
A Theoretical Evaluation of Selected Backtracking AlgorithmsGrzegorz Kondrak� and Peter van BeekDepartment of Computing ScienceUniversity of AlbertaEdmonton, Alberta, Canada T6G 2H1vanbeek@cs.ualberta.caAbstractIn recent years, many new backtrackingalgorithms for solving constraint satisfac-tion problems have been proposed. Thealgorithms are usually evaluated by em-pirical testing. This method, however, hasits limitations. Our paper adopts a dif-ferent, purely theoretical approach, whichis based on characterizations of the setsof search tree nodes visited by the back-tracking algorithms. A notion of incon-sistency between instantiations and vari-ables is introduced, and is shown to bea useful tool for characterizing such well-known concepts as backtrack, backjump,and domain annihilation. The charac-terizations enable us to: (a) prove thecorrectness of the algorithms, and (b)partially order the algorithms accordingto two standard performance measures:the number of nodes visited, and thenumber of consistency checks performed.Among other results, we prove, for the �rsttime, the correctness of Backjumping andCon
ict-Directed Backjumping, and showthat Forward Checking never visits morenodes than Backjumping. Our approachleads us also to propose a modi�cation totwo hybrid backtracking algorithms, Back-marking with Backjumping (BMJ) andBackmarking with Con
ict-Directed Back-jumping (BM-CBJ), so that they alwaysperform fewer consistency checks than theoriginal algorithms.1 IntroductionConstraint-based reasoning is a simple, yet power-ful paradigm in which many interesting problems canbe formulated. It has received much attention re-cently, and numerous methods for dealing with con-�Currently with MPR Teltech Ltd, Burnaby, BC,Canada

straint networks have been developed. The applica-tions include graph coloring, scene labelling, naturallanguage parsing, and temporal reasoning.The basic notion of constraint-based reasoning isa constraint network, which is de�ned by a set ofvariables, a domain of values for each variable, and aset of constraints between the variables. To solve aconstraint network is to �nd an assignment of valuesto each variable so that all constraints are satis�ed.Backtracking search is one of the methods of solv-ing constraint networks. The generic backtracking al-gorithm was �rst described more than a century ago,and since then has been rediscovered many times [1].In recent years, many new backtracking algorithmshave been proposed. The basic ones include Back-marking [3], Backjumping [4], Forward Checking [5],and Con
ict-Directed Backjumping [10]. Several hy-brid algorithms, which combine two or more basicalgorithms, have also been developed [10].There is no simple answer to the question whichbacktracking algorithm is the best one. First, the per-formance of backtracking algorithms depends heav-ily on the problem being solved. Often, it is possi-ble to construct examples of constraint networks onwhich an apparently very e�cient algorithm is out-performed by the most basic chronological backtrack-ing. Second, it is not obvious what measure shouldbe employed for comparison. Run time is not a veryreliable measure because it depends on hardware andimplementation, and so cannot be easily reproduced.Besides, the cost of performing consistency checks(checks that verify that the current instantiations oftwo variables satisfy the constraints) cannot be de-termined in abstraction from a concrete problem. Abetter measure of the e�ciency of a backtracking al-gorithm seems to be the number of consistency checksperformed by the algorithm, although it does not ac-count for the overhead costs of maintaining complexdata structures. Another standard measure is thenumber of nodes in the backtrack tree generated byan algorithm.The need for ordering algorithms according totheir e�ciency has been recognized before. Nudel [9]ordered backtracking algorithms according to their



average-case performance. Prosser [10] performed aseries of experiments to evaluate nine backtrackingalgorithms against each other. However, such an ap-proach is open to the criticism that the test problemsare not representative of the problems that arise inpractice. Even a theoretical average-case analysis ispossible only if one makes simplifying assumptionsabout the distribution of problems. Prosser com-mented on his results:It is naive to say that one of the algorithmsis the `champion'. The algorithms havebeen tested on one problem, the ZEBRA.It might be the case that the relative per-formance of these algorithms will changewhen applied to a di�erent problem.When Prosser's results are examined, it is easy tonotice that in some cases one algorithm performedbetter than another in all tested instances. Couldthis mean that one algorithm is always better thananother? Such a hypothesis can never be veri�edsolely by experimentation; the relationship has to beproven theoretically. In this paper we show that someof these cases indicate a general rule, whereas otherdo not. Moreover, we present a partial ordering ofseveral backtracking algorithms which is valid for allinstances of all constraint satisfaction problems.Our approach is purely theoretical. We analyzeseveral backtracking algorithms with the purpose ofdiscovering general rules that determine their be-haviour. A notion of inconsistency between instan-tiations and variables is introduced, and is shown tobe a useful tool for characterizing such well-knownconcepts as backtrack, backjump, and domain anni-hilation. Using the new notion, we formulate the nec-essary and su�cient conditions for a search tree nodeto be visited by each backtracking algorithm. Thesecharacterizations enable us to construct partial or-ders (or hierarchies) of the algorithms according totwo standard performance measures: the number ofvisited nodes, and the number of performed consis-tency checks.The orderings are surprisingly regular and containsome non-intuitive results. For instance, it turns outthat the set of nodes visited by Forward Checking isalways a subset of the set of nodes visited by Back-jumping. This fact has never been reported beforealthough the two algorithms have been often empiri-cally compared. Also, the orderings con�rm and clar-ify the experimental results published by other re-searchers. The characterizing conditions imply sim-ple and elegant correctness proofs of the characterizedalgorithms. Two of these algorithms, Backjumping(BJ) and Con
ict-Directed Backjumping (CBJ) havenot been proven before.The orderings proved also to be a stimulus for de-veloping more e�cient backtracking algorithms. Theidea of combining Backjumping and Backmarkinginto a new hybrid algorithm was �rst put forward

by Nadel [8]. Such algorithm, called BMJ, was pre-sented by Prosser [10]. BMJ, however, does not re-tain all the power of both base algorithms in termsof consistency checks. Prosser observed that on someinstances of the zebra problem BMJ performs moreconsistency checks than BM. In the conclusion of hispaper he posed the following question:It was predicted that the BM hybrids,BMJ and BM-CBJ, could perform worsethan BM because the advantages of back-marking may be lost when jumping back.Experimental evidence supported this.Therefore, a challenge remains. How canthe backmarking behaviour be protected?In this work we answer the question by modifyingthe two BM hybrids, Backmarking with Backjump-ing (BMJ), and Backmarking with Con
ict-DirectedBackjumping (BM-CBJ), so that they always performfewer consistency checks than both corresponding ba-sic algorithms.Apart from presenting speci�c results for particu-lar backtracking algorithms, our goal is also to pro-pose a general methodology: techniques and de�ni-tions that can be used for characterizing any back-tracking algorithm. This kind of theoretical analy-sis may be performed for any new backtracking al-gorithm in order to see if it belongs in the existinghierarchy.2 BackgroundWe begin with some concepts of the constraint satis-faction paradigm, then give a brief description of fourbasic backtracking algorithms, and �nally present anexample that shows the algorithms at work.De�nition 1 A binary constraint network [7] con-sists of a set of n variables fx1; : : : ; xng; their respec-tive value domains, D1; : : : ; Dn; and a set of binaryconstraints. A binary constraint or relation, Rij, be-tween variables xi and xj, is any subset of the productof their domains1 (that is, Rij � Di �Dj). We de-note an assignment of values to a subset of variablesby a tuple of ordered pairs, where each ordered pair(x; a) assigns the value a to the variable x. A tupleis consistent if it satis�es all constraints on the vari-ables contained in the tuple. A (full) solution of thenetwork is a consistent tuple containing all variables.A partial solution of the network is a consistent tuplecontaining some variables. For simplicity, we usuallyabbreviate ((x1; a1); : : : ; (xi; ai))) to (a1; : : : ; ai).The next de�nition introduces a notion of consis-tency between a tuple of instantiations and a set ofvariables. This notion is fundamental to all resultspresented in this work.1Throughout the paper we assume that all domain val-ues satisfy the corresponding unary constraints.



De�nition 2 A tuple ((xi1 ; ai1); : : : ; (xiu; aiu)) isconsistent with a set of variables fxj1 ; : : : ; xjvg ifthere exist instantiations aj1 ; : : : ; ajv of the vari-ables xj1 ; : : : ; xjv respectively, such that the tu-ple ((xi1 ; ai1); : : : ; (xiu; aiu); (xj1; aj1); : : : ; (xjv; ajv))is consistent. A tuple is consistent with a variableif it is consistent with a one-element set containingthis variable.The idea of a backtracking algorithm is to extendpartial solutions. At every stage of backtrackingsearch, there is some current partial solution whichthe algorithm attempts to extend to a full solution.Each variable occurring in the current partial solu-tion is said to be instantiated to some value from itsdomain. In this work we assume the static order ofinstantiation in which variables are added to the cur-rent partial solution according to the prede�ned or-der: x1; : : : ; xn. It is convenient to divide all variablesinto three sets: past variables (already instantiated),current variable (now being instantiated), and futurevariables (not yet instantiated). A dead-end occurswhen all values of the current variable are rejectedby a backtracking algorithm when it tries to extenda partial solution. In such a case, some instantiatedvariables become uninstantiated; that is, they are re-moved from the current partial solution. This pro-cess is called backtracking. If only the most recentlyinstantiated variable becomes uninstantiated then itis chronological backtracking. Otherwise, it is back-jumping. A backtracking algorithm terminates whenall possible assignments have been tested or a certainnumber of solutions have been found.A backtrack search may be seen as a search treetraversal. In this approach we identify tuples (assign-ments of values to variables) with nodes: the emptytuple � is the root of the tree, the �rst level nodesare 1-tuples (representing an assignment of a value tovariable x1), the second level nodes are 2-tuples, andso on. The levels closer to the root are called lowerlevels, and the levels farther from the root are calledhigher levels. Similarly, the variables correspondingto these levels are called lower and higher. The nodesthat represent consistent tuples are called consistentnodes. The nodes that represent inconsistent tuplesare called inconsistent nodes. We say that a back-tracking algorithm visits a node if at some stage of thealgorithm's execution the instantiation of the currentvariable and the instantiations of the past variablesform the tuple identi�ed with this node. The nodesvisited by a backtracking algorithm form a subset ofthe set of all nodes belonging to the search tree. Wecall this subset, together with the connecting edges,the backtrack tree generated by a backtracking algo-rithm. Backtracking itself can be seen as retreating tolower levels of the search tree. Whenever some vari-ables become uninstantiated and xh is set as the newcurrent variable, we say that the algorithmbacktracksto level h. We consider two backtracking algorithms

to be equivalent if on every constraint network theygenerate the same backtrack tree and perform thesame consistency checks.Chronological Backtracking (BT) [1] is the genericbacktracking algorithm. The consistency checks be-tween the instantiation of the current variable andthe instantiations of the past variables are performedaccording to the original order of instantiations. If aconsistency check fails, the next domain value of thecurrent variable is tried. If there are no more domainvalues left, BT backtracks to the most recently instan-tiated past variable. If all checks succeed, the branchis extended by instantiating the next variable to eachof the values in its domain. A solution is recordedevery time when all consistency checks succeed afterthe last variable has been instantiated.Backjumping (BJ) [4] is similar to BT, except thatit behaves more e�ciently when no consistent instan-tiation can be found for the current variable (at adead-end). Instead of chronologically backtrackingto the preceding variable, BJ backjumps to the high-est past variable that was checked against the currentvariable.Con
ict-Directed Backjumping (CBJ) [10] has amore sophisticated backjumping behaviour than BJ.Every variable has its own con
ict set that containsthe past variables which failed consistency checkswith its current instantiation. Every time a consis-tency check fails between the instantiation ai of thecurrent variable and some past instantiation ah, thevariable xh is added to the con
ict set of xi. Whenthere are no more values to be tried for the currentvariable xi, CBJ backtracks to the highest variablexh in the con
ict set of xi. At the same time, thecon
ict set of xi is absorbed by the con
ict set of xh,so that no information about con
icts is lost.In contrast with the above backward checking al-gorithms, Forward Checking (FC) [5] performs con-sistency checks forward, that is, between the currentvariable and the future variables. After the currentvariable has been instantiated, the domains of thefuture variables are �ltered in such a way that allvalues inconsistent with the current instantiation areremoved. If none of the future domains is annihilated,the next variable becomes instantiated to each of thevalues in its �ltered domain. Otherwise the e�ectsof forward checking are undone, and the next valueis tried. If there are no more values to be tried forthe current variable, FC backtracks chronologicallyto the most recently instantiated variable. A solu-tion is recorded every time the last variable becomesinstantiated.Example 1. The n-queens problem is how toplace n queens on a n � n chess board so that notwo queens attack each other. Our representationof this problem identi�es board columns with vari-ables, and rows with domain values. Figure 1 shows afragment of the backtrack tree generated by Chrono-



25314

3

2

4

5

6

25

253

25362531

1

2

3

4

5

6

1 2 3 4 5 6

1

1

1

1 1 1 1

1

1

2 2 2

2

2

3

3 3

3

3

Q

Q

Q 2

1

25364Figure 1: A fragment of the BT backtrack tree for the 6-queens problem.logical Backtracking (BT) for the 6-queens problem.White dots denote consistent nodes. Black dots de-note inconsistent nodes. For simplicity, when refer-ring to nodes we omit commas and parentheses. Theboard in the upper right corner depicts the placingof queens corresponding to node 253 in the backtracktree. Capital Q's on the board represent queens whichhave already been placed on the board. The shadedsquares represent positions that must be excluded dueto the already placed queens. The numbers inside thesquares indicate the queen responsible for the exclu-sion; 1,2,3 correspond to the �rst, second, and thirdqueen respectively.The dark-shaded part of the tree contains twonodes that are skipped by Backjumping (BJ). Thealgorithm detects a dead-end at variable x6 when ittries to expand node 25364. It then backjumps to thehighest variable in con
ict with x6, in this case x4.The backjump is represented by a dashed arrow. Wecould say that BJ discovers that the tuple (2,5,3,6),which is composed of instantiations in con
ict withx6, is inconsistent with variable x6. To see this, no-tice that if we place a queen in column 4 row 6, everysquare in column 6 is attacked by the queens placedin the �rst four columns. Indeed, there is no point intrying out the remaining values for x5 because thatvariable plays no role in the detected inconsistency.Nodes 25365 and 25366 may be safely skipped.

The light-shaded part of the tree contains nodesthat are skipped by Con
ict-Directed Backjumping(CBJ). The algorithm reaches a dead-end when ex-panding node 25314. At this moment the con
ictset of x6 is f1; 2; 3; 5g because the instantiations ofthese four variables prevent a consistent instantiationof variable x6. To see this, notice that after the fourthand the �fth queen are placed, column 6 of the chessboard will contain numbers 1; 2; 3, and 5. CBJ back-tracks to the highest variable in the con
ict set, whichis x5. No nodes are skipped at this point. The con-
ict set of x6 is absorbed by the con
ict set of x5,which now becomes f1; 2; 3g. After trying the two re-maining values for x5, CBJ backjumps to x3 skippingthe rest of the subtree. The backjump is representedby a dashed arrow. In terms of consistency, we couldsay that the algorithm discovered that tuple (2,5,3)is inconsistent with the set of variables fx5; x6g. Alook at the board in Figure 1 convinces us that indeedsuch a placement of queens cannot be extended to afull solution. It is impossible to �ll columns 5 and 6simply because the two available squares are in thesame row. Note that (2,5,3) is consistent with bothx5 and x6 taken separately.Forward Checking (FC), in contrast with thebackward checking algorithms, visits only consistentnodes, although not necessarily all of them. In ourexample, nodes 253, 2531, 2536 and 25314 are visited,but not 25364. The board in Figure 1 can be inter-



preted in the context of this algorithmas follows. Theshaded numbered squares correspond to the values �l-tered from domains of variables by forward checking.The squares that are left empty as the search pro-gresses correspond to the nodes visited by FC. Dueto the �ltering scheme, FC detects an inconsistencybetween the current partial solution and some futurevariable without ever reaching that variable, but it isunable to discover an inconsistency with a set of vari-ables. In our example, the algorithm �nds that both25314 and 2536 are inconsistent with x6. However, itdoes not discover that node 253 is inconsistent withfx5; x6g. That is why node 2536 is visited by FC eventhough it is skipped by the backward checking CBJ.3 Characterizations and TheirImplicationsWe are now ready to present some new results. First,we give two lemmas that de�ne backjumps in termsof inconsistency between variables and instantiations.Then, we present theorems about the backtrack treesof the four basic backtracking algorithms: BT, BJ,CBJ, and FC. The theorems enable us to (a) par-tially order the algorithms according to the numberof visited nodes, and (b) prove the correctness of thealgorithms. It is assumed that all constraints are bi-nary, the order of instantiations is �xed and static,and the order of performing consistency checks withinthe node follows the order of instantiations. We dealwith the more general problem of �nding all solu-tions; at the end of the section we brie
y commenton the validity of our results when only one solutionis sought. The proofs that are not included here canbe found in [6].Lemma 1 If BJ backtracks to variable xh from adead-end at variable xi then (a1; : : : ; ah) is inconsis-tent with xi.Proof After no consistent instantiation can be foundfor xi, BJ chooses as the point of backtrack the vari-able xh which is the highest variable in con
ict withxi. Let Ci denote the tuple composed of instanti-ations of all variables that are in con
ict with xi.Clearly, Ci is inconsistent with xi. Since ah is the in-stantiation of the highest variable in Ci, Ci is a sub-tuple of (a1; : : : ; ah). Therefore, (a1; : : : ; ah) is alsoinconsistent with xi. 2Lemma 2 If CBJ backtracks from variable xi tovariable xh then Ci is inconsistent with S, where Ciis the tuple composed of instantiations of the vari-ables in the con
ict set of xi, and S is a subset offxi; : : : ; xng containing xi.The following theorem speci�es the su�cient con-ditions for a node to be visited by the four basic back-tracking algorithms.

Theorem 1a) BT visits a node if its parent is consistent.b) BJ visits a node if its parent is consistent withall variables.c) CBJ visits a node if its parent is consistent withall sets of variables.d) FC visits a node if it is consistent and its parentis consistent with all variables.Proofb) Suppose that node (a1; : : : ; ai�1) is consistentwith all variables, and its child p = (a1; : : : ; ai)is not visited by BJ. Take the highest j suchthat node p0 = (a1; : : : ; aj) is visited by BJ.Node p0 is a proper ancestor of node p and isconsistent with all variables. When BJ is atnode p0, all consistency checks between aj andprevious instantiations succeed. The only rea-son for not instantiating the next variable xj+1to aj+1 can be a backjump from some vari-able xh to some variable xg, where g � j andh � j + 2. But if this is the case, Lemma 1implies that node (a1; : : : ; ag) is inconsistentwith xh, which contradicts the initial assump-tion that node (a1; : : : ; ai�1) is consistent withall variables.c) Similar to the proof of b), except that we useLemma 2.Proofs of the remaining cases are straightforward.2 The next theorem speci�es the necessary condi-tions for a node to be visited by the four backtrackingalgorithms.Theorem 2a) BT visits a node only if its parent is consistent.b) BJ visits a node only if its parent is consistent.c) CBJ visits a node only if its parent is consistent.d) FC visits a node only if it is consistent and itsparent is consistent with all variables.Figure 2 summarizes the results presented so far. Thearrows represent implications formulated in Theo-rems 1 and 2. Note the di�erence between the chrono-logically backtracking algorithmsBT and FC, and thebackjumping algorithms BJ and CBJ. The former arecompletely characterized as the necessary and su�-cient conditions coincide; for every node we can de-cide whether it is visited by the algorithm withoutgenerating the whole backtrack tree. The latter areonly partially characterized; there is a set of nodesfor which we are unable to tell a priori if they be-long to the algorithm's search tree or not. It is anopen question if better characterizing conditions forthe backjumping algorithms can be found.The following corollary has been formulated bysimply following the arrows in Figure 2.



parent(p) consistent

with all variables

p consistent and

FC visits p CBJ visits p

BJ visits p

BT visits p

parent(p) consistent

with all variables

parent(p) consistent

parent(p) consistent

with all sets of variables

Figure 2: Conditions graph.Corollary 1a) BT visits all nodes that BJ visits.b) BT visits all nodes that CBJ visits.c) BT visits all nodes that FC visits.d) BJ visits all nodes that FC visits.The relationship between BJ and FC is the mostinteresting. It has never been reported before, al-though the two algorithms have been often empiri-cally compared.A relationship between BJ and CBJ, although notimplied by the theorems, can also be proven using thetwo lemmas from Section 3.Theorem 3 BJ visits all nodes that CBJ visits.Corollary 1 together with Theorem 3 enable us toconstruct a partial order of backtracking algorithmswith respect to the number of visited nodes. BT gen-erates the largest backtrack tree, which contains allnodes visited by the other algorithms. BJ visits morenodes than CBJ or FC. The order would be linear ifthere was a relationship between FC and CBJ, butthis is not the case. Figure 1 provides a counterex-ample: some nodes visited by CBJ are not visited byFC, and vice versa.The correctness of the four basic algorithms is alsoan almost immediate consequence of the theorems.A backtracking algorithm is correct if it is sound(�nds only solutions), complete (�nds all solutions),and terminates. That all the algorithms terminate isclear, so only soundness and completeness have to beshown.Corollary 2a) BT is correct.b) BJ is correct.c) CBJ is correct.

d) FC is correct.Proofb) Soundness. A solution is claimed by BJ if allconsistency checks succeed at an n-level node.This means that (a1; : : : ; an) is visited and 8i <n : ai is consistent with an. Theorem 2 im-plies that its parent (a1; : : : ; an�1) is consistent.Therefore, (a1; : : : ; an) is consistent.Completeness. Suppose that some n-level node(a1; : : : ; an) in the search tree is consistent.Then, its parent (a1; : : : ; an�1) is consistentas well, and it is also consistent with xn.Therefore, (a1; : : : ; an�1) is consistent with allvariables. From Theorem 1 we know that(a1; : : : ; an) is visited by BJ. Since all consis-tency checks between an and previous instan-tiations must succeed, a solution is claimed byBJ.Proofs of the remaining cases are similar. 2To the best of our knowledge, this is the �rst timethat BJ and CBJ have been proven to be correct2.Naturally, our approach can be extended to otherbacktracking algorithms.All the above results were originally proven withthe assumption that the search is not interrupted un-til all possibilities are exhausted. This is not gener-ally true if only a �xed number of solutions is sought.However, if we restrict our attention to only those ofthe search tree nodes that precede (in the preorder2Backjumping was �rst presented without formal proofand the suggested future work was to prove that it is avalid algorithm [11]. Recently, a reviewer of [10] com-mented: \I am not convinced that BJ or CBJ are sound![Gaschnig's original algorithm] was never proved to becorrect" [11].



traversal) the last node visited by a backtracking al-gorithm, the theorems are still valid. Therefore, ourresults hold also for the \one solution" versions of thebacktracking algorithms, with only slightly modi�edproofs.4 Hybrid Algorithms withBackmarkingIn this section we brie
y discuss Backmarking [3] andits two hybrids. We propose a modi�cation to thehybrids, and then include these algorithms in our hi-erarchies.Backmarking (BM) imposes a marking scheme onthe Chronological Backtracking algorithm in order toeliminate some redundant consistency checks. Thescheme is based on the following two observations [8]:(a) If at the most recent node where a given instantia-tion was checked the instantiation failed against somepast instantiation that has not yet changed, then itwill fail against it again. Therefore, all consistencychecks involving it may be avoided. (b) If, at the mostrecent node where a given instantiation was checked,the instantiation succeeded against all past instanti-ations that have not yet changed, then it will succeedagainst them again. Therefore we need to check theinstantiation only against the more recent past in-stantiations which have changed.The marking scheme is implemented using two ar-rays: mbl (minimum backup level) of size n, and mcl(maximum checking level) of size n � m. The en-try mbl[i] contains the number of the lowest variablewhose instantiation has changed since the variable xiwas last instantiated with a new value. The entrymcl[i][j] contains the number of the highest variablethat was checked against the j-th value in the domainof the variable xi.Nadel [8] suggested combining BM and BJ into anew hybrid algorithm. Prosser presented such algo-rithm, called Backmarking and Backjumping (BMJ),in [10]. BMJ, however, does not retain all the powerof each base algorithm in terms of consistency checks.Prosser observed that on some instances of the zebraproblem BMJ performs more consistency checks thanBM. BMJ is also worse than BM on the benchmark8-queens problem.A careful analysis of the algorithm leads us to theconclusion that BMJ is sometimes worse than BM be-cause the mbl array, which was originally designed fora chronologically backtracking algorithm, is no longeradequate for a backjumping algorithm. Since BM al-ways tests all values of the current variable for con-sistency, a single entry for all values is su�cient. InBMJ, however, it often happens that only some val-ues of the current instantiation are tested, and theother values are skipped by a backjump. A separateentry for each value is therefore necessary to preserveall collected consistency information.We propose a modi�ed BackMarkJump (BMJ2),

BJ = BMJ = BMJ2

CBJ = BM-CBJ = BM-CBJ2
FC

FC-CBJ

BT = BM

Figure 3: The hierarchy with respect to the numberof visited nodes.which solves the problem by making mbl a two-dimensional rather than a one-dimensional array.The new mbl array is of size n � m, where n is thenumber of variables, and m is the size of the largestdomain. This is a reasonable space requirement be-cause BMJ already uses one n�m array; each mcl en-try has now a corresponding mbl entry. The mbl[i][j]entry stores the number of the lowest variable whoseinstantiation has changed since the variable xi waslast instantiated with the j{th value. The entry isset to i every time the current instantiation (xi; tj) isbeing tested for consistency with past instantiations.When the algorithm backtracks, the entries are up-dated in a similar way as in BMJ. Thanks to the moree�cient backmarking scheme BMJ2 is always betterthan BMJ. Moreover, since BMJ2 does not lose in-formation about consistency checks in the way BMJdoes, it is always better than BM.An analogous modi�cation of Backmarking andCon
ict-Directed Backjumping (BM-CBJ), which isanother hybrid proposed by Prosser, produces BM-CBJ2: mbl should be made a 2-dimensional array,and maintained in the same way as in BMJ2.5 HierarchiesWe now present two hierarchies, which include thefour basic backtracking algorithms described in Sec-tion 2, and the Backmarking hybrids discussed in Sec-tion 4.The hierarchy with respect to the number of visitednodes is presented in Figure 3. Two algorithms areconnected by a link if the set of nodes visited by one ofthem is always a subset of the set of nodes visited bythe other. Naturally, the relation is transitive. Therelationships derived in Section 3 form the core of thehierarchy. Note that imposing a backmarking schemeon an algorithm does not change the set of nodes thatare visited. Thus, for example, BM generates exactlythe same backtrack tree as BT.Figure 4 shows the hierarchy of algorithms with



BJ

CBJBMJ

BM-CBJBMJ2

BM-CBJ2

BM

BT

FC

FC-CBJFigure 4: The hierarchy with respect to the numberof consistency checks.respect to the number of consistency checks. Two al-gorithms are connected by a link if one of them alwaysperforms no more consistency checks than the other.Since BT, BJ, and CBJ perform the same numberof consistency checks at any given node, they are inthe same order as in the nodes hierarchy. Imposing amarking scheme on a backtracking algorithm resultsin a reduction of the number of consistency checksperformed. The �gure contains also one ForwardChecking hybrid: Forward Checking and Con
ict-Directed Backjumping (FC-CBJ) [10], which has notbeen discussed here. For a treatment of FC-CBJ see[6].Besides the relationships that are shown explicitly,it is important to note the ones that are implicit in thepicture. In order to disprove a relationship betweenA and B, one needs to �nd at least one constraintsatisfaction problem on which A is better than B,and one on which B is better than A. For example,BM performs fewer consistency checks than FC onthe regular 8-queens problem, but more on the con-fused 8-queens problem [8]. Examples of constraintnetworks were found that disprove all relationshipsthat are not included in the hierarchies. Thus, how-ever counterintuitive it may seem, FC-CBJ may visitmore nodes than CBJ, and perform more consistencychecks than BT.6 ConclusionsWe presented a theoretical analysis of several back-tracking algorithms. Such well-known concepts asbacktrack, backjump, and domain annihilation weredescribed in terms of inconsistency between instan-tiations and variables. This enabled us to formulategeneral theorems that fully or partially describe setsof nodes visited by the algorithms. The theoremswere then used to prove the correctness of the al-gorithms and to construct hierarchies of algorithmswith respect to the number of visited nodes and withrespect to the number of consistency checks. The

gaps in the resulting hierarchy prompted us to mod-ify existing hybrid algorithms so that they are su-perior to the corresponding basic algorithms in ev-ery case. One of the modi�ed algorithms is alwaysbetter (in terms of consistency checks) than all sixbackward checking algorithms described by Prosserin [10]. In the future the hierarchies could be ex-tended by applying our approach to other backtrack-ing algorithms, such as Dechter's graph-based back-jumping algorithm [2] and Nadel's backtracking algo-rithm with full arc-consistency lookahead [8].References[1] J. R. Bitner and E. Reingold. Backtrack pro-gramming techniques. Comm. ACM, 18(11):651{656, 1975.[2] R. Dechter. Enhancement schemes for constraintprocessing: Backjumping, learning, and cutsetdecomposition.Arti�cial Intelligence, 41(3):273{312, 1990.[3] J. Gaschnig. A general backtracking algorithmthat eliminates most redundant tests. In Proc. ofthe Int'l Joint Conf. on Arti�cial Intelligence,page 457, 1977.[4] J. Gaschnig. Experimental case studies of back-track vs. waltz-type vs. new algorithms for satis-�cing assignment problems. In Proc. of the 2ndBiennial Conf. of the Canadian Soc. for Comput.Studies of Intell., pages 268{277, 1978.[5] R. M. Haralick and G. L. Elliot. Increasing treesearch e�ciency for constraint satisfaction prob-lems. Arti�cial Intelligence, 14:263{314, 1980.[6] G. Kondrak. A theoretical evaluation of se-lected backtracking algorithms. Technical Re-port TR94{10, University of Alberta, June 1994.[7] U. Montanari. Networks of constraints: Fun-damental properties and applications to pic-ture processing. Information Sciences, 7:95{132,1974.[8] B. Nadel. Constraint satisfaction algorithms.Comput. Intell., 5:188{224, 1989.[9] B. Nudel. Consistent labeling problems and theiralgorithms: Expected complexities and theorybased heuristics. Arti�cial Intelligence, 21:135{178, 1983.[10] P. Prosser. Hybrid algorithms for the constraintsatisfaction problem. Comput. Intell., 9(3):268{299, 1993.[11] P. Prosser. Personal communication, 1994.


