A Theoretical Evaluation of Selected Backtracking Algorithms

Grzegorz Kondrak*and Peter van Beek
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1

vanbeek@cs.ualberta.ca

Abstract

In recent years, many new backtracking
algorithms for solving constraint satisfac-
tion problems have been proposed. The
algorithms are usually evaluated by em-
pirical testing. This method, however, has
its limitations. Our paper adopts a dif-
ferent, purely theoretical approach, which
is based on characterizations of the sets
of search tree nodes visited by the back-
tracking algorithms. A notion of incon-
sistency between instantiations and vari-
ables 1s introduced, and is shown to be
a useful tool for characterizing such well-
known concepts as backtrack, backjump,
and domain annihilation. The charac-
terizations enable us to: (a) prove the
correctness of the algorithms, and (b)
partially order the algorithms according
to two standard performance measures:
the number of nodes wvisited, and the
number of consistency checks performed.
Among other results, we prove, for the first
time, the correctness of Backjumping and
Conflict-Directed Backjumping, and show
that Forward Checking never visits more
nodes than Backjumping. Our approach
leads us also to propose a modification to
two hybrid backtracking algorithms, Back-
marking with Backjumping (BMJ) and
Backmarking with Conflict-Directed Back-
jumping (BM-CBJ), so that they always
perform fewer consistency checks than the
original algorithms.

1 Introduction

Constraint-based reasoning is a simple, yet power-
ful paradigm in which many interesting problems can
be formulated. It has received much attention re-
cently, and numerous methods for dealing with con-

*Currently with MPR Teltech Ltd, Burnaby, BC,
Canada

straint networks have been developed. The applica-
tions include graph coloring, scene labelling, natural
language parsing, and temporal reasoning.

The basic notion of constraint-based reasoning is
a constraint network, which 1s defined by a set of
variables, a domain of values for each variable, and a
set of constraints between the variables. To solve a
constraint network is to find an assignment of values
to each variable so that all constraints are satisfied.

Backtracking search is one of the methods of solv-
ing constraint networks. The generic backtracking al-
gorithm was first described more than a century ago,
and since then has been rediscovered many times [1].
In recent years, many new backtracking algorithms
have been proposed. The basic ones include Back-
marking [3], Backjumping [4], Forward Checking [5],
and Conflict-Directed Backjumping [10]. Several hy-
brid algorithms, which combine two or more basic
algorithms, have also been developed [10].

There is no simple answer to the question which
backtracking algorithm is the best one. First, the per-
formance of backtracking algorithms depends heav-
ily on the problem being solved. Often, it is possi-
ble to construct examples of constraint networks on
which an apparently very efficient algorithm is out-
performed by the most basic chronological backtrack-
ing. Second, it is not obvious what measure should
be employed for comparison. Run time is not a very
reliable measure because it depends on hardware and
implementation, and so cannot be easily reproduced.
Besides, the cost of performing consistency checks
(checks that verify that the current instantiations of
two variables satisfy the constraints) cannot be de-
termined in abstraction from a concrete problem. A
better measure of the efficiency of a backtracking al-
gorithm seems to be the number of consistency checks
performed by the algorithm, although it does not ac-
count for the overhead costs of maintaining complex
data structures. Another standard measure is the
number of nodes in the backtrack tree generated by
an algorithm.

The need for ordering algorithms according to
their efficiency has been recognized before. Nudel [9]
ordered backtracking algorithms according to their

average-case performance. Prosser [10] performed a
series of experiments to evaluate nine backtracking
algorithms against each other. However, such an ap-
proach is open to the criticism that the test problems
are not representative of the problems that arise in
practice. Even a theoretical average-case analysis is
possible only if one makes simplifying assumptions
about the distribution of problems. Prosser com-
mented on his results:

It 1s naive to say that one of the algorithms
is the ‘champion’. The algorithms have
been tested on one problem, the ZEBRA.
It might be the case that the relative per-
formance of these algorithms will change
when applied to a different problem.

When Prosser’s results are examined, it is easy to
notice that in some cases one algorithm performed
better than another in all tested instances. Could
this mean that one algorithm is always better than
another? Such a hypothesis can never be verified
solely by experimentation; the relationship has to be
proven theoretically. In this paper we show that some
of these cases indicate a general rule, whereas other
do not. Moreover, we present a partial ordering of
several backtracking algorithms which is valid for all
instances of all constraint satisfaction problems.

Our approach is purely theoretical. We analyze
several backtracking algorithms with the purpose of
discovering general rules that determine their be-
haviour. A notion of inconsistency between instan-
tiations and variables is introduced, and is shown to
be a useful tool for characterizing such well-known
concepts as backtrack, backjump, and domain anni-
hilation. Using the new notion, we formulate the nec-
essary and sufficient conditions for a search tree node
to be visited by each backtracking algorithm. These
characterizations enable us to construct partial or-
ders (or hierarchies) of the algorithms according to
two standard performance measures: the number of
visited nodes, and the number of performed consis-
tency checks.

The orderings are surprisingly regular and contain
some non-intuitive results. For instance, it turns out
that the set of nodes visited by Forward Checking is
always a subset of the set of nodes visited by Back-
jumping. This fact has never been reported before
although the two algorithms have been often empiri-
cally compared. Also, the orderings confirm and clar-
ify the experimental results published by other re-
searchers. The characterizing conditions imply sim-
ple and elegant correctness proofs of the characterized
algorithms. Two of these algorithms, Backjumping
(BJ) and Conflict-Directed Backjumping (CBJ) have
not been proven before.

The orderings proved also to be a stimulus for de-
veloping more efficient backtracking algorithms. The
idea of combining Backjumping and Backmarking
into a new hybrid algorithm was first put forward

by Nadel [8]. Such algorithm, called BMJ, was pre-
sented by Prosser [10]. BMJ, however, does not re-
tain all the power of both base algorithms in terms
of consistency checks. Prosser observed that on some
instances of the zebra problem BMJ performs more
consistency checks than BM. In the conclusion of his
paper he posed the following question:

It was predicted that the BM hybrids,
BMJ and BM-CBJ, could perform worse
than BM because the advantages of back-
marking may be lost when jumping back.
Experimental evidence supported this.
Therefore, a challenge remains. How can
the backmarking behaviour be protected?

In this work we answer the question by modifying
the two BM hybrids, Backmarking with Backjump-
ing (BMJ), and Backmarking with Conflict-Directed
Backjumping (BM-CBJ), so that they always perform
fewer consistency checks than both corresponding ba-
sic algorithms.

Apart from presenting specific results for particu-
lar backtracking algorithms, our goal is also to pro-
pose a general methodology: techniques and defini-
tions that can be used for characterizing any back-
tracking algorithm. This kind of theoretical analy-
sis may be performed for any new backtracking al-
gorithm in order to see if it belongs in the existing
hierarchy.

2 Background

We begin with some concepts of the constraint satis-
faction paradigm, then give a brief description of four
basic backtracking algorithms, and finally present an
example that shows the algorithms at work.

Definition 1 A binary constraint network [7] con-
sists of a sel of n variables {x1,... ¢, }; their respec-
twe value domains, Dy, ..., D,; and a set of binary
constraints. A binary constraint or relation, R;;, be-
tween variables x; and x;, 1s any subset of the product
of their domains' (that is, R;j C D; x D;). We de-
note an assignment of values to a subset of variables
by a tuple of ordered pairs, where each ordered pair
(z,a) assigns the value a to the variable x. A tuple
1s consistent if it satisfies all constraints on the vari-
ables contained in the tuple. A (full) solution of the
network 1s a consistent tuple containing all variables.
A partial solution of the network is a consistent tuple
containing some variables. For simplicity, we usually
abbreviate ((x1,a1),..., (%, a;))) to (ar,...,a;).

The next definition introduces a notion of consis-
tency between a tuple of instantiations and a set of
variables. This notion 1s fundamental to all results
presented in this work.

!Throughout the paper we assume that all domain val-
ues satisfy the corresponding unary constraints.

Definition 2 A tuple ((w4,,a5,),...,(x5,,a;,)) s
consistent with a set of variables {z;,...,z; } f
there exist nstantiations aj,,...,a;, of the vari-
ables xj,,...,x;, respectively, such that the tu-
ple ((xil’ail)’ R (xiu’ aiu)’ ($j1’ a]&)’ AR (l‘]’v, ajv))
1s consistent. A tuple is consistent with a variable
of 1t is consistent with a one-clement set containing
this variable.

The idea of a backtracking algorithm is to extend
partial solutions. At every stage of backtracking
search, there is some current partial solution which
the algorithm attempts to extend to a full solution.
Each variable occurring in the current partial solu-
tion is said to be wnstantiated to some value from its
domain. In this work we assume the static order of
wnstantiation in which variables are added to the cur-
rent partial solution according to the predefined or-
der: @1,...,x,. It 1s convenient to divide all variables
into three sets: past variables (already instantiated),
current variable (now being instantiated), and future
variables (not yet instantiated). A dead-end occurs
when all values of the current variable are rejected
by a backtracking algorithm when it tries to extend
a partial solution. In such a case, some instantiated
variables become uninstantiated; that is, they are re-
moved from the current partial solution. This pro-
cess 1s called backtracking. If only the most recently
instantiated variable becomes uninstantiated then it
i1s chronological backtracking. Otherwise, 1t is back-
jumping. A backtracking algorithm terminates when
all possible assignments have been tested or a certain
number of solutions have been found.

A backtrack search may be seen as a search tree
traversal. In this approach we identify tuples (assign-
ments of values to variables) with nodes: the empty
tuple ¢ is the root of the tree, the first level nodes
are 1-tuples (representing an assignment of a value to
variable 1), the second level nodes are 2-tuples, and
so on. The levels closer to the root are called lower
levels, and the levels farther from the root are called
higher levels. Similarly, the variables corresponding
to these levels are called lower and higher. The nodes
that represent consistent tuples are called consistent
nodes. The nodes that represent inconsistent tuples
are called inconsistent nodes. We say that a back-
tracking algorithm wisits a node if at some stage of the
algorithm’s execution the instantiation of the current
variable and the instantiations of the past variables
form the tuple identified with this node. The nodes
visited by a backtracking algorithm form a subset of
the set of all nodes belonging to the search tree. We
call this subset, together with the connecting edges,
the backtrack tree generated by a backtracking algo-
rithm. Backtracking itself can be seen as retreating to
lower levels of the search tree. Whenever some vari-
ables become uninstantiated and zj is set as the new
current variable, we say that the algorithm backtracks
to level h. We consider two backtracking algorithms

to be equivalent if on every constraint network they
generate the same backtrack tree and perform the
same consistency checks.

Chronological Backtracking (BT) [1] is the generic
backtracking algorithm. The consistency checks be-
tween the instantiation of the current variable and
the instantiations of the past variables are performed
according to the original order of instantiations. If a
consistency check fails, the next domain value of the
current variable is tried. If there are no more domain
values left, BT backtracks to the most recently instan-
tiated past variable. If all checks succeed, the branch
is extended by instantiating the next variable to each
of the values in its domain. A solution is recorded
every time when all consistency checks succeed after
the last variable has been instantiated.

Backjumping (BJ) [4] is similar to BT, except that
it behaves more efficiently when no consistent instan-
tiation can be found for the current variable (at a
dead-end). Instead of chronologically backtracking
to the preceding variable, BJ backjumps to the high-
est past variable that was checked against the current
variable.

Conflict-Directed Backjumping (CBJ) [10] has a
more sophisticated backjumping behaviour than BJ.
Every variable has its own conflict set that contains
the past variables which failed consistency checks
with its current instantiation. Every time a consis-
tency check fails between the instantiation a; of the
current variable and some past instantiation ap, the
variable xj is added to the conflict set of x;. When
there are no more values to be tried for the current
variable z;, CBJ backtracks to the highest variable
xp 1n the conflict set of x;. At the same time, the
conflict set of x; is absorbed by the conflict set of xj,,
so that no information about conflicts is lost.

In contrast with the above backward checking al-
gorithms, Forward Checking (FC) [5] performs con-
sistency checks forward, that is, between the current
variable and the future variables. After the current
variable has been instantiated, the domains of the
future variables are filtered in such a way that all
values inconsistent with the current instantiation are
removed. If none of the future domains is annihilated,
the next variable becomes instantiated to each of the
values in its filtered domain. Otherwise the effects
of forward checking are undone, and the next value
is tried. If there are no more values to be tried for
the current variable, FC backtracks chronologically
to the most recently instantiated variable. A solu-
tion is recorded every time the last variable becomes
instantiated.

Example 1. The n-queens problem is how to
place n queens on a n x n chess board so that no
two queens attack each other. Our representation
of this problem identifies board columns with vari-
ables, and rows with domain values. Figure 1 shows a
fragment of the backtrack tree generated by Chrono-

1 1 3| 2
2| Qf 1] 1| 1 1
3 Q| 2 3
4 1| 3
5 Q| 2] 1| 2| 2
6 2

1 2 3 45 6

Figure 1: A fragment of the BT backtrack tree for the 6-queens problem.

logical Backtracking (BT) for the 6-queens problem.
White dots denote consistent nodes. Black dots de-
note inconsistent nodes. For simplicity, when refer-
ring to nodes we omit commas and parentheses. The
board in the upper right corner depicts the placing
of queens corresponding to node 253 in the backtrack
tree. Capital (Q’s on the board represent queens which
have already been placed on the board. The shaded
squares represent positions that must be excluded due
to the already placed queens. The numbers inside the
squares indicate the queen responsible for the exclu-
sion; 1,2.3 correspond to the first, second, and third
queen respectively.

The dark-shaded part of the tree contains two
nodes that are skipped by Backjumping (BJ). The
algorithm detects a dead-end at variable z¢ when it
tries to expand node 25364. It then backjumps to the
highest variable in conflict with zs, in this case z4.
The backjump is represented by a dashed arrow. We
could say that BJ discovers that the tuple (2,5,3,6),
which 1s composed of instantiations in conflict with
xg, 18 inconsistent with variable 4. To see this, no-
tice that if we place a queen in column 4 row 6, every
square in column 6 is attacked by the queens placed
in the first four columns. Indeed, there is no point in
trying out the remaining values for z5 because that
variable plays no role in the detected inconsistency.

Nodes 25365 and 25366 may be safely skipped.

The light-shaded part of the tree contains nodes
that are skipped by Conflict-Directed Backjumping
(CBJ). The algorithm reaches a dead-end when ex-
panding node 25314. At this moment the conflict
set of @g is {1,2,3,5} because the instantiations of
these four variables prevent a consistent instantiation
of variable xg. To see this, notice that after the fourth
and the fifth queen are placed, column 6 of the chess
board will contain numbers 1,2,3, and 5. CBJ back-
tracks to the highest variable in the conflict set, which
is #5. No nodes are skipped at this point. The con-
flict set of xg i1s absorbed by the conflict set of x5,
which now becomes {1,2,3}. After trying the two re-
maining values for z5, CBJ backjumps to z3 skipping
the rest of the subtree. The backjump is represented
by a dashed arrow. In terms of consistency, we could
say that the algorithm discovered that tuple (2,5,3)
is inconsistent with the set of variables {5, zs}. A
look at the board in Figure 1 convinces us that indeed
such a placement of queens cannot be extended to a
full solution. It is impossible to fill columns 5 and 6
simply because the two available squares are in the
same row. Note that (2,5,3) is consistent with both
x5 and xg taken separately.

Forward Checking (FC), in contrast with the
backward checking algorithms, visits only consistent
nodes, although not necessarily all of them. In our
example, nodes 253, 2531, 2536 and 25314 are visited,
but not 25364. The board in Figure 1 can be inter-

preted in the context of this algorithm as follows. The
shaded numbered squares correspond to the values fil-
tered from domains of variables by forward checking.
The squares that are left empty as the search pro-
gresses correspond to the nodes visited by FC. Due
to the filtering scheme, FC detects an inconsistency
between the current partial solution and some future
variable without ever reaching that variable, but 1t is
unable to discover an inconsistency with a set of vari-
ables. In our example, the algorithm finds that both
25314 and 2536 are inconsistent with zg. However, it
does not discover that node 253 is inconsistent with
{5, 26}. That is why node 2536 is visited by FC even
though it is skipped by the backward checking CBJ.

3 Characterizations and Their
Implications

We are now ready to present some new results. First,
we give two lemmas that define backjumps in terms
of inconsistency between variables and instantiations.
Then, we present theorems about the backtrack trees
of the four basic backtracking algorithms: BT, BJ,
CBJ, and FC. The theorems enable us to (a) par-
tially order the algorithms according to the number
of visited nodes, and (b) prove the correctness of the
algorithms. It is assumed that all constraints are bi-
nary, the order of instantiations is fixed and static,
and the order of performing consistency checks within
the node follows the order of instantiations. We deal
with the more general problem of finding all solu-
tions; at the end of the section we briefly comment
on the validity of our results when only one solution
is sought. The proofs that are not included here can

be found in [6].

Lemma 1 If BJ backiracks to variable xp from a
dead-end at variable x; then (ay, ..., ap) is inconsis-
tent with z;.

Proof After no consistent instantiation can be found
for z;, BJ chooses as the point of backtrack the vari-
able z; which is the highest variable in conflict with
z;. Let C; denote the tuple composed of instanti-
ations of all variables that are in conflict with z;.
Clearly, C; 1s inconsistent with x;. Since ay is the in-
stantiation of the highest variable in C;, C; 1s a sub-
tuple of (a1,...,ap). Therefore, (ay,...,ap) is also
inconsistent with z;. O

Lemma 2 If CBJ backtracks from wvariable z; to
variable xp then C; 1s inconsistent with S, where C;
1s the tuple composed of instantiations of the vari-
ables in the conflict set of x;, and S s a subset of
{@;,...,xn} conlaining x;.

The following theorem specifies the sufficient con-
ditions for a node to be visited by the four basic back-
tracking algorithms.

Theorem 1

a) BT wvisits a node if its parent is consistent.

b) BJ visits a node if its parent is consistent with
all variables.

¢) CBJ visits a node if its parent is consistent with
all sets of variables.

d) FC visits a node if it is consistent and its parent
15 consistent with all variables.

Proof

b) Suppose that node (ai,...,a;—1) is consistent
with all variables, and its child p = (a1, ..., ;)
is not visited by BJ. Take the highest j such
that node p’ = (a1,...,q;) is visited by BIJ.
Node p' is a proper ancestor of node p and is
consistent with all variables. When BJ is at
node p/, all consistency checks between a; and
previous instantiations succeed. The only rea-
son for not instantiating the next variable z;4
to aj11 can be a backjump from some vari-
able x; to some variable z,, where ¢ < j and
h > 7+ 2. But if this is the case, Lemma 1
implies that node (ai,...,a,) is inconsistent
with xj, which contradicts the initial assump-
tion that node (ay,...,a;—1) is consistent with
all variables.

¢) Similar to the proof of b), except that we use
Lemma 2.

Proofs of the remaining cases are straightforward.
O

The next theorem specifies the necessary condi-
tions for a node to be visited by the four backtracking
algorithms.

Theorem 2

a) BT wisits a node only if its parent is consistent.
b) BJ wisits a node only if its parent is consistent.
¢) CBJ visits a node only if its parent is consistent.

d) FC visits a node only if it is consistent and its
parent 1s consistent with all variables.

Figure 2 summarizes the results presented so far. The
arrows represent implications formulated in Theo-
rems 1 and 2. Note the difference between the chrono-
logically backtracking algorithms BT and FC| and the
backjumping algorithms BJ and CBJ. The former are
completely characterized as the necessary and suffi-
cient conditions coincide; for every node we can de-
cide whether it i1s visited by the algorithm without
generating the whole backtrack tree. The latter are
only partially characterized; there is a set of nodes
for which we are unable to tell a priori if they be-
long to the algorithm’s search tree or not. It is an
open question if better characterizing conditions for
the backjumping algorithms can be found.

The following corollary has been formulated by
simply following the arrows in Figure 2.

VA

p consistent and
parent(p) consistent
with all variables

parent(p) consistent
with all sets of variables

=

\

parent(p) consistent
with al variables

> o
‘ parent(p) consistent ‘ j _

— > (cBavisitsp

i

Figure 2: Conditions graph.

Corollary 1

a) BT wisits all nodes that BJ visits.
b) BT wvisits all nodes that CBJ visits.
¢) BT wvisits all nodes that FC visits.
d) BJ wvisits all nodes that FC visits.

The relationship between BJ and FC is the most
interesting. It has never been reported before, al-
though the two algorithms have been often empiri-
cally compared.

A relationship between BJ and CBJ, although not
implied by the theorems, can also be proven using the
two lemmas from Section 3.

Theorem 3 BJ visits all nodes that CBJ visits.

Corollary 1 together with Theorem 3 enable us to
construct a partial order of backtracking algorithms
with respect to the number of visited nodes. BT gen-
erates the largest backtrack tree, which contains all
nodes visited by the other algorithms. BJ visits more
nodes than CBJ or FC. The order would be linear if
there was a relationship between FC and CBJ, but
this 1s not the case. Figure 1 provides a counterex-
ample: some nodes visited by CBJ are not visited by
FC, and vice versa.

The correctness of the four basic algorithms 1s also
an almost 1immediate consequence of the theorems.
A backtracking algorithm is correct if it is sound
(finds only solutions), complete (finds all solutions),
and terminates. That all the algorithms terminate is
clear, so only soundness and completeness have to be
shown.

Corollary 2
a) BT is correct.

b) BJ is correct.
¢) CBJ is correct.

d) FCis correct.
Proof

b) Soundness. A solution is claimed by BJ if all
consistency checks succeed at an n-level node.
This means that (ay, ..., ay) is visited and Vi <
n . a; 1s consistent with a,. Theorem 2 1m-
plies that its parent (ay, ..., an_1) is consistent.
Therefore, (ay,...,a,) is consistent.

Completeness. Suppose that some n-level node
(a1,...,an) in the search tree is consistent.
Then, its parent (aj,...,an—1) is consistent
as well, and it is also consistent with x,.
Therefore, (ai,...,an—1) is consistent with all
variables. From Theorem 1 we know that
(a1,...,ayn) is visited by BJ. Since all consis-
tency checks between a, and previous instan-
tiations must succeed, a solution is claimed by

BJ.

Proofs of the remaining cases are similar. O

To the best of our knowledge, this is the first time
that BJ and CBJ have been proven to be correct?.
Naturally, our approach can be extended to other
backtracking algorithms.

All the above results were originally proven with
the assumption that the search is not interrupted un-
til all possibilities are exhausted. This is not gener-
ally true if only a fixed number of solutions is sought.
However, if we restrict our attention to only those of
the search tree nodes that precede (in the preorder

?Backjumping was first presented without formal proof
and the suggested future work was to prove that it is a
valid algorithm [11]. Recently, a reviewer of [10] com-
mented: “I am not convinced that BJ or CBJ are sound!
[Gaschnig’s original algorithm] was never proved to be
correct” [11].

traversal) the last node visited by a backtracking al-
gorithm, the theorems are still valid. Therefore, our
results hold also for the “one solution” versions of the
backtracking algorithms, with only slightly modified
proofs.

4 Hybrid Algorithms with
Backmarking

In this section we briefly discuss Backmarking [3] and
its two hybrids. We propose a modification to the
hybrids, and then include these algorithms in our hi-
erarchies.

Backmarking (BM) imposes a marking scheme on
the Chronological Backtracking algorithm in order to
eliminate some redundant consistency checks. The
scheme is based on the following two observations [8]:
(a) If at the most recent node where a given instantia-
tion was checked the instantiation failed against some
past instantiation that has not yet changed, then it
will fail against it again. Therefore, all consistency
checks involving it may be avoided. (b) If, at the most
recent node where a given instantiation was checked,
the instantiation succeeded against all past instanti-
ations that have not yet changed, then it will succeed
against them again. Therefore we need to check the
instantiation only against the more recent past in-
stantiations which have changed.

The marking scheme is implemented using two ar-
rays: mbl (minimum backup level) of size n, and mel
(maximum checking level) of size n x m. The en-
try mbl[7] contains the number of the lowest variable
whose instantiation has changed since the variable z;
was last instantiated with a new value. The entry
mel[i][5] contains the number of the highest variable
that was checked against the j-th value in the domain
of the variable ;.

Nadel [8] suggested combining BM and BJ into a
new hybrid algorithm. Prosser presented such algo-
rithm, called Backmarking and Backjumping (BMJ),
in [10]. BMJ, however, does not retain all the power
of each base algorithm in terms of consistency checks.
Prosser observed that on some instances of the zebra
problem BMJ performs more consistency checks than
BM. BMJ is also worse than BM on the benchmark
8-queens problem.

A careful analysis of the algorithm leads us to the
conclusion that BMJ is sometimes worse than BM be-
cause the mblarray, which was originally designed for
a chronologically backtracking algorithm, is no longer
adequate for a backjumping algorithm. Since BM al-
ways tests all values of the current variable for con-
sistency, a single entry for all values is sufficient. In
BMJ, however, it often happens that only some val-
ues of the current instantiation are tested, and the
other values are skipped by a backjump. A separate
entry for each value is therefore necessary to preserve
all collected consistency information.

We propose a modified BackMarkJump (BMJ2),

BT =BM

BJ=BMJ=BMJ2

7

FC CBJ=BM-CBJ = BM-CBJ2

FC-CBJ

Figure 3: The hierarchy with respect to the number
of visited nodes.

which solves the problem by making mbl a two-
dimensional rather than a one-dimensional array.
The new mbl array is of size n x m, where n is the
number of variables; and m 1s the size of the largest
domain. This is a reasonable space requirement be-
cause BMJ already uses one n xm array; each mel en-
try has now a corresponding mbl entry. The mbl[i][/]
entry stores the number of the lowest variable whose
instantiation has changed since the variable z; was
last instantiated with the j—th value. The entry is
set to i every time the current instantiation (z;,1;) is
being tested for consistency with past instantiations.
When the algorithm backtracks, the entries are up-
dated in a similar way as in BMJ. Thanks to the more
efficient backmarking scheme BMJ2 is always better
than BMJ. Moreover, since BMJ2 does not lose in-
formation about consistency checks in the way BMJ
does, it is always better than BM.

An analogous modification of Backmarking and
Conflict-Directed Backjumping (BM-CBJ), which is
another hybrid proposed by Prosser, produces BM-
CBJ2: mbl should be made a 2-dimensional array,
and maintained in the same way as in BMJ2.

5 Hierarchies

We now present two hierarchies, which include the
four basic backtracking algorithms described in Sec-
tion 2, and the Backmarking hybrids discussed in Sec-
tion 4.

The hierarchy with respect to the number of visited
nodes is presented in Figure 3. Two algorithms are
connected by a link if the set of nodes visited by one of
them is always a subset of the set of nodes visited by
the other. Naturally, the relation is transitive. The
relationships derived in Section 3 form the core of the
hierarchy. Note that imposing a backmarking scheme
on an algorithm does not change the set of nodes that
are visited. Thus, for example, BM generates exactly
the same backtrack tree as BT.

Figure 4 shows the hierarchy of algorithms with

\
N T
/

BM BM
\ / FC-CBJ
BMJ2 BM-CBJ
BM-CBJ2

Figure 4: The hierarchy with respect to the number
of consistency checks.

respect to the number of consistency checks. Two al-
gorithms are connected by a link if one of them always
performs no more consistency checks than the other.
Since BT, BJ, and CBJ perform the same number
of consistency checks at any given node, they are in
the same order as in the nodes hierarchy. Imposing a
marking scheme on a backtracking algorithm results
in a reduction of the number of consistency checks
performed. The figure contains also one Forward
Checking hybrid: Forward Checking and Conflict-
Directed Backjumping (FC-CBJ) [10], which has not
been discussed here. For a treatment of FC-CBJ see
[6].

Besides the relationships that are shown explicitly,
it is important to note the ones that are implicit in the
picture. In order to disprove a relationship between
A and B, one needs to find at least one constraint
satisfaction problem on which A is better than B,
and one on which B is better than A. For example,
BM performs fewer consistency checks than FC on
the regular 8-queens problem, but more on the con-
fused 8-queens problem [8]. Examples of constraint
networks were found that disprove all relationships
that are not included in the hierarchies. Thus, how-
ever counterintuitive it may seem, FC-CBJ may visit
more nodes than CBJ, and perform more consistency
checks than BT.

6 Conclusions

We presented a theoretical analysis of several back-
tracking algorithms. Such well-known concepts as
backtrack, backjump, and domain annihilation were
described in terms of inconsistency between instan-
tiations and variables. This enabled us to formulate
general theorems that fully or partially describe sets
of nodes visited by the algorithms. The theorems
were then used to prove the correctness of the al-
gorithms and to construct hierarchies of algorithms
with respect to the number of visited nodes and with
respect to the number of consistency checks. The

gaps in the resulting hierarchy prompted us to mod-
ify existing hybrid algorithms so that they are su-
perior to the corresponding basic algorithms in ev-
ery case. One of the modified algorithms is always
better (in terms of consistency checks) than all six
backward checking algorithms described by Prosser
n [10]. In the future the hierarchies could be ex-
tended by applying our approach to other backtrack-
ing algorithms, such as Dechter’s graph-based back-
jumping algorithm [2] and Nadel’s backtracking algo-
rithm with full arc-consistency lookahead [8].

References

[1] J. R. Bitner and E. Reingold. Backtrack pro-
gramming techniques. Comm. ACM, 18(11):
651-656, 1975.

[2] R. Dechter. Enhancement schemes for constraint
processing: Backjumping, learning, and cutset
decomposition. Artificial Intelligence, 41(3):273~
312, 1990.

[3] J. Gaschnig. A general backtracking algorithm
that eliminates most redundant tests. In Proc. of
the Int’l Joint Conf. on Artificial Intelligence,
page 457, 1977.

[4] J. Gaschnig. Experimental case studies of back-
track vs. waltz-type vs. new algorithms for satis-
ficing assignment problems. In Proc. of the 2nd
Biennial Conf. of the Canadian Soc. for Comput.
Studies of Intell., pages 268-277, 1978.

[5] R. M. Haralick and G. L. Elliot. Increasing tree
search efficiency for constraint satisfaction prob-

lems. Artificial Intelligence, 14:263-314, 1980.

[6] G. Kondrak. A theoretical evaluation of se-
lected backtracking algorithms. Technical Re-
port TR94-10, University of Alberta, June 1994.

[7] U. Montanari. Networks of constraints: Fun-
damental properties and applications to pic-
ture processing. Information Sciences, 7:95-132,

1974.

[8] B. Nadel. Constraint satisfaction algorithms.
Comput. Intell., 5:188-224, 1989.

[9] B. Nudel. Consistent labeling problems and their
algorithms: Expected complexities and theory
based heuristics. Artificial Intelligence, 21:135—
178, 1983.

[10] P. Prosser. Hybrid algorithms for the constraint
satisfaction problem. Comput. Intell.; 9(3):268-
299, 1993.

[11] P. Prosser. Personal communication, 1994.

