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Abstract

Constraint networks have been shown to be useful in formulating such
diverse problems as scene labeling� natural language parsing� and tem�
poral reasoning� Given a constraint network� we often wish to �i� �nd
a solution that satis�es the constraints and �ii� �nd the corresponding
minimal network where the constraints are as explicit as possible� Both
tasks are known to be NP�complete in the general case� Task �i� is usu�
ally solved using a backtracking algorithm� and task �ii� is often solved
only approximately by enforcing various levels of local consistency� In this
paper� we identify a property of binary constraints called row convexity

and show its usefulness in deciding when a form of local consistency called
path consistency is su�cient to guarantee that a network is both minimal
and globally consistent� Globally consistent networks have the property
that a solution can be found without backtracking� We show that one can
test for the row convexity property e�ciently and we show� by examining
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applications of constraint networks discussed in the literature� that our
results are useful in practice� Thus� we identify a class of binary constraint
networks for which we can solve both tasks �i� and �ii� e�ciently� Finally�
we generalize the results for binary constraint networks to networks with
non�binary constraints�
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� Introduction

Constraint networks have been shown to be useful in formulating such diverse
problems as graph coloring ����� scene labeling ���� ���� natural language pars�
ing ����� and temporal reasoning ���	 A constraint network is de
ned by a set
of variables� a domain of values for each variable� and a set of constraints be�
tween the variables	 Given a constraint network� we often wish to �i� 
nd a
solution
an instantiation of the variables that satis
es the constraints and �ii�

nd the corresponding minimal network where the constraints are as explicit as
possible	 Finding the minimal network has applications in removing redundant
information from a knowledge base ���� and temporal reasoning ����	 However�
both tasks are known to be NP�complete in the general case	 Task �i� is usually
solved using a backtracking algorithm� which is exponential in the worst case
but often useful in practice� and task �ii� is often solved only approximately by
enforcing various levels of local consistency	
In this paper� we begin by examining constraint networks with only binary

constraints	 We identify a property of binary constraints called row convexity
and show its usefulness in deciding when a form of local consistency called path
consistency is su�cient to guarantee that a network is both minimal and globally
consistent	 Globally consistent networks have the property that a solution can
be found without backtracking	 In particular� we show that if a binary constraint
network is path consistent and all of the binary relations are row convex or can
be made row convex� then the network is minimal and globally consistent	 We
also show that if there exists an ordering of the variables and of the domains
of the variables such that the binary constraints can be made directionally row
convex� then a solution can be found without backtracking	 Testing for the row
convexity property involves determining whether there exists an ordering of the
domains of the variables such that all of the constraints are simultaneously row
convex	 We show that one can test for the row convexity property e�ciently	
Thus� we identify a class of binary constraint networks for which we can solve
both tasks �i� and �ii� e�ciently	 We also show� by examining applications of
constraint networks discussed in the literature� that our results are useful in
practice	
Finally� we generalize the results for binary constraint networks to networks

with non�binary constraints	 In particular� we generalize the row convexity
property to non�binary constraints and show its usefulness in deciding when a
level of local consistency called strong ��r � �� � � consistency� where r is the
maximum arity of the constraints� is su�cient to ensure that the network is
globally consistent	 As well� we generalize the notion of path consistency for
binary constraints to a local consistency condition for non�binary constraints
called relational path�consistency� and use it to identify an interesting class of
non�binary row�convex constraint networks that are globally consistent	
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� Background

We begin with some needed de
nitions and describe related work	

De�nition � �binary constraint networks� Montanari �����
A network of binary constraints R is a set X of n variables fx�� � � � � xng� a
domain Di of possible values for each variable� and a set of binary constraints
between variables� A binary constraint or relation� Rij� between variables xi
and xj� is a subset of the Cartesian product of their domains that speci�es the
allowed pairs of values for xi and xj �i�e�� Rij � Di�Dj�� For the networks of
interest here� we require that �xj� xi� � Rji if and only if �xi� xj� � Rij�

De�nition � �solution of a binary constraint network�
An instantiation of the variables in X is an n�tuple �X�� � � � � Xn�� representing
an assignment of Xi � Di to xi� A consistent instantiation of a network is
an instantiation of the variables such that the constraints between variables are
satis�ed� A consistent instantiation is also called a solution� A network is
minimal if each pair of values allowed by each of the constraints participates in
at least one consistent instantiation �i�e� if �xi� xj� � Rij� then �xi� xj� is part
of some consistent instantiation of the network��

Mackworth ���� ��� de
nes three properties of networks that characterize
local consistency of networks� node� arc� and path consistency	

De�nition � �path consistent network� Mackworth �����
A network is path consistent if and only if� for every triple �xi� xk� xj� of vari�
ables� we have that� for every instantiation of xi and xj that satis�es the direct
relation� Rij� there exists an instantiation of xk such that Rik and Rkj are also
satis�ed�

Note that the de
nition of path consistency subsumes arc consistency if in
the above de
nition we do not assume that variables xi and xj are distinct	
For simplicity� unless otherwise stated� we will assume that path consistency
includes arc consistency	 Montanari ���� and Mackworth ���� provide algorithms
for achieving path consistency that also achieve arc consistency	 Freuder ����
generalizes this concept to k�consistency	

De�nition � �strong k�consistency� Freuder ���� ����
A network is k�consistent if and only if given any instantiation of any k � �
variables satisfying all of the direct relations among those variables� there exists
an instantiation of any kth variable such that the k values taken together satisfy
all of the relations among the k variables� A network is strongly k�consistent if
and only if it is j�consistent for all j � k�

Node� arc� and path consistency correspond to strong one�� two�� and three�
consistency� respectively	 A strongly n�consistent network is called globally con�
sistent	 Globally consistent networks have the property that any consistent

�



instantiation of a subset of the variables can be extended to a consistent instan�
tiation of all of the variables without backtracking ���	 A strongly n�consistent
network is also minimal	 However� the converse is not true as it is possible for
a network to be minimal but not strongly n�consistent	
Following Montanari ����� a binary relation Rij between variables xi and xj

is represented as a ������matrix with jDij rows and jDjj columns by imposing
an ordering on the domains of the variables	 A zero entry at row a column b
means that the pair consisting of the ath element of Di and the bth element
of Dj is not permitted� a one entry means that the pair is permitted	 Two
distinguished relations are the identity relation� I� which is represented as the
������matrix consisting of ones along the diagonal and zeroes everywhere else�
and the universal relation� U � which is represented as a ������matrix consisting
of all ones	
A concept central to this paper is the row�convexity of constraints	

De�nition � �row convex�
A binary relation Rij represented as a ������matrix is row convex if and only if
in each row all of the ones are consecutive� that is� no two ones within a single
row are separated by a zero in that same row�

Row convex relations generalize functional and monotone relations	 A binary
relationRij represented as a ������matrix ismonotone if and only if the following
conditions hold� if Rij�ab � � and c � a� then Rij�cb � �� and if Rij�ab � � and
c � b� then Rij�ac � �	 A binary relation Rij represented as a ������matrix is
functional if and only if there is at most one one in each row and in each column
of Rij	
We use a graphical notation where vertices represent variables and directed

arcs are labeled with the constraints between variables	 As a graphical conven�
tion� we never show the edges �i� i�� and if we show the edge �i� j�� we do not
show the edge �j� i�	 Any edge for which we have no explicit knowledge of the
constraint is labeled with the universal relation� which is represented as a ������
matrix consisting of all ones	 By convention such edges are also not shown	 For
example� consider the simple constraint network with variables x� and x� and
domains D� � fa� b� cg and D� � fd� e� fg� shown below	

��
��

���
��

��

R�� �

�
� � �
� � �
� � �

�

The constraint R�� does not allow� for example� the pair �a� d� but does allow
the pairs �a� e�� �a� f�	 It can be seen that the constraint has the row convexity
property	
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��� Related work

Much work has been done on identifying restrictions on constraint networks such
that 
nding a solution and 
nding the corresponding minimal network can be
done e�ciently	 These restrictions fall into two classes� restricting the topology
of the underlying graph of the network and restricting the type of the allowed
constraints between variables	
For work that falls into the class of restricting the topology� Montanari ����

shows that if the constraint graph is a tree� path consistency is su�cient to
ensure that a network is minimal	 Freuder ���� ��� identi
es a relationship
between a property called the width of a constraint graph and the level of local
consistency needed to ensure that a solution can be found without backtracking	
As a special case� if the constraint graph is a tree� arc consistency is su�cient
to ensure that a solution can be found without backtracking	 Dechter and Pearl
��� provide an adaptive scheme where the level of local consistency is adjusted
on a node�by�node basis	 Dechter and Pearl ��� generalize the results on trees to
hyper�trees which are called acyclic databases in the database community ���	
For work that falls into the class of restricting the type of the constraints

�the class into which the present work falls�� Dechter ��� identi
es a relationship
between the size of the domains of the variables and the level of local consistency
needed to ensure that the network is strongly n�consistent� and thus minimal and
globally consistent	 Montanari ���� shows that path consistency is su�cient to
guarantee that a network is both minimal and globally consistent �Montanari
uses the term decomposable� if the relations are monotone	 Van Hentenryck�
Deville� and Teng ���� show that arc consistency is su�cient to test whether a
network is satis
able if the relations are from a restricted class of functional and
monotone constraints	 In general� arc consistency is not su�cient to test the
satis
ability of networks with only functional and monotone constraints	 To see
this� consider the constraint network that arises from trying to color a complete
graph of three vertices with two colors	 The relations are functional and arc
consistent but the network is unsatis
able	 Functional and monotone relations
are row convex� hence� it will be seen that our results generalize Montanari�s
and extend Van Hentenryck et al	�s results	 Importantly� in the above work� the
problem of deciding whether the constraints have the desired properties is left
to the user	 We identify an e�cient procedure for deciding whether a constraint
network can be made row convex	
Finally� for work that falls into both classes� Dechter and Pearl ���� present

e�ective procedures for determining whether a constraint network can be formu�
lated as a causal theory and thus a solution can be found without backtracking	
Whether a constraint network can be so formulated depends on the topology of
the underlying constraint graph and the type of the constraints	
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� A Su�cient Condition for Minimality and Global

Consistency

In this section we show the usefulness of row convexity in deciding when path
consistency is su�cient to guarantee that a binary network is both minimal
and globally consistent	 Informally� we show that if a binary network is path
consistent and the relations are row convex or can be made row convex� then the
network is minimal and globally consistent	 We show in Section � that a known
procedure from graph theory can be used for deciding whether a constraint
network can be made row convex	
More formally� the following lemma on the intersection of ������row vectors

that are row convex� is needed in the proof of the result	 The lemma is a discrete
version of the well�known result that for a set of mutually intersecting intervals
there is a point common to all	

Lemma � Let F be a �nite collection of ������row vectors that are row convex
and of equal length such that every pair of row vectors in F have a non�zero
entry in common� that is� their intersection is not the vector with all zeroes�
Then all of the row vectors in F have a non�zero entry in common�

Proof� Let v�� � � � � vn be row vectors of length k	 Let 
rst�vi� and last�vi�
be the position of the 
rst and last one in vi� respectively	 For example� if
v� � � � � � � � �� 
rst�v�� � � and last�v�� � �	 We de
ne 
rst�vi� � k � �
and last�vi� � �� for the zero vector of length k	 We want to show that if the
vectors are non�zero and their pairwise intersections are all non�zero� then the
intersection of all of the vectors together is a non�zero vector	 The condition
that a vector� vi� is non�zero can be expressed as� 
rst�vi� � last�vi�	 The
condition that every pair of vectors have a non�zero intersection can be expressed
as� �i�j�
rst�vi� � last�vj��	 It follows that� max�
rst�v��� � � � � 
rst�vn�� �
min�last�v��� � � � � last�vn��� which is equivalent to saying that the intersection of
all of the vectors together is a non�zero vector	 �

Theorem � Let R be a path consistent binary constraint network� If there
exists an ordering of the domains D�� � � � � Dn of R such that the relations are
row convex� the network is minimal and globally consistent�

Proof� The theorem is proved by showing that if the network is path consistent
and all of the ������matrices are row convex� then the network is k�consistent
for all k � n	 Hence the network is strongly n�consistent and therefore minimal	
To show that the network is k�consistent for all k � n� we show that it is

true for an arbitrary k	 Suppose that variables x�� � � � � xk�� can be consistently
instantiated	 That is� let X�� � � � � Xk�� be an instantiation such that

Xi Rij Xj i� j � �� � � � � k� �
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is satis
ed	 To show that the network is k�consistent� we must show that there
exists at least one instantiation� Xk� of variable xk such that

Xi Rik Xk i � �� � � � � k� � ���

is satis
ed	 We do so as follows	 The X�� � � � � Xk�� restrict the allowed in�
stantiations of xk	 For each i in Equation �� the non�zero entries in row Xi of
the ������matrix Rik are the allowed instantiations of xk	 The key is that all
of these row vectors are row convex� i	e	� the ones are consecutive	 Hence� by
Lemma � it is su�cient to show that any two row vectors have a non�zero entry
in common to show that they all have a non�zero entry in common	 But arc
consistency guarantees that each row vector contains at least one non�zero entry
and path consistency guarantees that each pair of row vectors has a non�zero
entry in common	 Hence� all of the constraints have a non�zero entry in common
and there exists at least one instantiation of xk that satis
es Equation � for all
i	 Because we require that xjRjixi � xiRijxj we have also shown that there
exists at least one instantiation� Xk� of variable xk such that

Xk Rki Xi i � �� � � � � k� �

is satis
ed	 Hence� we have shown that� for any consistent instantiation of k��
variables� there exists an instantiation of any kth variable such that

Xi Rij Xj i� j � �� � � � � k

is satis
ed	 Hence� the network is k�consistent	 �

For simplicity� we assumed in the proof of Theorem � that all of the domains
of the variables are of equal size	 The results are easily generalized to domains
of unequal size	 The proof of the theorem is constructive and gives an algorithm
for 
nding a consistent instantiation	 Without loss of generality� we assume the
order of instantiation of the variables is x�� � � � � xn	

Instantiate�R� n�

�	 choose an instantiation X� of x� that satis
es R��

�	 for i� � to n

�	 do r� �� � 	 	 	 ��
�	 for j � � to i � �
�	 do r� r 
 �rowXj ofRji�
�	 choose an instantiation Xi of xi that satis
es r

Intersecting two row vectors in Step � takes O�d� time� hence the algorithm is
O�dn��� where n is the number of variables and d is the size of the domains	 The
path consistency procedure is O�d�n�� ���� which can be improved to O�d�n��
by using a more complicated data structure ����	 So� we can 
nd a solution
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and the minimal network for the class of constraint networks characterized by
Theorem � in O�d�n�� time	

Example �� Scene labeling in computer vision ��� ��� can be formulated as a
problem on constraint networks	 We use an example to illustrate the application
of Theorem �	 Figure � shows the variables in the constraint network and
the constraints� Figure � shows the domains of the variables and the ordering
imposed	 For example� variable x� in Figure � is a fork and can be instantiated
with any one of the 
ve labelings shown in Figure �	 The constraints between
variables are simply that� if two variables share an edge� then the edge must
be labeled the same at both ends	 Not all of the constraints are row convex	
However� once the path consistency algorithm is applied� the relations become
row convex	 Therefore� in this example� no reordering of the domains is needed
in order to satisfy the theorem	 The Instantiate procedure can be used to

nd a solution	 The four possible solutions are shown in Figure �	
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Figure �� Hu�man�Clowes junction labelings

The scene�labeling problem has been shown to be NP�complete in the general
case ����	 We are attempting to prove the conjecture that constraint networks
arising from orthohedral scenes are row convex once path consistency is applied	
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Figure �� Scene labeling constraint network
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Figure �� Solutions� �a� stuck on left wall� �b� stuck on right wall� �c� suspended
in mid�air� �d� resting on �oor	
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As an immediate corollary of Theorem �� if we know that the result of
applying path consistency will be that all of the relations will be row convex�
we can guarantee a priori that path consistency will 
nd the corresponding
minimal network and that the minimal network will be globally consistent	 To
use the path consistency algorithms� three operations on relations are needed�
composition� intersection� and inverse�	 Thus� if the relations in our constraint
network are row convex and remain row convex under these operations� the
result applies	

Corollary � Let L be a set of ������matrices closed under composition� inter�
section� and transposition such that each element of L is row convex� Let R be a
binary constraint network with all relations taken from L� The path consistency
algorithm will correctly determine the minimal network of R� Furthermore� the
minimal network will be globally consistent�

Proof� This can be proved by a simple rewriting of the proof for Theorem �	
�

Example �� Let the domains of the variables be of size two	 The set of all
��� ������matrices is closed under composition� intersection� and transposition
and each � � � ������matrix is row convex	 Hence� the corollary applies to all
binary constraint networks with domains of size two	 As a speci
c example� the
Graph ��coloring problem can be formulated using such constraint networks	
Dechter ��� p	 ��� also shows� but by a di�erent method� that a strongly ��
consistent �or path consistent� bi�valued network is minimal	

Example �� Let the domains of the variables be 
nite subsets of the integers
and let a binary constraint between two variables be a conjunction of linear
equalities and inequalities of the form axi�bxj � c� axi�bxj � c� or axi�bxj �
c� where a� b� and c are integer constants	 For example� the conjunction

��xi � �xj � �� � ���xi � �xj � ��

is an allowed constraint between variables xi and xj	 A network with constraints
of this form can be formulated as an integer linear programwhere each constraint
is on two variables and the domains of the variables are restricted to be 
nite
subsets of the integers	 However� it can be shown that each element in the
closure under composition� intersection� and transposition of the resulting set
of ������matrices is row convex� provided that when an element is removed from
a domain by arc consistency� the associated ������matrices are �condensed	�
This is best illustrated through an example	 Let Di � Dj � f��� �g and
Dk � f��� �� �g and let Rij be the matrix constructed from the constraint

�When the relations are represented as ������matrices� these operations correspond to bi�
nary matrix multiplication� binary matrix intersection� and transposition of the matrix� re�
spectively	 The reader may consult ���� ��� for details	
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xi � xj � � and Rjk be constructed from ��xj � xk � �	

Rij �

�
� �
� �

�
� Rjk �

�
� � �
� � �

�
� Rik �

�
� � �
� � �

�
�

The matrix Rik� the result of composing Rij and Rjk� is not row convex	 How�
ever� there is no solution with xk assigned �� so Dk becomes f��� �g and row
convexity can be restored by removing the middle column frommatrices Rik and
Rjk	 Hence� by Corollary � we can guarantee that the result of path consistency
will be the minimal network and the network will be globally consistent	 Two
special cases are a restricted and discrete version of Dechter� Meiri� and Pearl�s
��� continuous� bounded di�erence framework for temporal reasoning and a re�
stricted and discrete version of Vilain and Kautz�s ���� qualitative framework
for temporal reasoning	

� Identifying Row�Convex Relations

As noted in the scene�labeling example� when constructing a constraint network
and the ������matrices that represent the constraints� we must impose an or�
dering on the domains of the variables	 Sometimes a natural ordering exists�
as when the domain is a 
nite subset of the integers� but often the ordering
imposed is arbitrary and with no inherent meaning	 An unlucky ordering may
hide the fact that the constraint network really is row convex or� more properly�
can be made row convex	 How can we distinguish this case from the case where
no ordering of the domains will result in row convexity� The following theorem
shows that we can test for this property e�ciently	

Theorem � 	Booth and Lueker 
��� An m� n ������matrix speci�ed by its
f nonzero entries can be tested for whether a permutation of the columns exists
such that the matrix is row convex in O�m � n� f� steps�

Example �� Maruyama ���� shows that natural language parsing can be
formulated as a problem on constraint networks	 In this framework� intermedi�
ate parsing results are represented as a constraint network and every solution
to the network corresponds to an individual parse tree	 We use an example
network from ���� to illustrate the application of Theorems � and �	 Consider
the following sentence	

Put the block on the �oor on the table in the room	
V� NP� PP� PP� PP�

The sentence is structurally ambiguous �there are fourteen di�erent parses� as
there are many ways to attach the prepositional phrases	 Figure � shows the
original ordering of the domains� Figure � shows the variables in the constraint
network and the constraints	 For example� the constraint between variable PP�
and variable PP� is given by the ������matrix at row PP� column PP� of the
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table in Figure � �the symbol I in the 
gure denotes the identity matrix

the ������matrix consisting of ones along the diagonal and zeroes everywhere
else�	 Maruyama states that a �simple backtrack search can generate the ��
parse trees of the sentence from the constraint network at any time	� While
the network is path consistent� it can be seen that the constraints are not all
row convex given the original domain ordering used in ����	 However� using the
new domain ordering shown in Figure �� the constraints are now row convex	
Hence� the Instantiate procedure from the previous section can be used to

nd a solution in a backtrack�free manner	

Variable Domain
Original ordering New ordering

V� fRnilg fRnilg
NP� fO�g fO�g
PP� fL�� P�g fL�� P�g
PP� fL�� P�� P�g fP�� P�� L�g
PP� fL�� P�� P�� P�g fP�� P�� L�� P�g

Figure �� Variables and domains for parsing example
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Figure �� Left� Parsing constraint network� Right� Table representation of
constraint network

Let R be a path consistent binary constraint network	 It remains to show
how Theorem � can be used to determine whether an ordering of the domains
of the variables exists such that all of the ������matrices Rij� � � i� j � n� are
row convex	 The procedure is simple� for each variable� xj� we take the matrix
de
ned by stacking up R�j on top of R�j on top of 	 	 	 Rnj and test whether
the matrix can be made row convex	 For example� with reference to Figure ��
for variable PP� we would test whether the columns of the matrix consisting of

��



the � columns and �� rows under the column heading PP� can be permuted to
satisfy the row convexity property	 In this example such a permutation exists
and corresponds to the new ordering of the domain of variable PP� shown in
Figure �	

It is� of course� not true that for every path consistent network there exists an
ordering of the domains such that all of the constraints are simultaneously row
convex	 However� in those cases where such an ordering does not exist� a weaker
property may hold� where the network is directionally row convex relative to a
particular ordering of the variables	

De�nition 
 �directionally row convex�
Given an ordering of the variables x�� � � � � xn� a binary constraint network R
is directionally row�convex if each of the ������matrices Rij� where variable xi
occurs before variable xj in the ordering� is row convex�

Theorem � Let R be a path consistent binary constraint network� If there
exists an ordering of the variables x�� � � � � xn and of the domains D�� � � � � Dn of
R such that R is directionally row convex� then a solution can be found without
backtracking�

Proof� This can be proved by a simple rewriting of the proof for Theorem �	
�

Example �� Consider the constraint network with three variables and do�
mains D� � D� � D� � fa�b�cg as shown in Figure �	 While this example is
path consistent� no ordering of the domain of x� exists that will simultaneously
make the ������matrices R�� and R�� row convex	 However� order D� � fa�c�bg
satis
es the condition of Theorem � and the variables can be instantiated in the
order x�� x�� x� using the Instantiate procedure� and it can be guaranteed
that no backtracking is necessary� 	

An algorithm for 
nding a directionally row convex ordering of the variables
and of their respective domains� if such an ordering exists� is given below	

FindOrder�R� n�

�	 L� f�� �� � � � � ng
�	 for m� n downto �
�	 do 
nd a j � L for which there exists an ordering of

domain Dj such that �i � L�Rij is row convex
�if no such j exists� then report failure and halt�

�	 put variable xj at position m in the ordering
�	 L� L � fjg

�The example was chosen to illustrate the application of the theorem as simply as pos�
sible� in actuality� path consistency is su�cient for guaranteeing the minimality and global
consistency of any three node network	
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Figure �� Left� A path consistent network that can be made directionally row
convex� Right� Table representation of constraint network

Lemma � Algorithm FindOrder correctly �nds a directionally row convex
ordering of the variables and of their respective domains� if such an ordering
exists� in O�d�n�� time�

Proof� In the worst�case� Step � of the algorithm involves testing� for each of the
n elements of L� whether an nd�d ������matrix can be made row convex� where
n is the number of variables and d is the size of the domains	 By Theorem ��
each test can be done in O�d�n� time� hence the algorithm is O�d�n��	
For the proof of correctness� it is su�cient to note that at each stage of the

algorithm� there may be more than one j � L that satis
es the condition �Step
��� but that any j that satis
es the condition for position m in the constructed
ordering will still satisfy the condition for all positions m� � m �recall that we
are constructing the ordering in reverse�	 That is� choosing a j and removing
j from L only makes the problem smaller and simpler� introducing new choices
but never blocking any previously available choices of j	 �

Once �and if� a backtrack�free ordering has been found using the Find�
Order procedure� a solution can be found using the Instantiate procedure	
Recall that a precondition of the algorithms is that the network be path consis�
tent	 Ensuring path consistency once again dominates the overall computation
since the complexity of the path consistency procedure is O�d�n�� ����	 So� we
can 
nd a solution for the class of constraint networks characterized by Theo�
rem � in O�d�n�� time	
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� Non�Binary Row�Convex Constraints

In this section we generalize the results for binary row�convex constraint net�
works to non�binary row�convex networks	 To do this� we generalize row�
convexity from binary relations to r�ary relations� namely relations having r

variables	 We 
rst need the following notational conventions and de
nitions
regarding general networks	

De�nition � �relations�
Given a set of variables X � fx�� � � � � xrg� each associated with a domain of dis�
crete values D�� � � � � Dr � respectively� a relation �or� alternatively� a constraint�
R over X is any subset

R � D� � 	 	 	 �Dr �

Given a relation R on a set X of variables and a subset Y � X� we denote by
Y � y� or by y� an instantiation of the variables in Y � called a subtuple and by
�Y�y�R� the selection of those tuples in R that agree with Y � y� We denote
by �Y �R� the projection of the relation R on the subset Y � that is� a tuple over
Y appears in �Y �R� if and only if it can be extended to a full tuple in R� The
operator � is the join operator of the relational database model�

De�nition � �constraint networks�
A constraint network R over a set X of variables fx�� � � � � xng� is a set of
relations denoted R�� � � � � Rt� each de�ned on a subset of variables S�� � � � � St
respectively� A relation in R speci�ed over Y � X is also denoted RY � The
set of subsets S � fS�� � � � � Stg on which constraints are speci�ed is called the
scheme of R� The network R represents its set of all consistent solutions over
X� denoted ��R� or ��X�� namely�

��R� � fx � �X�� � � � � Xn� j �Si � S��Si
�x� � Rig�

For non�binary networks the notion of consistency of a subtuple can be de�

ned in several ways	 We will use the following de
nition	 A subtuple over Y
is consistent if it satis
es all of the constraints de
ned over Y or any subsets of
Y 	

De�nition � �consistency of a subtuple�
A subtuple Y � y is consistent relative to R i	 for all Si � S� such that Si � Y �

�Si
�y� � Ri�

where a projection of a tuple y over a set of variables S is the subset of y
restricted to values assigned to S� ��Y � is the set of all consistent instantiations
of the variables in Y � One can view ��Y � as the set of all solutions of the
subnetwork de�ned by Y �
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Informally� an r�ary relation is row convex if� in the multidimensionalmatrix
representing the constraint� each vector that is parallel to one of the axes has
the consecutive ��s property	

De�nition �� An r�ary relation R on a set X of variables fx�� � � � � xrg is row
convex if for any subset of r � � variables Z � X and for every instantiation�
z� of the variables in Z� the binary relation ��X�Z	��z�R�� is row convex�

For binary constraint networks� we identi
ed an e�cient procedure for de�
termining whether a domain ordering exists such that the relations are all row
convex �see Section ��	 It is an open question whether such an e�cient proce�
dure exists for r�ary constraint networks	 However� there are practical examples�
such as bi�valued relations and implicational constraints� where we can assert
that the r�ary relations of a network are all row convex	

Example 
� Any bi�valued relation is row convex since the operations
of selection �� and projection �� generate a binary bi�valued relation which is
always row convex	 In particular� the set of models of any propositional formula
is row convex	 Therefore� formulas given in conjunctive normal form �CNF��
namely as conjunctions of clauses� are row convex constraint networks	

In the following theorem we generalize the results obtained earlier for binary
row�convex constraint networks �Theorem �� to r�ary row�convex networks	

Theorem � Let R be a network of relations whose arity is r or less that is
strongly ��r � �� � � consistent� If there exists an ordering of the domains
D�� � � � � Dn of R such that the relations are row convex� the network is globally
consistent�

Proof� The proof is a simple extension of the ideas in the proof for the binary
case	 Assume that the network is strongly ��r � �� � � consistent	 We show
that for any i � ��r � �� � �� the network is also i�consistent	 Let X� �
�X�� X�� � � � � Xi��� be a consistent instantiation of i� � variables and let xi be
an arbitrary new variable	 We show that there exists a value Xi of xi such
that the extended tuple �X�� X�� � � � � Xi��� Xi� is consistent	 This means that
any relation Rt � R involving variable xi and a subset of the variables from
fx�� � � � � xi��g of size r�� or less should be satis
ed by such an extension	 Since
all of the constraints are row convex� all of the values of xi that agree with the
values in X�� and that are allowed by Rt� can be listed as a row convex vector
relative to the order of xi�s domain	
We claim that any two such constraints have a common consistent value in

xi	 Consider two arbitrary constraints� R� and R�	 Let Y� � X� and Y� � X� be
all of the values on which R� and R� are de
ned respectively	 Since a constraint�s
arity is at most r� Y��Y� is a consistent subset of values of size at most ��r���	
Since the problem is strongly ��r� �� � � consistent there must exist a value of
xi that satis
es both R� and R�	
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We know� therefore� that any two row vectors corresponding to xi of any
two relevant constraints� intersect	 Since they are all row convex they all have a
common value in their intersection	 Thus xi can be consistently extended and
the claim is proved	 �

We may be tempted to translate the above condition into a solution proce�
dure of r�ary row convex network as follows	 First enforce strong ��r � �� � �
consistency� and then solve the problem in a backtrack�free manner	 This� how�
ever will not work in general� since while enforcing ��r � �� � � consistency we
may need to record constraints whose arity is greater then r	 Consequently� the
resulting network may not be globally consistent	
We now show that the above theorem can be rephrased in terms of a local

consistency condition between constraints that resembles path consistency	

De�nition �� �relational arc and path�consistency�
Let R be a network of relations over a set of variables X� and let RS and RT

be two relations in R� where S� T � X� A network is relationally arc�consistent
if for any RS � R and for every variable x � S�

��S � fxg� � �S�fxg�RS�� ���

We say that RS and RT are relationally path�consistent relative to variable x i	
any consistent instantiation of the variables in �S � T �� fxg� has an extension
to x that satis�es RS and RT simultaneously� that is� i	

��A� � �A�RS � RT �� ���

where A � �S � T � � fxg� �Recall that ��A� is the set of all consistent instan�
tiations of the variables in A�� A pair of relations RS and RT is relationally
path�consistent i	 it is relationally path�consistent relative to each variable in
S 
 T � A network of relations is relationally path�consistent i	 every pair of
relations is relationally path�consistent�

Note that the de
nition of relational path�consistency subsumes relational
arc�consistency if in ��� we do not assume distinct pairs of relations	 For sim�
plicity� unless otherwise stated� we will assume that relational path�consistency
includes relational arc�consistency	

Example �� Consider the following CNF formula�

� � f�f 
 x 
 y 
 �z� � �f 
 z� � �x 
 y 
 f�g�

Formula� can be viewed as a constraint network where each clause corresponds
to a constraint de
ned by its models	 It is easy to see that the clauses are always
relationally arc�consistent since their projection on any subset of propositional
symbols results in the universal relations allowing everything	 The 
rst two
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clauses are also relationally path�consistent relative to f since any truth assign�
ment to x� y� z can be extended by assigning �true� to f � thereby satisfying both
clauses	 Similarly� the two clauses are relationally path�consistent relative to z
since any consistent assignment to x� y� f has to satisfy the third clause of � and
therefore by assigning z � true the 
rst two clauses are satis
ed	 The reader is
invited to check that the entire set of clauses is relationally path�consistent	

Example �� Consider the following linear constraints over the non�negative
integers�

��� f � x� y � z � �� ��� f � z � ��

The constraints are not relationally arc�consistent	 For instance� f � �� z �
� satis
es ���� and thus is in ��f� z�� but it cannot be extended to ���	 In
order to make constraint ��� relationally arc�consistent we have to add all of
its projections having the form� for any subset T � ff� x� y� zg

P
xi�T

xi �
�	 To make ��� relationally arc�consistent we have to add only z � �	 Once
these sets of linear inequalities are added to ��� and ��� we have relational arc�
consistency	 Still we do not have relational path�consistency	 For instance� the
instantiation f � �� x � �� y � � satis
es all of the constraints� but it cannot be
consistently extended to a value satisfying ��� and ���	 If we add the constraint
��� �f � x � y � �� constraints ��� and ��� will become relationally path�
consistent relative to z since constraint ��� will disallow the partial assignments
f � �� x � �� y � �	 Constraints ��� and ��� are also relationally path�consistent
relative to f since any consistent instantiations of x� y� and z will have to satisfy
the two constraints x � y � z � � and �z � �� that were added to make the
network relationally arc�consistent	 Once these constraints are obeyed there is
an extension to f � � that satis
es ��� and ��� simultaneously	

We now show that relational path�consistency is su�cient to ensure global
consistency when the relations are row convex	

Theorem � Let R be a network of relations that is relationally path�consistent�
If there exists an ordering of the domains D�� � � � � Dn ofR such that the relations
are row convex� the network is globally consistent�

Proof� Assume that the network is relationally path�consistent	 Let X� �
�X�� X�� � � � � Xi��� be a consistent instantiation of i � � variables	 We show
that for any xi� there exist a value Xi of xi such that the extended tuple
�X�� X�� � � � � Xi��� Xi� is consistent	 This means that any given applicable re�
lation RY � R that is de
ned over fx�� � � � � xig should be satis
ed	 Since all of
the constraints are relationally arc�consistent� they must be consistent with X�	
Since they are also row convex� all of the values of xi that are allowed by RY

and that are restricted to the values in X� can be listed as a row convex vector	
Relational path�consistency implies that any two rows corresponding to any

two constraints� must have a common value in their intersection	 Since they are
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all row convex they all have a common value in their intersection and the claim
is proved	 �

Clearly� when all constraints are binary� relational path�consistency is iden�
tical to path consistency in binary networks	 As demonstrated above� relational
path�consistency can be enforced on a network that does not possess this level
of consistency	 Below we present algorithm Relational�PC� a brute�force al�
gorithm for enforcing relational arc� and path�consistency on a network R	

Relational�PC�R�

�	 repeat
�	 Q�R
�	 for every two relations RS� RT � Q �not necessarily distinct�

and for every x � S 
 T
�	 do A� �S � T �� fxg
�	 RA � RA 
 �A�RS � RT �
�	 until Q � R

The algorithm takes any pair of relations that may or may not be relationally
path�consistent and assures their relational path�consistency by enforcing a re�
lation �i	e	� a constraint� on a subset of their variables	 We call the operation
in Step � of the algorithm extended composition� since it generalizes the compo�
sition operation de
ned on binary relations	 The Relational�PC algorithm
computes the closure of R with respect to extended composition	 If an empty
relation is generated the network is inconsistent	 We can conclude that�

Theorem 
 For any network R� whose closure under extended composition is
row convex� Relational�PC will either decide that the network is inconsistent
or else compute an equivalent globally�consistent network of R�

Proof� Follows immediately from Theorem � and from the fact that algorithm
Relational�PC generates a relationally path�consistent network	 �	

While enforcing variable�based path�consistency can be done in polynomial
time� it is unlikely that relational path�consistency can be achieved tractably�
since� as we will shortly see� it solves the NP�complete problem of proposi�
tional satis
ability	 A more direct argument suggesting an increase in time and
space complexity is the fact that the algorithm may need to record relations
of arbitrary arity	 Note that relational arc�consistency can be enforced in time
polynomial in the arity of its constraints	

Example �� Implicational constraints ���� can be shown to characterize
certain types of scene constraints in vision	 These constraints are de
ned as
follows� A binary constraint Rij� between variables xi and xj � is implicational
if any value of xi either implies the value of xj or it does not constrain it at all�
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and vice�versa	 A higher order relation is implicational if all of the binary con�
straints generated from all projections on all pairs are implicational	 It is easy
to see that implicational constraints are necessarily row convex	 They general�
ize the notions of monotone and functional binary constraints	 Consequently�
whenever implicational constraints are closed under extended composition their
consistency can be determined by Relational�PC	 Note that the consistency
of implicational constraints can be decided in polynomial time ����	

Example ��� Consider a set of r�ary linear inequalities� where the domains
of the variables are 
nite subsets of integers and the r�ary constraints over a
subset of variables x�� � � � � xr are of the form a�x� � 	 	 	� arxr � c� where the
ai�s are rational constants	 This is a general integer linear program	 The r�ary
inequalities de
ne corresponding r�ary relations that are row convex	 There�
fore� whenever the extended composition of any two of these r�ary relations
can be guaranteed to be row�convex their consistency can be determined by
Relational�PC	

Example ��� Bi�valued relations are row convex and closed under com�
position	 Consequently� from Theorem �� bi�valued networks can be solved by
Relational�PC	 In particular� the satis
ability of propositional CNFs can be
decided by Relational�PC	 In this case� the composition operation �Step �
of the Relational�PC algorithm� takes the form of pair�wise resolution	 For
more details see ����	

As with variable�based local consistency� we can improve the e�ciency of
enforcing relational consistency by enforcing only directional consistency	 Below
we present algorithmDirectional�Relational�PC� which enforces relational
path�consistency on a network R� relative to a given ordering d of the variables
x�� � � � � xn	 We will call the network generated by the algorithm the directional
closure of R	

Directional�Relational�PC�R� d� n�

�	 for i� n downto �
�	 do for every pair of relations RS and RT �not necessarily distinct�

involving variable xi and any variable xj� j � i in the ordering d
�	 do A� �S � T �� fxig
�	 RA � RA 
 �A�RS � RT �
�	 if RA is the empty relation
�	 then exit and return the empty network

While the algorithm is incomplete for deciding consistency in general� it is
complete for row convex relations that are closed under extended composi�
tion	 In addition� like similar algorithms for imposing directional consistency�
Directional�Relational�PC�s worst�case complexity can be bounded as a
function of the topological structure of the problem via parameters like the
induced width of the graph ���	 We elaborate on these issues below	
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Theorem � 	Completeness� For any network R� whose directional closure
is not empty and row convex� the Directional�Relational�PC algorithm
computes an equivalent network of R that is backtrack�free along the ordering d�

Proof� Clearly the directional closure of R is equivalent to R	 What needs
to be shown is that the directional closure relative to d� is backtrack�free along
the ordering d	 We will prove this by induction on d	 For the 
rst variable x�
�remember that x� is processed last� there must be a value in the domain of x�
that is allowed since otherwise the domain will be empty and the directional clo�
sure will be empty	 Assume now that we have already consistently instantiated
the 
rst i � � variables as X� � �X�� � � � � Xi���	 Lets xi be the next variable	
We claim that �i� every applicable constraint in the directional closure� de
ned
on xi and a subset of fx�� � � � � xi��g must be consistent with X�� and �ii� any
two such constraints must have a common extension in xi	 Otherwise� if �i� is
violated� there is an applicable constraint R� � RS�fxig� that is not consistent
with X�	 However� the operation in Step � of the algorithm in its ith iteration�
generates� R�

S � a constraint applicable to X� that is not satis
ed by X�� in con�
tradiction to the assumed consistency of X�	 If �ii� is violated� then there are
two relations RS�fxig and RT�fxig that are individually consistent with X

� but
have no common extension in xi	 However the extended composition over these
two relation� when xi was processed generated a relation over S �T that should
have been consulted when testing X ��s consistency and should have disallowed
X�� again� yielding a contradiction	
Now that we have established that all pairs of applicable constraints are both

consistent with X� and since each pair of applicable relations has a common
extension to xi� the row�convexity property guarantees that they all have a
common extension to xi	 �	

It is important to note that for any ordering d� the complexity of the algo�
rithm can be bounded as a function of its induced width W��d�	 A network
of constraints R can be associated with a constraint graph� where each node
is a variable and two variables that appear in one constraint are connected	
A general graph can be embedded in a clique�tree namely� in a graph whose
cliques form a tree�structure	 The induced width� W�� of such an embedding
is its maximal clique size and the induced width W� of an arbitrary graph is
the minimum induced width over all of its tree�embeddings	 It is well known
that 
nding the minimal width embedding is NP�hard ���� nevertheless every
ordering of the variables d� yields a simple to compute upper bound denoted
W ��d� �see ����	 The complexity of Directional�Relational�PC along d

can be bounded as a function of W��d� of its constraint graph	 Speci
cally�
it was shown that the time complexity and size of the network generated by
Directional�Relational�PC along d is O�exp�W��d� � ���	
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� Conclusions

Constraint networks have been shown to have many applications	 However� two
common reasoning tasks� �i� 
nd a solution that satis
es the constraints and
�ii� 
nd the corresponding minimal network are known to be NP�complete in
the general case	 In this paper� we have identi
ed su�cient conditions based
on the row�convexity of the constraints and the level of local consistency that
guarantee that a solution can be found in a backtrack�free manner	 For binary
networks� we showed that we can e�ciently test whether a network satis
es the
conditions� and when it does� we gave e�cient algorithms for solving both tasks
�i� and �ii�	 We argued� by examining applications of constraint networks in
the literature� that we have identi
ed an interesting and useful special class of
constraint networks	
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