compared in time at T = 0.65.

Search We now compare the algorithms as a preprocessor
for mac. The first solver is mac, denoted mac, the second is
sac+mac, which is sac-1 followed by mac, and the third and
fourth solvers are w1sac+mac and w8sac+mac, i.e. wksac for en-
forcing weak k-singleton arc consistency followed by mac, for
k 2 { 1, 8 }. All solvers used the variable ordering dom/w

deg

[3]
and the value ordering svoh2 [10], breaking ties lexically. The
support counters [10] for the value ordering are initialised af-
ter establishing initial arc consistency. Should wksac prune
more values, then they are also initialised before search.

Table 2 lists the results. The column sat denotes the sat-
isfiability of the instances. A + and an L indicates satisfiable
instances, the L indicating the discovery of lucky solutions.
For all problems, if lucky solutions are found by w1sac+mac

then they are also found by w8sac+mac and vice versa.
Overall, and these results are typical for these problems,

sac+mac performs worse in time and checks than wksac+mac.
Mac performs better than sac+mac for some instances, espe-
cially some graph instances, otherwise the two algorithms
are about equally e�cient. Compared to w1sac+mac and
w8sac+mac it is clear that sac+mac is worse in time and checks.
Compared to mac the results are not so clear but overall
w1sac+mac and w8sac+mac are better. The only exceptions are
for “easy” problems, for which mac is easy. For these problems
there is no need to establish more consistency before search
and this results in slightly more solution time. We have also
observed this for unsatisfiable problem instances where sac

alone is su�cient to detect the inconsistency. For example,
for the queens-knight problems qk1 [2] sac-1 is more e�cient
than the weak sac algorithms. However, these problems are
relatively easy and do not require much time, even with wksac.
For the problems that are di�cult for mac and sac+mac the
two need a considerable amount of time more than wksac.

It is recalled that it turned out impossible to compute the
weak k-sac equivalent of the job-shop instances for k = 8
and k = 16. However, when the algorithms are used to find
solutions, they perform much better and find lucky solutions.
Lucky solutions are also found for all satisfiable rlfap, and all
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satisfiable modified rlfap instances, including instances from
these classes for which no results are presented in Table 1.
It is interesting to note that if lucky solutions are found, it
takes the same amount of checks for k = 8 and k = 16. This
may indicate that both algorithms carry out exactly the same
amount of work, which seems possible only if, in addition, they
make the same decisions about value and variable ordering.
If this is true, then it is probably because these problems are
loose, making any arc consistent 1-assignment, easily extend-
able to an arc consistent k-assignment for k � 8, which makes
it impossible to prune more for w8sac than for w1sac.

Table 2. Problem solving capabilities of search algorithms.

mac sac+mac w1sac+mac w8sac+mac

Instance time checks time checks time checks time checks
scen2 L 0.15 2.525e6 3.62 78.121e6 0.16 2.511e6 0.16 2.511e6
scen5 L 0.09 0.564e6 0.92 8.199e6 0.10 0.595e6 0.10 0.595e6
scen11 L 0.61 9.296e6 11.49 246.425e6 0.53 8.545e6 0.53 8.545e6
scen1-f8 L 0.39 4.810e6 5.11 86.210e6 0.41 4.987e6 0.41 4.987e6
scen2-f24 L 0.03 0.723e6 0.49 10.923e6 0.05 0.961e6 0.05 0.949e6
scen6-w1 L 0.04 0.573e6 2.24 33.830e6 0.04 0.572e6 0.04 0.572e6
scen7-w1-f4 L 0.07 0.897e6 1.54 22.930e6 0.08 0.996e6 0.08 0.996e6
scen1-f9 - 0.84 8.857e6 4.56 70.602e6 2.51 25.310e6 2.29 22.107e6
scen2-f25 - 1.44 15.261e6 1.91 25.102e6 0.43 5.667e6 0.54 5.688e6
scen3-f11 - 0.88 8.046e6 2.16 32.568e6 1.94 20.443e6 1.34 13.450e6
scen6-w1-f2 - 2.09 25.712e6 2.08 28.949e6 1.11 13.898e6 0.15 1.908e6
scen6-w1-f3 - 0.84 11.878e6 1.37 19.030e6 0.53 6.631e6 0.06 0.813e6
scen6-w2 - 0.36 4.382e6 0.35 4.290e6 0.15 1.768e6 0.16 1.980e6
scen7-w1-f5 - 0.11 1.235e6 0.08 1.032e6 0.06 0.731e6 0.06 0.731e6
scen9-w1-f3 - 0.16 1.972e6 0.11 1.432e6 0.13 1.654e6 0.13 1.664e6
scen10-w1-f3 - 0.16 1.972e6 0.11 1.432e6 0.13 1.654e6 0.13 1.664e6
graph3 L 0.17 2.185e6 60.11 764.413e6 0.17 2.180e6 0.17 2.180e6
graph10 L 0.72 8.501e6 368.56 198.230e6 0.72 8.491e6 0.72 8.491e6
graph14 L 0.53 9.286e6 15.11 351.031e6 0.53 9.230e6 0.54 9.230e6
qa-5 + 0.29 2.392e6 0.41 5.501e6 0.42 3.652e6 0.06 0.806e6
qa-6 +106.65 783.722e6 125.22 949.601e6 0.81 12.807e6 1.92 22.346e6
enddr1-10-by-5-10 L 879.89 546.428e6 891.26 974.780e6 0.13 4.405e6 0.13 4.405e6
enddr2-10-by-5-2 L 117.47 3925.611e6 134.53 321.808e6 0.20 7.304e6 0.20 7.304e6

6 Conclusions

This paper introduces k-singleton consistency (k-sac) and
weak k-sac, which are generalisations of sac and inverse
k-consistency. Weak k-sac is equal to sac if k = 1 but
stronger if k > 1. A weak k-sac algorithm is presented, which
uses greedy search. At the sac phase transition, it removes
many more values than sac-1 for k = 16 using less time.
Like sac-3 and sac-3+ the algorithm sometimes finds lucky
solutions. If it does it usually find many. Sac cannot solve un-
satisfiable instances which can be made sac. However, by en-
forcing higher degrees of weak sac some of these instances can
be proved inconsistent within a reasonable time. When used
as a preprocessor for mac the algorithm compares favourably
to existing algorithms. By increasing the level of weak sac
we are able to solve di�cult problems, including scen11-f1,
which had not been solved before.
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