
On the Desirability of Acyclic Database Schemes

C A T R I E L BEERI

The Hebrew Umversity of Jerusalem, Jerusalem, Israel

R O N A L D F A G I N

IBM Research Laboratory, San Jose, Cahfornia

D A V I D M A I E R

State Universzty of New York at Stony Brook, SWny Brook, New York

A N D

M I H A L I S Y A N N A K A K I S

Bell Laboratories, Murray Hill, New Jersey

Abstract. A class of database schemes, called acychc, was recently introduced. It is shown that this class
has a number of desirable properties. In particular, several desirable properties that have been studied by
other researchers m very different terms are all shown to be eqmvalent to acydicity. In addition, several
equivalent charactenzauons of the class m terms of graphs and hypergraphs are given, and a smaple
algorithm for determining acychclty is presented. Also given are several eqmvalent characterizations of
those sets M of multivalued dependencies such that M is the set of muRlvalued dependencies that are the
consequences of a given join dependency. Several characterizations for a conflict-free (in the sense of
Lien) set of muluvalued dependencies are provided.

Categories and Sub}ect Descriptors. F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic; G.2.2 [Discrete Mathematics]. Graph Theory--graph algorithms; trees, H.2.1 [Database Manage-
ment]: Logical Design--normal formy, schema and subschema; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retneval--queryformulatwn

General Terms Algorithms, Design, Languages, Management, Theory

Additional Key Words and Phrases: Acyclicity, hypergraph, database scheme, relational database,
multivalaed dependency, join dependency, conflict-freedom

1. Introduction

I n t h e r e l a t i o n a l m o d e l o f da ta , as d e f i n e d b y C o d d [14], a n a r b i t r a r y d a t a b a s e

s c h e m e is poss ib le . A database scheme c a n be t h o u g h t o f as a c o l l e c t i o n o f t ab le

The work of the first author was performed at IBM Research Laboratory, San Jose, and at Stanford
Umverstty and was supported m part by the National Science Foundauon under Grant MCS 79-04528
The work of the third author was supported in part by the NaUonal Science Foundation under Grant IST
79-18264.

Authors' addresses: C. Been, The Hebrew University of Jerusalem, Jerusalem, Israel; R. Fagin, IBM
Research Laboratory K51/281, 5600 Cottle Road, San Jose, CA 95193, D Maier, Oregon Graduate
Center, 19600 NW Walker Road, Beaverton, OR 97006; M Yannakakis, Bell Laboratories, 600 Mountain
Avenue, Murray Hill, NJ 07974

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright noUce and the title of the publicauon
and its date appear, and notice is given that copymg is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission
© 1983 ACM 0004-5411/83/0700-0479 $00.75

Journal of the AssoclaUon for Computing Machinery, Vol 30, No 3, July 1983, pp 479-513

480

FIGURE 1

C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

skeletons (as in Figure 1), or, alternatively, as a set of subsets of attributes. For
example, ifJff--- (.4, B, C, D} (or, for short, simplyABCD) is the set of attributes, or
column names, then one example of a database scheme is (AB, BCD, AD, BCE).
This database scheme corresponds to having four relations in the database, as in
Figure 1. The first relation has columns A and B, the second has columns B, C, D,
and so on.

Beeri et al. [6] introduced a special class of database schemes, called acyclic. Fagin
et al. [17] have shown that this class enjoys a certain desirable property (which we
describe later). Our goal in this paper is to identify a number of other desirable
properties, which have been studied by other researchers in quite different contexts,
and show that each of these properties is equivalent to acyclicity. Thus the class of
acyclic database schemes is a natural, important class, since it can be characterized
in a number of ways, each corresponding to a desirable property of database schemes
or to a natural graph-theoretic property. As we shall see, there are various undesirable
and pathological phenomena that can take place for general database schemes but
not for acyclic database schemes. So, by restricting our attention to the acyclic case,
the theory is more elegant. Furthermore, it has been conjectured [17] that acyclic
database schemes are sufficiently general to encompass most "real-world" situations.
At the very least, database designers should be aware of acyclicity and strive for it.
Assuming the conjecture, it follows that by focusing on the acyclic case, researchers
can develop a powerful, elegant theory that often applies to "real-world" schemes.
For acyclic schemes there are efficient (polynomial-time) algorithms for solving
problems that are NP-complete in the unrestricted case. We shall give one such
example (determining global consistency); other examples are shown by Yannakakis
[43]. Further, we shall give a simple algorithm for determining acyclicity.

There are various interesting problems concerning relational databases where some
type of object can be viewed as a collection of sets, and a property of the object
depends on the structure of this collection. Now a collection of sets can be viewed as
being a hypergraph. It turns out that for various properties ~, acyclicity of the
hypergraph is equivalent to ~ holding. Such properties ~ occur in (at least) three
distinct areas. The first area arises when a database scheme is viewed as a collection
of attribute sets. We shall discuss certain properties of relational databases that
depend on the structure of the scheme (one such property is whether or not every
pairwise consistent database over the scheme is globally consistent). A second area
is the theory of dependencies. One of the important types of dependencies is the join
dependency, which can be viewed as a collection of sets. The desired property here
is that the join dependency is logically equivalent to a collection of binary join
dependencies (i.e., multivalued dependencies). A third area is query processing. Here,
join expressions are of importance, and these again are collections of sets. The
interesting problems are the existence of time-efficient and/or space-efficient access
paths. All these problems from distinct areas are linked together by acyelicity
conditions on a hypergraph structure.

In Section 2 we present definitions. In Section 3 we define a number of conditions
that are equivalent to acyclicity. In Section 4 we discuss the significance of our results
and their relationship to other work. In Section 5 we discuss several other types of

Acyclic Database Schemes 481

acyclicity for hypergraphs. Our main theorem, that the various properties discussed
in Section 3 are all equivalent to acyclicity, is proved in Section 6. In Section 7 we
give several characterizations of those sets M of multivalued dependencies such that
M is the set of multivalued dependencies that are the consequences of a given join
dependency. In Section 8 we give several characterizations for a conflict-free (in the
sense of [26]) set of multivalued dependencies. We also show that an arbitrary acyclic
join dependency t~ (R1 , . . . , R~} is equivalent to a conflict-free set of at most n - 1
multivalued dependencies. This strengthens the result of [17] that each acyclic join
dependency is equivalent to a set of multivalued dependencies whose size is poly-
nomial in the size of the join dependency.

2. Definitions

Let ~ r be a fmite set of distinct symbols, called attributes (or column names), and let
Y be a subset of ~ . In the spirit o f Armstrong [2] and of Aho et al. [1] we det'me a
Y-tuple (or simply a tuple, i f Y is understood) to be a function with domain Y. Thus
a tuple is a mapping that associates a value with each attribute in Y. I f X is a subset
of Y and t is a Y-tuple, then t[X] denotes the X-tuple obtained by restricting the
mapping to X. A Y-relation (or a relation over Y, or simply a relation, i f Y is
understood), is a fmite set of Y-tuples. If r is a Y-relation and Xis a subset of Y, then
by f iX], the projection of r onto X, we mean the set of all tuples t[X], where t is in
r. We shall usually denote sets of attributes by uppercase letters and relations by
lowercase letters.

If./ff is a set of attributes, then we define a database scheme R ~- (R1 Rn) to
be a set of subsets of sff. Intuitively, for each i, the set Rz of attributes is considered
the set of column names for a relation. We may call the Ri's relation schemes. If
rl rn are relations, where r, is a relation over R, (1 _ i _< n), then we call
r = (rl rn} a database over R.

If r is a relation over R, and X and Y are subsets of R, then we say [15] that the
multivalued dependency (MVD) X-->---~ Y holds for r if whenever tl and t2 are tuples
of r with tl[X] = t2[X], then there exists a tuple t3 of r such that

(1) t3[X] = tx[X] = t2[X],
(2) t3[Y] = tl[Y], and
(3) t3[R - XY] = t2[R - XY].

Intuitively, the set of Y-values associated with each given X-value is independent of
the values in all other attributes. By X Y in (3) above, we mean X U Y.

Let r = (rl rn } be a database over R. The join of the relations r (where the
join is denoted by either rl t~ • . . t~ rn or t~r) is the set of all tuples t with attributes
R1 U - . . URn, such that t[R,] is in r, for each i.

We say [l, 32] that a relation r with attributes R1 U . . - U R,, obeys the join
dependency t~(R~ R,} if r - - I x l (r l r,}, where r, ffi r[R,], for 1 _< i _< n. It
follows that the join dependency t~(Rx , Rn} holds for the relation r if and only
if r contains each tuple t for which there are tuples Wl, • • •, wn of r (not necessarily
distinct) such that w,[R,] -- t[R,] for each i (1 _< i _ n). As an example, the relation
r in Figure 2 violates the join dependency t~{AB, ACD, BC}. For, let w~, w2, w3 be,
respectively, the tuples (0, 1, 0, 0), (0, 2, 3, 4), and (5, 1, 3, 0) of r, let R1, R2, R3 be,
respectively, AB, ACD, and BC; and let t be the tuple (0, 1, 3, 4); then w~[R,] -~ t[R~]
for each i (1 _< i _ n), although t is not a tuple in the relation r. However, it is
straightforward to verify that the same relation r obeys, for example, the join
dependency t~{ABC, BCD, ABD }.

482 C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

A B C D

oO OO
5 1 3 0

Let 52 be a set of dependencies, and let o be a single dependency. When we say
that 52 logically implies o or that o is a logical consequence of 52, we mean that
whenever every dependency in 52 holds for a relation r, then o also holds for r. That
is, there is no "counterexample relation" or "witness" r such that every sentence in
52 holds for r but o does not hold for r. We write 52 ~ o to mean that 52 logically
implies o. For example, {A --->---> B, B --->---~ C} ~ A --->---> C.

3. Conditions Equivalent to Acyclicity

Let R = (R1 , R,} be a database scheme, as defined in the introduction. Thus
there is a fLxed set vKof attributes, and R, C_ JK for each i. We always assume that
every attribute of vK appears in at least one R,. We now consider a number of
conditions on R, all o f which will turn out to be equivalent.

Condition 3.1. R is an acyclic hypergraph.

A hypergraph is a pair (~ , 8), where ./K is a finite set of nodes and 8 is a set of
edges (or hyperedges) which are arbitrary subsets of ~ . An ordinary undirected
graph (without self-loops) is, of course, a hypergraph whose every edge is of size two.

The hypergraph of a database scheme {R1 Rn } has as its set of nodes those
attributes that appear in one or more of the R,'s, and as its set of edges R =
{R1 R,}. We shall often speak of the "hypergraph R" without mentioning the
set vK of nodes, since, as noted, we tacitly assume that vK = U(R, : 1 _< i _< n}.

Let us give some terminology for hypergraphs. A path from node s to node t is a
sequence of k _ 1 edges E1 Ek such that

(1) sis in E~,
(2) t is in Ek, and
(3) E, N E~+I is nonempty if 1 _< i < k.

We also say the above sequence of edges is an edge path (or just path when no
confusion arises) from E~ to Ek.

Two nodes (or attributes) are connected i f there is a path from one to the other.
Similarly, two edges are connected if there is an edge path from one to the other. A
set of nodes or edges is connected if every pair is connected. The connected components
are the maximal connected sets of edges.

Let (~ , 8) be a hypergraph. Its reduction (~, 8') is obtained by removing from
dr each edge that is a proper subset of another edge. A hypergraph is reduced if it
equals its reduction, that is, if no edge is a subset of another edge. I f we say that
t~{R~ Rn} (or, for short, t~R) is the join dependency corresponding to the
hypergraph (R1 Rn}, then the join dependency corresponding to a hypergraph
and the join dependency corresponding to its reduction are logically equivalent [7].

Let .~¢ be a set of nodes of the hypergraph (~ , 6'). The set of partial edges generated
by ..¢[is defined to be obtained by intersecting the edges in 6' with ~¢/, that is, taking
{E N ..¢/: E E dr} - (O} and then taking the reduction of this set. The set of partial
edges generated from (~, dr) by some set . / / i s said to be a node-generated set of
partial edges.

Acyclic Database Schemes

FIGURE 3

483

Let ~ be a connected, reduced set of partial edges, and let E and F be in ~ Let
Q = E n F. We say that (E, F) is an articulation pair, and that Q is an articulation set
of ~, if the result of removing Q from every edge of ~ that is, {D - Q: D E ~) -
(O), is not a connected set of partial edges. More generally, if ~ is a (not necessarily
connected) set of partial edges and E and F are in ~ then we say that (E, F) is an
articulation pair, and that Q = E n F is an articulation set of ~, if the result of
removing Q from every edge in ~-strictly increases the number of connected
components o f ~ It is clear that an articulation set in a hypergraph is a generalization
of the concept of an articulation point in an ordinary graph.

A block of a reduced hypergraph is a connected, node-generated set of partial
edges with no articulation set. A set is trivial if it contains less than two members. A
reduced hypergraph is acyclic if all its blocks are trivial; otherwise, it is cyclic. A
hypergraph is said to be cyclic or acyclic precisely if its reduction is.

Example 3.1. It is straightforward to verify that Figure 3 shows an acydic
hypergraph. Its edges are ABC, CDE, EFA, and ACE. An articulation set for the set
of all edges is ABC O ACE -- AC, since the result of removing A and C from each
edge is to leave the set of edges B, DE, EF, and E, which is not connected (B is
disconnected from the others). Note that the set of edges {ABC, CDE, EFA) has no
articulation set. However, this set is not node generated, so there is no contradiction
of our assertion that the hypergraph of Figure 3 is acyclic. []

Condition 3.2. R is a closed-acyclic hypergraph.

Let (X, d~) be a hypergraph, and let ~ be a subset of 8. Let Jr ' be the set of nodes
that is the union of members in ~. We say that ~ is closed i f for each edge E of the
hypergraph there is an edge F in ~ such that E n ./g _c F. Note that every dosed set
of edges is a node-generated set of partial edges, generated by ~/.

Recall that a reduced hypergraph is acyclic if every nontrivial, connected, node-
generated set of partial edges has an articulation set. We say that a reduced
hypergraph is closed-acyclic if every nontrivial, connected, closed set of edges has an
articulation set. A hypergraph is said to be closed-acyclic precisely if its reduction is.
Since every closed set of edges is a node-generated set of partial edges, it follows
immediately that every acyclic hypergraph is closed-acydic. We shall show that, in
fact, "acyclic" and "closed-acyclic" are equivalent. The intuitive advantage of dealing
with the closed-acyclic definition rather than with the acydic defmition is that under
the closed-acyclic definition it is not necessary to consider partial edges that are not
edges.

Condition 3.3. R is a chordal, conformal hypergraph.

We begin with some detrmitions for (ordinary, undirected) graphs. A clique in a
graph is a set of nodes such that every pair forms an edge of the graph. A cycle in a

484 c . BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

graph is a sequence (al , am) of nodes, m >__ 3, such that

(i) each a, is distinct, except that al = am, and
(ii) (a,, a,+l) is an edge for 1 _ i < m.

Let .Ydbe a hypergraph. The graph G(~) of oWhas the same nodes as ~ a n d an
edge between every pair of nodes that are in the same hyperedge of ~ . Thus, the
edges of G (~) are precisely the set of all pairs (a, b) for which there is a hyperedge
E of.Ydthat contains both a and b (and possibly other nodes).

A hypergraph .,~ is conformal [10] if for every clique V in G (~) there is a
hyperedge o f ~ that contains V. We now prove the following simple characterization
of reduced, conformal hypergraphs.

THEOREM 3.2. Hypergraph .YC is reduced and conformal if and only f i ts hyperedges
are precisely the maximal cliques of a graph. I f there is such a graph, then the graph is
G(,,'e).

PROOf. (=*): Let ~ be a reduced, conformal hypergraph, and let G = G (~) be
its graph. We now show that the hyperedges of ~f~are precisely the maximal cliques
of G. Let V be a hyperedge of ~ . By de£mition of G it follows that V is a clique of G.
If V were not a maximal clique of G, then there would be a clique W of G that
properly contains V. Since ~ i s a conformal hypergraph, there is a hyperedge X of
.Yl that contains W. But then hyperedge X properly contains hyperedge V; this
contradicts our assumption that ~ i s reduced.

(~) : Let ~,W be a hypergraph whose hyperedges are precisely the maximal cliques
of a graph D. It is clear that ~ is reduced; we shall show that it is conformal. Further,
let G = G(~? ~) be the graph of ~ ; we shall show that G = D.

Now (a, b) ~ D if and only if {a, b} is in a maximal clique of D, if and only if
(a, b} is a subset of an edge of ~ , if and only if (a, b) E G. Hence, G = D. Since
G = D, it follows by assumption that the hyperedges of ~/fare precisely the maximal
cliques of G - G(H). In particular, for every clique V in G (~) there is a hyperedge
of J~that contains V. Thus A'~is conformal. []

A graph is chordal [18] if every cycle with at least four distinct nodes has a chord,
that is, an edge connecting two nonconsecutive nodes of the cycle. Chordal graphs
are sometimes called triangulated. A hypergraph ~ i s chordal if its graph G (~) is
chordal. We note that in [6] a hypergraph is called chordal if it is not only chordal
(under our definition), but also conformal. We have decided that it is useful to
change this convention. We note some important, well-known properties of chordal
graphs.

(1) Chordality of graphs is a hereditary property; that is, deleting nodes (and their
incident edges) from a chordal graph leaves a subgraph that is also chordal.

(2) Every chordal graph has a node v whose neighborhood is a clique; that is, there
is an edge between every pair of nodes, each of which is adjacent to v. Such a
node is called simplicial (e.g., see [18]).

Condition 3.4. Graham's algorithm succeeds with input R.

Graham's algorithm [21] applies the following two operations to R =
(R~ , Rn) repeatedly until neither can be applied:

(a) If A is an attribute that appears in exactly one R,, then delete A from R,.
(b) Delete one R, if there is an Rj w i th j # i such that R~ __ Rj.

Acyciic Database Schemes 485

Intuitively, operations of type (a) remove attributes that cannot have any effect on
cyclicity or acyclicity, and operations of type (b) cause a hypergraph to be replaced
by its reduction.

The algorithm succeeds if it terminates with the empty set; otherwise, it fails. We
note that it is not hard to show that the algorithm is Church-Rosser. That is, the set
that the algorithm terminates with is independent of the sequence of steps taken in
executing the algorithm but depends only on the input.

Example 3.3. Let us apply Graham's algorithm to the hypergraph of Example
3.1, with edges ABC, CDE, EFA, and ACE. Nodes B, D, and F e a c h appear in only
one edge, and so they are each deleted by applications of rule (a) of Graham's
algorithm. We are then left with edges A C, CE, EA, and ACE. Now edge A C is a
subset of edge ACE, so by an application of rule (b) of the algorithm, this edge is
deleted. This leaves us with edges CE, EA, and A CE. Similarly, edges CE and EA
are deleted by applications of rule (b). We are then left with only one edge, namely
ACE. Each of the nodes A, C, and E now appears in only one edge, and so by
applications of rule (a), each of them is deleted. We are left with the empty set, and
so Graham's algorithm succeeds. []

Condition 3.5. The join dependency MR is equivalent to a set of multivalued
dependencies.

Since multivalued dependencies are simpler than join dependencies (they are
special cases of join dependencies), it is a desirable property of a join dependency for
it to be equivalent to a set of multivalued dependencies. Moreover, it is easy to test
(by sorting and counting) whether a given multivalued dependency holds for a
relation; however, the problem of whether a given join dependency holds for a given
relation is NP-complete [24, 30].

Fagin et al. [17] showed that if a join dependency is equivalent to a set of
multivalued dependencies, then it is equivalent to a set M of multivalued depend-
encies whose size is polynomial in the size of the join dependency. In Section 8 we
strengthen this result by showing that if the join dependency is t~ (R1 , . . . , Rn), then
the set M can be taken to be a set of at most n - 1 multivalued dependencies.

Condition 3.6. The join dependency t~R is equivalent to a conflict-free set of
multivalued dependencies.

We def'me conflict free in Section 8.

Condition 3.7. Every pairwise consistent database over R is globally consistent.

Let r and s be relations with attributes R and S, respectively, and let Q = R N S.
Thus Q is precisely the set of attributes that r and s have in common. We say that r
and s are consistent if r[Q] = s[Q], that is, the projections of r and s onto their
common attributes are the same.

Let r = (rl r,,} be an arbitrary database over R = (R1 , R,~}. We say that
r is pairwise consistent if each pair r, and r 1 is consistent, that is, if r,[R, N Rj] =
rj[R, N Rj] for each i andj . We say that r is globally consistent if there is a relation r
over attributes JV-- R1 t3 . . . t.J R,~ such that r, = r[R,] for each i. Thus r is globally
consistent if there is a "universal relation" r such that each r, is a projection of r. It
is known [1] that if there is such a universal relation r, then t~r is also such a universal
relation. Note that a pair of relations is globally consistent if and only if the two
relations are consistent. Rissanen [33] calls a globally consistent set of relations

486 C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

FIGURE4 ~ ~ ~

joinable. Joinability is a critical assumption in Rissanen's theory of independent
components of relations. A globally consistent database is also called join compatible
[8], join consistent [24], valid [34], consistent [16], or decomposed [40].

It is clear that ff r is globally consistent, then it is pairwise consistent. If n -- 2, that
is, if only two relations are involved, then, as noted above, the converse is true.
However, in general, the converse is false. For example, let rt, r2, and r3 be the three
relations in Figure 4, over attributes AB, BC, and A C, respectively. It is easy to verify
that these relations are pairwise consistent but not globally consistent.

We say that every pairwise consistent database over R is globally consistent if for
every database r over R, pairwise consistency of r implies global consistency of r
(and thus pairwise consistency and global consistency are equivalent for r).

Honeyman et al. [24] have shown that the problem of deciding whether a database
r is globally consistent is NP-complete. However, if every pairwise consistent database
over R is globally consistent, then there is a simple polynomial-time test for global
consistency, namely, pairwise consistency.

By our definitions, a database is required to contain a finite number of tuples. We
could define a possibly infinite database by removing this restriction. It is then not
obvious that the following two statements are equivalent:

(a) Every pairwise consistent database over R is globally consistent.
(b) Every pairwise consistent, possibly infinite database over R is globally consistent.

However, it follows from our proof of Theorem 3.4 below that (a) and (b) are indeed
equivalent.

Condition 3.8. Every database over R has a full reducer.

The semijoin [11, 12] r ~< s of relations r and s (over attributes R and S, respectively)
is (r t~ s)[R]. A semijoinprogram is a sequence of semijoin statements r~ :-- r, ¢< rj. A
full reducer for a database r is a semijoin program that converts r into a globally
consistent database.

If it is necessary to join a number of relations, each of which is at a different site,
and if the amount of communication is to be minimized, then it is frequently
advantangeous to perform semijoins first, by sending only certain projections of
relations from site to site, until the relations have been pruned (by removing tuples)
to the point that every remaining tuple actually participates in the join with one or
more tuples from the other relations. At that time, the pruned relations can be
shipped to a single site and their join taken [12].

Condition 3.9. R has a join tree.

A join tree for R is a tree with set R of nodes, such that

(1) Each edge (R,, Rj) is labeled by the set of attributes R~ A Rj, and
(2) For every pair R,, R~ (R, ~ Rj) for every A in R~ N Rj, each edge along the unique

path between R, and Rj includes label A (possibly among others). We call this
path an A-labeledpath.

A join tree is so named because it yields a "good" (in a manner to be defined
soon) way to join together all of the relations. For, let T be a join tree for R --

Acyclic Database Schemes 487

{ R 1 , . . . , R,}. Select a root for the tree T. Let $1, . . . , S, be Rt, .., . ; R,~ ordered by
increasing depth. Thus, if Sj is the parent of S,, then j < i. A "good" way to join
together all of the relations is first to take the join of the St and $2 relations, then join
the result with the Sz relation, then join the result with the $4 relation, and so on.
"Good" means that if the database is pairwise consistent, then by joining the relations
in this manner, the number of tuples grows monotonically (this fact follows from our
proof of Theorem 3.4 below; see Condition 3.11 below for an explanation of
monotonicity).

Condition 3.10. R has the running intersection property.

We say that R has the running intersection property if there is an ordering R1
Rn of R such that for 2 _< i _< n there exists j , < i such that R, N (RI O , . . t.J Ri-a)
C Rj. That is, the intersection of each R~ with the union of the previous Rfs is
contained in one of these.

Condition 3. I I. R has a monotone join expression.

Consider the following scenario. A user desires to take the join of four relations r~,
r2, ra, and r4. The following might happen. He might first form rl t~ r2, which might
have, say, a thousand tuples. Then he might join the result with ra, to obtain rl ~ r2
t~ rs, a relation with, say, a million tuples. He might fmally join the result with r4, to
obtain his desired answer rl t~ r2 t~ ra t~ r4, which might have only ten tuples. Thus,
even though the result he was seeking had only ten tuples, he might have had an
intermediate result with a million tuples. We now discuss "monotone join expres-
sions," which prevent this unpleasant behavior.

A join expression is a well-formed expression formed out of relation schemes, the
symbol "t~," and parentheses, in which every join is binary. For example, if R~, R2,
Ra, and R4 are among the relation schemes, then ((R2 M R3) t~ (R1 ~ R4)) is a join
expression, which corresponds to joining the R2 and the R3 relations, joining the R1
and R4 relations, and then joining together the two results.

Let 0 be a join expression whose relation schemes are all in R, and let r be
a database over R. By 0(r) we mean the relation that results by replacing each rela-
tion scheme R in 0 by r, where r E r and r has attributes R. For example, if r =
(rl, r2, rs, r4} and 0 is the join expression (R2 t~ (Ra t~ R2)), where r2 and ra have
attributes R2 and R3, respectively, then 0(r) is the relation (r2 t~ (r3 t~ r2)), that is, the
relation ,'2 t~ ra.

A subexpression of a join expression is defined in the usual way. Let 0 be a join
expression containing relation schemes R, and let r be a database over R. We say
that 0 is monotone with respect to r if for every subexpression (01 t~ 02) of 0, the
relations 0x(r) and 02(r) are consistent. Intuitively, 0 is monotone with respect to r if
no tuples are lost in taking any of the binary joins obtained by "executing" 0(r) as
dictated by the parentheses. (We say that no tuples are lost in taking the join of
relations r and s if r and s are each projections of r t~ s, i.e., if r and s are con-
sistent.) As an example, ((R2 t~ Ra) t~ (Rt t~ R4)) is monotone with respect to r =
{rl, r2, r3, r4), where r, has attributes R, (1 ___ i ___ 4), if

(a) r2 and ra are consistent,
(b) r~ and r4 are consistent, and
(c) (r2 t~ ra) and (r~ t~ r4) are consistent.

We say that 8 is monotone if it is monotone with respect to every pairwise consistent
database over R. If 0 involves precisely the relation schemes R, then we say that R
has a monotone join expression. Monotone join expressions provide a "space-efficient"

488 C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

manner for taking a join, in that no "intermediate" join has more tuples than the
"fmar ' join rl t~ . . . ~ rn.

Condition 3.12. R has a monotone, sequentialjoin expression.

Certain join expressions, called sequential join expressions, are of special interest.
Let 0 be a join expression over R. I f0 is of the form (. . . ((R1 t~ R2) t~ R3) . . . t~ Rn),
where R1 Rn is an ordering of the distinct members of R, then we say that 0 is
sequential. Intuitively, a sequential join expression (. . . ((R~ t~ R2) t~ R3) . . . t~ Rn)
corresponds to first joining the Rx and the Re relations, then joining the result with
the Rs relation, then joining the result with the R4 relation, and so on.

Saying that there is a monotone, sequential join expression over R means that
there is an ordering R~ Rn of R such that if r ffi {rl rn) is a pair-
wise consistent database over R, then the join rl t~ . . . t~ r, is consistent with r,+a
(1 _ i < n). Thus, if we first join r~ with r2, join the result with r3, join the result with
r4, and so on, then no tnples are lost in taking any of the joins; hence the number of
tuples grows monotonically. As we noted, having a monotone join expression
(Condition 3.11 above) guarantees that no intermediate join has more tuples than
the final join. Having a monotone, sequential join expression has the further advan-
tage that only one intermediate join needs to be maintained at a time.

The main result of this paper is that each of the above conditions on R are
equivalent. Thus we shall prove the following theorem.

THEOREM 3.4. The following conditions on R are equivalent:

(1) R is an acyclic hypergraph.
(2) R is a closed-acyclic hypergraph.
(3) R is a chordal, conformal hypergraph.
(4) Graham's algorithm succeeds with input R.
(5) The join dependency t~R is equivalent to a set of multil, alued dependencies.
(6) The join dependency MR is equivalent to a conflict-free set of multivalued depend-

encies.
(7) Every pairwise consistent database over R is globally consistent.
(8) Every database over R has a full reducer.
(9) R has a join tree.

(10) R has the running intersection property.
(11) R has a monotone join expression.
(12) R has a monotone, sequential join expression.

4. Significance of Results and Relationship to Other Work

Before anyone considered the question as to when a join dependency is equivalent
to a set of multivalued dependencies (condition (5) of Theorem 3.4), the converse
question was studied, as to which sets of multivahied dependencies are equivalent to
a single join dependency. The desirability of such sets of multivalued dependencies
was discussed by Sciore [36]. The points made there depend on the detailed analysis
of the way the schematic notion of"objects" interacts with multivahied dependencies
and with the insertion and deletion of information in the database, which analysis
was done by Sciore [35]. The notion of "conflict freedom" [26] is another attempt to
put restrictions on sets of multivalued dependencies in order to avoid problems in
defining how the database is to be updated, and also is an attempt to establish the
equivalence between relational descriptions of the real world and descriptions in
more "classical" terms, such as Bachman diagrams [3, 26, 431, which are certain

Acyclic Database Schemes 489

directed graphs on collections of attributes. Conflict-free sets of multivalued depend-
encies have several nice properties: (1) they allow a unique fourth-normal-form [15]
decomposition, and (2) all multivalued dependencies participate in the decomposition
process; that is, the phenomenon where decomposing according to one multivalued
dependency prevents another multivalued dependency from being applied does not
O c c u r .

Conditions (8) and (9) concerning full reducers and join trees were motivated not
by issues of the structure of databases, but by the problem of implementing a query
efficiently in a distributed database. Semijoins can be used to help cut down on the
amount of communication required in taking a join of a collection of relations at
distinct sites.

Condition (7), that pairwise and global consistency be the same, was originally
considered as a way of testing whether a database is the projection of a universal
relation. The equivalence of (1) and (7) also says that if the relations of the database
satisfy an acyclic join dependency, then we can maintain a universal relation, of
which each database relation is a projection, if we agree that nulls will be used where
necessary to fill out tuples of the universal relation, as described in numerous works
on the subject [25, 27, 29, 35, 41, 42]. When inserting or deleting from some relation
r,, we adjust the universal relation by considering interactions among the tuples of r,
and the other relations, where we insert tuples with nulls into these relations only
when necessary. In the more general (not necessary acyclic) case, the problem of
adjusting the relations to maintain the property that they are the projection of a
universal relation is NP-complete [24].

Condition (4) gives a polynomial-time algorithm for testing the acyclicity property.
A linear-time algorithm has recently been given by Tarjan and Yannakakis [38].
Condition (10), the running intersection property, is a convenient tool for proving
properties of acyclic hypergraphs. Conditions (11) and (12) are of interest because of
the space-efficiency of monotone join expressions. Monotone join expressions (as in
condition (11)) guarantee that no intermediate join has more tuples than the final
join. Monotone, sequential join expressions (as in condition (12)) have the further
advantage that only one intermediate join needs to be maintained at a time.

The equivalence of (1)-(4), (9), and (10) is an interesting graph-theoretic fact in its
own right.

Some of the implications of Theorem 3.4 were shown previously by others. In
particular, the equivalence of (1) and (5) was shown by Fagin et al. [17], the
equivalence of (8) and (9) by Bernstein and Goodman [121, the equivalence of (4)
and (8) by Yu and Ozsoyoglu [44], and the equivalence of (7) and (8) by Honeyman
[23]. Graham [211 showed that (4) implies (7). By making use of results of Mendelzon
and Maier [31] and Beeri and Vardi [9], it follows easily that (4) implies that t~R is
equivalent to a set of embedded multivalued dependencies [15], which is a slightly
weaker statement than (5).

Other implications of Theorem 3.4 were shown independently by others. In
particular, Goodman and Shmueli [19] have independently shown the equivalence
of (7) and (9). Further, they give [19] a characterization of (9) from which they easily
show [20] independently the equivalence of (3) and (9).

This paper makes several contributions. (1) By using hypergraphs, we unify three
distinct areas of relational database theory, involving (a) relation schemes, (b)
dependencies, and (c) query processing (see the introduction for more discussion);
(2) we present new equivalences among previously studied concepts; and (3) we give
much simpler proofs for some previously known equivalences.

490 C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

FIGURE 5

5. Other Types of Acyclicity for Hypergraphs

Several other types of acyclicity, none equivalent to our definition, have been defined
for hypergraphs. All but one of these other types of acyclicity are more restrictive
than our definition. Each of them coincides with the usual definition of acyclicity
when we restrict our attention to ordinary undirected graphs. That is, an ordinary
graph is acyclic in the usual sense if and only if it is acyclic in any or all of these
hypergraph senses, when it is considered as a hypergraph.

We begin with the classic definition, which is due to Berge [10] and is the most
restrictive type of acyclicity for hypergraphs.

A Berge cycle in a hypergraph ~ffis a sequence ($1, Xl, $2, x2 , S,~, xm, Sin+l)
such that

(i) xl , xm are distinct nodes of Jff;
(ii) $ 1 , . . . , S,,, are distinct edges o f ~ , and S,,,+1 -- S1;

(iii) m _ 2, that is, there are at least two edges involved; and
(iv) x, is in S, and S,+~ (1 <_ i <_ m).

A hypergraph is Berge-cyclic if it has a Berge cycle; otherwise, it is Berge-acyclic.
The hypergraph of Figure 5, with edges ABC and BCD, is Berge-cyclic, because it
contains the Berge cycle (ABC, C, BCD, B, ABC), where, for clarity, we have
underlined the edges. However, this hypergraph is acyclic under our definition. As
we see by this example, if the hypergraph contains a pair of edges with more than
one node in common, then the hypergraph is Berge-cyclic. A restriction that no two
relation schemes can have more than one attribute in common is far too severe.
Hence, Berge-acyclicity is too restrictive an assumption to make about database
schemes.

Zaniolo [45] defined two types of acylicity for hypergraphs in a pioneering effort
to fred a condition on a hypergraph R that is equivalent to a certain desirable
database condition ("every pairwise consistent database over R is globally consistent";
see the discussion of condition 3.7 above). Unfortunately, one of his conditions was
sufficient but not necessary, and the other was necessary but not sufficient. Of course,
our definition of acyclicity is both necessary and sufficient. The second of Zaniolo's
definitions gives the only type of acyclicity that has been defmed in the hypergraph
literature that is less restrictive than ours.

Graham [21] weakened Zaniolo's first definition of acyclicity in another attempt
to fred a condition on a hypergraph R equivalent to "every pairwise consistent
database over R is globally consistent." Like Zaniolo's first def'mition, Graham's
condition was sufficient but not necessary.

Fagin [16] has recently defined two types of acyclicity for hypergraphs, which he
calls fl-acyclicity and y-acyclicity (where our type of acyclicity he calls a-acyclicity).
A hypergraph is fl-acyclic if and only if every subset of its edges forms a hypergraph
that is acyclic in our sense. Thus, for each of the various desirable properties ~ that
we show are equivalent to acyclicity for database schemes, it then follows that a
database scheme is fl-acyclic if and only every subscheme enjoys property ~. (A
subscheme of a database scheme is a subset of the relation schemes.) I f turns out that
fl-acyclicity is equivalent to Graham's condition. Fagin's ~,-acyclicity is even more
restrictive than fl-acyclicity. He shows that T-acyclicity is equivalent to several
desirable database conditions involving monotone-increasing joins and unique rela-

Acyclic Database Schemes 491

FIGURE 6

tionships among attributes. A hypergraph is -y-acyclic if and only its Bachman
diagram [3] is loop-free [26, 43].

We also note that Batini et al. [4] discuss the issue of generating various subclasses
of acyclic hypergraphs by "hypergraph grammars."

6. Proof of Main Theorem

In this section we prove our main result, Theorem 3.4, which we repeat below. We
begin with a definition and a useful lemma.

Let (~, ~f) be a hypergraph, and let ~ be a subset of the set dr of edges. Let ./4 be
the set of nodes that is the union of the members of ~. We say that ~ is guarded if
there is an edge F (called the guard) in ~ such that for each edge E of the hypergraph
that is not in ~, we have E n J / _ F. Recall that we say that ~" is closed if for each
edge E of the hypergraph there is an edge F in ~ such that E n .1~ c_ F. It follows
easily that every guarded set of edges is closed. The converse is false. For exam-
ple, consider the hypergraph in Figure 6, with edges {AB, BC, CD, DA }. The set
(AB, BC} of edges is closed but not guarded.

LEMMA 6.1. Let ~ be a guarded set of edges of a hypergraph. An articulation set
for ,~ is an articulation set for the entire hypergraph.

Note. The lemma is false if we replace "guarded" by "closed." For example, B
is an articulation set for the subset ~ - {AB, BC} of the hypergraph in Figure 6 but
not for the whole hypergraph. As we noted, ~,~ is closed but not guarded.

PROOF. Let (E, F) be an articulation pair for the guarded set . ~ o f edges of
hypergraph ~ . We shall show that (E, F) is an articulation pair for the whole
hypergraph ~ . Let ~ be a connected component of ~ that is split into at least
two connected components after articulation by Q = E n F. Let call and
cd2 be two nonempty disjoint subsets of ~ such that the reductions of ~, - Q =
{ C - Q: C E ~,) (i = 1, 2) are connected components of cd - Q. Thus, if T1 and
T2 are arbitrary members of ~1 and ~2, respectively, then there is no sequence
3(1 Xt of members of ~ such that

(a) T l f X1,
(b) T2 = Xt, and
(c) X, O X,+~ - Q is nonempty, for 1 < i _< t.

We know that ~ is part of a connected component of the whole hypergraph. To
prove the lemma, it is sufficient to show that qf~ and ~2 are subsets of distinct
connected components of ~ a f t e r articulation by Q. That is, it is sufficient to show
that there is no sequence 3(1,. . . , Xt of members o f ~ s u c h that for some 7"1 in ~ and
7"2 in ~z, each of (a)-(c) above hold.

Assume not. Then (a)-(c) hold for appropriate choices of T~, T2, and Xx Xt.
We know that some X, is not in ~ , since by assumption, (a)-(c) are false i f every X~
is in J~. Let u be the minimum value of i and v the maximum value of i such that X,
is not in ~ Then 1 < u __ v < t. Denote by F t h e guard of the guarded set ~ of edges.
Consider the sequence of edges)(1, X2 X,-1, F, Xv+x Xt, in Which we have

492 c. BEERI, R. FAGIN, O. MAIER, AND M. YANNAKAKIS

"spliced" the guard F in place of Xu X~. Since each edge in this sequence is in
.~, we can derive a contradiction by showing that this sequence of edges is one in
which each consecutive pair has a node in common that is not in Q. We already
know that X, N X,+t has a node that is not in Q (1 _< i < t). So we need only show
that Xu-1 N F and F N X~+I each have a node that is not in Q. Now X~-I f') X~ has
a node A that is not in Q, by assumption. Since X~-I is in ~ a n d X~ is not, and since

is guarded, with guard F, it follows that A E F. Hence, Xu-1 N F has a node
(namely, A) that is not in Q, and similarly for F N Xv+~. This contradiction completes
the proof. []

THEOREM 3.4. The following conditions on R are equivalent:

(1) R is an acyclic hypergraph.
(2) R is a closed-acyclic hypergraph.
(3) R is a chordal, conformal hypergraph.
(4) Graham's algorithm succeeds with input R.
(5) The#in dependency t~R is equivalent to a set of multivalued dependencies.
(6) The#in dependency t~R is equivalent to a conflict-free set of multivalued depend-

encies.
(7) Every pairwise consistent database over R is globally consistent.
(8) Every database over R has a full reducer.
(9) R has a join tree.

(10) R has the running intersection property.
(11) R has a monotone join expression.
(12) R has a monotone, sequential join expression.

PROOF. We shall neglect condition (6) until Section 8. We now prove the
equivalence of the other conditions. We shall show that (4) ==~ (3) ~ (4) =* (9) =*
(10) =* (8) =* (7) ~ (2) =* (5) ~ (1) ~ (2) ==~ (4), which shows that conditions
(1)-(5) and (7)-(10) are all equivalent, and then (10) ~ (12) ~ (11) ~ (7), which
shows that (11) and (12) are equivalent to each of these. It is an instructive exercise
for the reader to prove for himself directly some of the other implications.

(4) =* (3): Assume that Graham's algorithm succeeds with input R. Recall that
Graham's algorithm [21] applies the following two operations to R = (R~ Rn}
repeatedly until neither can be applied:

(at If A is an attribute that appears in exactly one R,, then delete A from R,.
(b) Delete one R, if there is an Rj wi th j # i such that R, _ Rj.

Since Graham's algorithm succeeds with input R, this means that with input R the
algorithm terminates with the empty set. We shall show that R is a chordal, conformal
hypergraph. Let us denote the hypergraph R by ~ . Let G - G(~) be the graph of
the hypergraph ~ . Recall that this means that the nodes of G are the nodes of ~ and
that there is an edge between two nodes of G precisely if they both lie in some
hyperedge of ~ .

We first show that ~ i s chordal, that is, that its graph G(Yd) is chordal. Suppose
that G(~) contains a chordless cycle C with at least fou r nodes. Since Graham's
algorithm succeeds, it is easy to see that every node is eliminated by an application
of rule (at of Graham's algorithm (namely, when it is deleted for the very last time).
Let v be the node of the chordless cycle C that is first eliminated by an application
of rule (at of Graham's algorithm, and let x, y be the nodes of C adjacent to v. Since
v belongs to only one hyperedge of ~ when it is eliminated, this hyperedge must

Acyclic Database Schemes 493

contain x and y. Therefore, G(.,~) contains an edge (x, y). This contradicts the fact
that C was assumed to be chordless.

We now show that ~ i s conformal; that is, for every clique V in G(~ '~) there is a
hyperedge o f ~ that contains V. Let Vbe a clique in G(.~), and let v be the node of
V that is first eliminated by an application of rule (a) of Graham's algorithm. Since
v belongs to only one hyperedge of ~ when it is eliminated, the hyperedge must
contain V.

(3) ~ (4): Assume that R is a chordal, conformal hypergraph. We shall show that
Graham's algorithm succeeds with input R. Let us denote the hypergraph R by ~..

Since G = G (~) is chordal, it contains a simplicial node v, as noted in Section 3.
That is, v together with all of its neighbors in G forms a clique V in G (a neighbor of
v in G is a node w such that (v, w) is an edge of G). Since ~t~is eonformal, there is a
hyperedge W of .,~ that contains V. Let X be an arbitrary hyperedge of ~ that
contains v as a member. By construction of G, we know that X _ V (for, if w is an'
arbitrary node other than v in X, then (v, w) is an edge of G, and so w ~ V). Since
also V _ W, it follows that X C_C_ W. Thus every hyperedge X of ~ that contains v is
a subset of W. So, by applications of rule (b) of Graham's algorithm, we are left with
a hypergraph in which there is only one hyperedge (namely, W) of ~ t h a t contains
v. By an application of rule (a) of Graham's algorithm, node v is then deleted, since
it appears in only one hyperedge.

It is easy to verify that the hypergraph that remains after applying a step of
Graham's algorithm to a chordal, conformal hypergraph yields a chordal, conformal
hypergraph. Thus it is possible to proceed inductively by selecting a simplicial node
for the remaining hypergraph. In this way all nodes arc eventually deleted, and so
Graham's algorithm succeeds with input R.

(4) =* (9): Assume that Graham's algorithm succeeds with input R. We shall show
that R has a join tree. We build a join tree Tfor R as follows. We take the members
R1 Rn of R as nodes of T. Run Graham's algorithm on R. At the end of the mth
step of the algorithm (where a step consists of an application of one of rules (a) or
(b) as described above), denote by remm(R,) what is left of R,. I f rem,,,(R,) is empty
but remm-l(R,) is not, then we say that "R~ is deleted on the ruth step." On any given
step at most one R, is deleted. If R, is deleted on the mth step because remm-l(R,) _
remm_l(Rj) and because rule (b) of Graham's algorithm was applied on the mth step,
then add edge (R,, Rj) to T with label R, N Rj. (If there are several such j 's , then
arbitrarily select just one of them.) We say that R, is a child of Rj and Rj is the parent
of R,. Obviously, Rj is deleted on a later step than R, is. It is clear that we obtain a
forest (a collection of trees) in this manner. By adding some edges we can convert the
forest into a tlee. (We simply add just enough edges, chosen arbitrarily, to "connect"
the trees in the forest into a single tree.) We now show that the resulting tree T is a
join tree.

I f T is not a join tree, then there are i a n d j (i # j) and a node A such that

(i) A ~ R, N R j, and
(ii) the path in T between R, and R~ is not A-labeled, that is, some edge along the

path does not have label A (possibly among others).

Choose R, and Rj so that (i) and (ii) hold and the earlier of the times that R, or Rj
was deleted is as late as possible. Assume without loss of generality that R, was
deleted before Rj. Since R, and Rj have a node (namely, A) in common, we know
that R, was deleted by an application of rule (b) of Graham's algorithm and not by

494 C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

an application of rule (a). Thus there is some k (k # i) such that remm-l(R,) _C
remm-l(Rk), where m is the step on which R~ is deleted and Rk is the parent of ~i in
the tree T. So Rk was deleted on a later step than R,. Now Rk and Rj both contain
node A, and so, by our maximality assumption in our choice of i and j , we know that
either k = j or the path in T between Rk and R~ is A-labeled. In the latter case this
path can be extended to an A-labeled path between Ri and Rj, since R~ is a child of
Rk. In the former case the edge between R~ and Rj is an A-labeled path between R~
and R s. So in either case the path between R~ and R~ is A-labeled. This is a
contradiction.

(9) =* (10): Assume that R has a join tree. We shall show that R has the running
intersection property. Recall that we say that R has the running intersection property
if there is an ordering R I , . . . , R,, of R such that for 2 _< i ___ n there existsfl < i such
that R, N (R~ 0 . . . U R~-I) C.C_ Rj . That is, the intersection of each R~ with the union
of the previous Rj's is contained in one of these.

Let T be a join tree for R. Select a root for the tree T. Let R~ Rn be an
ordering of R by increasing depth. Thus, ifR~ is the parent o f R , , t h e n j < i. Clearly,
each path from R~ to any of R1 R , - I must pass through R{s parent Rj. Now if
A is a node in R, N R~ for some k < i, then the path between R~ and Rk is
A-labeled. Since this path passes through Rj, it follows that A E Rj. It follows that
Rj f3 (R, O . . . U R~- 0 __. Rj. Thus j is the fi demanded in the defmition of the
running intersection property.

(10) ==~ (8): Assume that R has the running intersection property. We now give a
semijoin program (which is modeled after one by Berustein and Chiu [11]) that we
shall prove is a full reducer for R, that is, which converts the relations r~ , r,, into
new relations r'~ r'~ that are globally consistent. (Recall that a set of relations is
globally consistent i f there is a universal relation such that each is the appropriate
projection of the universal relation. Further, as we noted, if there is any such
universal relation, then the join of the set of relations is such a universal relation.)
Let R~ R,, be an ordering of R as guaranteed by the running intersection
property. Thus, for 2 _ i _< n there exists fi < i such that R, f3 (R~ 0 . . . U R,-~)
__C_ Rjr For later reference we have labeled the lines of the program, some labels with
negative integers and some with positive integers:

(- n) rj := rj t~ rn

(- n + 1) rj~_~ := rj~_~ ~< r~-~

(- i) rj, := r~, ~ r,

(-2) rj~ := rj2 ~< r2
(2) r2 :-- r2 t>< rj2

(n) r~ :-- r,, t~ r~n

Note that j2 -- 1 in lines (-2) and (2) above.

Acyclic Database Schemes 495

Let us denote by 6, . . . , rL the result of the program, starting with input r-1, . . . ,
r,. We shall show that r;, . . . , rL are globally consistent. We begin by proving
that r: and r;, are consistent for each i (2 I i I n), that is, that r:[R, n RJz] =
r:JR, fl R,J for each i (2 I i I n). Let us write j for j, and Q for R, fi RP Thus, to
show that r: and r; are consistent, we must show that r:[Q] = ri[Q].

Let us denote by rk (‘) the “current value” of the relation with attributes Rk
immediately after line (p) of the program is executed (where 1 5 k zz n and (p) is a
line number of the program). In particular, rk = rc’ for each k.

In what follows we shall frequently make tacit use of the following two simple
facts about semijoins (where r and s are relations with attributes R and S, respec-
tively): (r K s) G r, and (r K s)[R fl S] C s[R n S].

From line (-i) of the semijoin program, we see that

r:-“[Q] G ri-“[Q]. (6.1)

In those lines of the program strictly between lines (-i) and (i) the expression rr
never appears on the left-hand side of an assignment. For, if line (-k) is one of the
negatively numbered lines with k < i, then the left-hand side of the assignment is
r,,, and jk < k < i; and if line (k) is a positively numbered line with k < i, then the
left-hand side of the assignment is rk, and k < i. So,

p = (r-1)
& rr . (6.2)

From (6.1) and (6.2) it follows that

r:-“[Q] G ri’-“[Q]. (6.3)

Because relations can only lose, never gain, tuples in a semijoin program, it is easy
to see that for every k, p, 4 such that p I q, necessarily r$’ C rf’ . In particular,

‘3
b-1) c p*

Hence,

rj’-“[Q] G rj-“[Q 1. (6.4)

From (6.4) and (6.3) and transitivity of set inclusion it follows that

rf-“[Q] c r,‘“-l’[Q]. (6.5)

Because of (6.5), an application of line (i) of the semijoin program causes

rF’[Q] = rj”‘[Q]. (6.6)

Since no line (p) withp > i has either r, or r, on the left-hand side of an assignment
(because j < i < p), it follows that ry) = r:) and ry’ = rf’ From this fact and from
(6.6) we find that

ry’[Q] = r,‘“‘[Q]. (6.7)

But (6.7) simply says that r:[Q] = ri[Q], which was to be shown.
We have shown that for each i (2 5 i 5 n), the relations r: and ri are consistent.

We now show that from this fact and the fact that R, n (RI U - e. U R,-1) C R,, for
each i (2 s i 5 n), it follows that d, . . . , rk are globally consistent. Define qk

(1 5 k 5 n) to be r’l w . . . w r;. We shall prove ,by induction on k (1 5 k I n) that

r: = qk[&] for 15 is k. (64

The k = 1 case is trivial. Assume that (6.8) is true for k (1 5 k < n); we shall show

496 c . BEERI, R. FAGIN, D• MAIER, AND M. YANNAKAKIS

it for k + 1. That is, we shall show that

r~ = qk+x[R,] for 1 __. i _ k + 1. (6.9)

Let V = Rk+l 63 (Rx O . . . O Rk), and let j = jk+x. By defmition o f j --jk+x we know
that V = Rk+x (3 Rj. We have shown that r~+a and rj are consistent, that is, that

r~+l[V] -- r~[V]. (6.10)

Now by (6.8) and the fact that j = jk+l < k + 1, it follows that r~ = qk[Rj]•
So, since V _ Rj, we know that r:[V] = qk[V]. This fact, along with (6.10), im-
plies that r~+l[V] = qk[V]. Hence r~+l and qh are consistent. Therefore r~+l =
(r'k+l t~ @)[Rk+x]. But r~+l t~ qk = qk+l. Hence,

r~+~ ffi qk+~[Rk+,]. (6.1 l)

This proves (6.9) when i = k + 1.
We now prove (6.9) when 1 < i < k. By (6.8) we know that r~ ffi qk[R,]. By

consistency of r~+x and qk (which we showed above), it follows that qk[R,] equals
(r~+a ~ qk)[R,], which in turn equals qk+a[R~]. Putting together the equalities we have
shown in this paragraph, it follows that

r~ = qk+x[R,] for 1 < i _< k. (6.12)

Now (6.11) and (6.12) give us (6.9), which completes the induction step. Hence (6.8)
holds for each k (1 < k _< n), and, in particular, when k ffi n. So r~, . . r ' •, n are
globally consistent, since they are each projections of qn. Thus R has a full reducer,
which was to be shown.

(8) =* (7): Assume that every database over R has a full reducer. We shall show
that every pairwise consistent database over R is globally consistent. Let r =
{r~ rn} be a pairwise consistent database over R. We must show that r is globally
consistent. By assumption, r has a full reducer• However, the input and output to this
semijoin program (the full reducer) are the same, by pairwise consistency. But we are
guaranteed that the output of the full reducer is a globally consistent database. So r
is globally consistent, which was to be shown.

(7) =* (2): We must show that if every pairwise consistent database over R is
globally consistent, then R is a closed-acyclic hypergraph. If this implication is false,
then let R -- {R1 Rn} be a counterexample with n as small as possible and such
that, relative to n, the number of attributes is minimized. By minimality, it follows
easily that R is necessarily connected.

We first show that the Graham algorithm leaves R unchanged. That is, we shall
show that

(a) R, C_ t.J {Rs :j ~ i} for each i. In other words, each attribute is in at least two R;s.
(b) R, f~ R~ if i ~ j. In other words, no R, is a subset of any other Rj.

Assume that either (a) or (b) were false. Then we could apply one step of Graham's
algorithm to obtain R' from R, wherein either an attribute that appears in only one
R, is deleted or else an R, that is a subset of a different Rj is deleted. It is simple to
see that because every pairwise consistent database over R is globally consistent, it
follows that every pairwise consistent database over R' is globally consistent. We
now show that R' is not a closed-acydic hypergraph, which contradicts our assumed
minimality of R. If R' were obtained from R by deleting an attribute that appears in
only one R~, then it is easy to see that a nontrivial, connected, dosed set of edges with

Acycl ic Database Schemes

A 1 A 2 • • • A~ • • •

1 0 0 " "

0 I 0 " "
. . •

0 0 ' ' " I

0 0 0

Ap+l
1
2

I

P

Ap+,~
1
2

I

P

• . . A m

" ' • 1

• • • 2

" ' ' i

F I G U R E 7

497

no art iculation set in R (which exists since R is not closed-acyclic) immedia te ly gives
us the same in R' . I f R ' were obta ined f rom R by deleting an R, that is a subset o f a
different Rj, then R ' and R would have the same reductio n. So R ' is not closed-
acyclic, because R is not (recall that we defined a hypergraph to be closed-acyclic
precisely i f its reduct ion is). This contradicts our assumed minimal i ty o f R. Hence
(a) and (b) above hold•

There are now two cases, depending on whether or not R2 - Rx, Ra - R1, . . . ,
R n - R 1 are connected.

Case 1. R2 - - R b R 3 - R 1 R n - R1 are connected. Assume that R1 has
attributes A1, A2 Ap, and that Ap+x, . . . , Am are the other attributes ~4/'- R1
(where JV is the set o f all attributes). Let relation r be as in Figure 7. There are p
tuples wx wp. Tup!e w, has 1 in co lumn A,, 0 in the other columns o f R~, and i
in the columns o f Jt / - R1. Let r, = r[R,], for 1 _ i _ n. We now show that

r = r2 t~ r3 t~ . . . t~ r,~. (6.13)

Note that the r ight-hand side o f the equali ty in (6.13) is a relation over all o f the
attributes, by (a) above, and so (6.13) at least makes sense• The inclusion

r CC_ r2 t~ ra t~ . . . t~ rn

is automatic, since each r, is a projection o f r. We now prove the opposite inclusion,
that is, that

/ '2 t>¢3 . . . I>~ rn __. r. (6.14)

Let u be a tuple in r2 ~ • .- t~ r,; we must show that u is a tuple in r. Since u is in
r2 t~ . . . t~ r,, we know that u[R,] is in r, for 2 -< i _< n. But r, = r[Ri], s o u [R i] is in
r[R,], for 2 -- i _ n. This means that there is a tuple q, o f r such that u[R,] = q,[R,],
for 2 _< i _< n. We shall show that all o f the q,'s are equal• It then follows that
u equals their c o m m o n value, since by (a) above, all o f the attributes appear in
O (R j : j # 1}. This implies that u is in r, which completes the p roo f o f (6.14), and
hence o f (6.13).

Thus, to prove (6.13), we need only show that all o f the q,'s are equal. I f they are
not all equal, then fmd j and k such that q~ # qk. By assumption, R2 - R1, Ra - R1,
. . . . Rn - R~ are connected. Hence there is a sequence/1 im o f integers, each in
(2 n}, so that

(i) il = j ,
(ii) i,, = k, and

(iii) R,^ - R1 and R,h÷ 1 -- R1 have in c o m m o n an attribute Bh (1 ~ h < m).

Let B^ be as in (iii). Then q,h[Bh] = U[Bh] = q,h÷~[Bh], for 1 ___ h < m. So
q,h and q,h÷, are two tuples o f r that agree on an attribute, namely, Bh, that is not in

498 c . BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

R1. Therefore, q,h and q,^+l are equal (1 ___ h < u), as we see by the definition of r.
Hence, all of the qih's are equal, and, in particular, q,x ffi q,m. But q,~ ffi qj # qk ffi q,m.
This contradiction completes the proof of (6.13).

Let us define rl (with attributes Rx) to contain the tuples of i'1, along with a new
tuple of all O's. I f 2 <_ i <_ n, then R1 f') R, is a proper subset of R~, by condition (b)
above. So, it is easy to see that r'~[R1 f'l R~] -- r~[Ra f3 R,], for 2 _< i _< n. Hence, r' ffi
{r'~, r2 , rn} is pairwise consistent, because r -- {rl, r2 r,,} is pairwise consistent
(in fact, r is even globally consistent, since each member of r is a projection of r).
However, we now show that r' is not globally consistent. I f r ' were globally consistent,
then, as we noted in the discussion following Condition 3.7, each member of r ' would
be a projection of r'~ t~ r2 t~ . . . ~ rn, which equals r~ M (r2 ~ . . . t~ rn), which, by
(6.13), equals r'~ ~ r, which, in turn, equals r. But rl is not a projection er r . Thus r'
is not globally consistent. However, we assumed that every pairwise consistent
database over R is globally consistent. This is a contradiction.

Case 2. R2 - R~, Ra - RI R,, - R~ are not connected. We now show that if
P = (P~ , Pt) is a closed set of edges of R, then every pairwise consistent database
over P is globally consistent. Let p ffi {p~ pt} be a database over P that is
pairwise consistent, where p, has attributes P, (1 _< i ___ t). We must show that p is
globally consistent. We define a database r over R that we shall show is pairwise
(and hence globally) consistent. Let R~ be a member of R. If R, is in P (say R, ffi Pj),
then let r, be pj. I f R, is not in P, then, since P is closed, we know that there is a
member E of P such that R, N ~ C_ E, where ~ is the set of nodes in P. We define r~
by letting r,[R, f'l E] be e[R, f3 E] (where e is the member of P with attributes E) and
letting all other entries (in the other columns) in every tuple in r, be 0. We now show
that r is pairwise consistent. Let R, and Rj be two distinct members of R. We shall
show that r, and r~ are consistent. There are three possibilities.

(a) Assume that R, and Rj are both in P. The consistency of the corresponding
relations r, and rj follows from the pairwise consistency of p.

(b) Assume that R, is not in P but Rj is. Let E and e be as above. Denote R, N R~ by
Q. Since Rj is in P, it follows by defmition of E that Q _ (R, N E). So, since r,
and e are consistent by construction, it follows that

r,[Q] -- e[Q]. (6.15)

We already saw that Q c_ (R, N E) ___ E. Hence, since Q ___ Rj, it follows that
Q c_C_ (Rj N E). Now rj and e are consistent (because both are in the pairwise
consistent database p). Therefore,

r~[Q] = e[Q]. (6.16)

It follows from (6.15) and (6.16) that r,[Q] = rj[Q]. Hence, r, and rj are consistent.
(c) Assume that neither R, nor Rj is in P. Let E and e be as above, and let F

and f be the corresponding items, when we consider Rj instead of R,. Then
(R, N Rj N :) C__ (E N F). Since e and f a r e consistent (being members of p), and
since r, and rj contain only 0 entries for attributes not in : , it follows that r, and
rj are consistent.

Thus we have shown that r is pairwise consistent. Since every pairwise consistent
database over R is globally consistent, we know that r is globally consistent. By
restricting our attention to ~ we see that this implies that p is globally consistent.
Hence every pairwise consistent database over P is globally consistent, which was to
be shown.

Acyclic Database Schemes 499

Since every pairwise consistent database over P is globally consistent, for every
closed subset P of R, it follows by our minimality assumption on R that every proper
closed subset of R is closed-acyclic. Since R itself is not closed-acy¢lic, we know that
some nontrivial, connected, closed set P of edges of R has no articulation set. But P
cannot be a proper subset of R, since if it were, then it would have an articulation set
(because, as we just showed, P is closed-acyclic). Hence R itself is a nontrivial,
connected, closed set of edges with no articulation set.

Now by assumption, R2 - R1, /~ - R1 Rn - R1 are not connected. Let ~ be
a maximal subset of R2 Rn such that {F - R~: F E ~ } is connected. We know
that ~ is a proper subset of {R2 , Rn}. If ~ is {F~; . . . , F~}, then let ~ ' be
{F~, . . . , F~, R~}, the result of adding R~ to the set ~.. Since the only attributes in
common between any member of J " and any member of R not in ~ ' lies in R1,
which is in ~ ' , it follows that ~ ' is a guarded set, with guard R~. Also, ~ ' contains
at least two edges, since ~ contains at least one edge and ~ ' also contains/~1. We
now show that ~ ' is connected.

Clearly ~ is connected. We now show that ~ ' is connected. Assume not; we shall
derive a contradiction. Since ~ is connected and ~ ' is not, it is clear from the
definition o f ~ ' that R~ is disjoint from every member o f ~ . Since R is connected and

is a proper subset of R, it follows that there is an edge S of R that is not in
but which intersects some member E of ~.. Let A be a node in S N E. Then A ~ Rx,
since R~ is disjoint from E. So E - R~ and S - Rz intersect (because both
contain A). Therefore {F - R1 : F E ~ } l..J {S - R1} is connected. This contradicts
maximality of ~.

We have shown that ~ ' is a connected, guarded set of at least two edges. Now
~" is closed, since it is guarded. We also know that ~-' is a proper subset of R, since

is a proper subset of Re Rn. We showed that every proper, closed subset of
R is closed-acyclic. Hence ~ ' is closed-acyclic, and so it has an articulation set. By
Lemma 6.1, this articulation set is an articulation set for the whole hypergraph R.
However, we showed that R has no articulation set. This is a contradiction.

(2) =* (5) =* (1) = , (2): In the proof in [17] that conditions (1) and (5) are
equivalent (i.e., that R is an acyclic hypergraph if and only i f the join dependency
t~R is equivalent to a set of multivalued dependencies), the proof actually showed
the stronger result that if R is a closed-acyclic hypergraph (condition (2)), then the
join dependency t~R is equivalent to a set of multivalued dependencies (condition
(5)), which in turn was shown to imply that R is an acyclic hypergraph (condition
(1)). And, as noted before, the fact that acyclic implies closed-acyclic (i.e., (1) ~=~ (2))
is almost immediate. Thus the implications (2) ~ (5) =* (1) =* (2) are shown in [17].

(2) ~ (4): Assume that R is a closed-acyclic hypergraph. We must show that
Graham's algorithm succeeds with input R. Assume not; we shall derive a contradic-
tion. Recall that Graham's algorithm [21] applies the following two operations to
R = {R~ Rn} repeatedly until neither can be applied:

(a) If A is an attribute that appears in exactly one R,, then delete A from R,.
(b) Delete one R, if there is an Rj with j # i such that R, _ Rj.

The algorithm succeeds if it terminates with the empty set; otherwise, it fails.
We now show that if one step of Graham's algorithm (the application of one of

rules (a) or (b)) is applied to a closed-acyclic hypergraph ~ , then the result ~o, is a
closed-acyclic hypergraph. It follows inductively (on the number of steps of Graham's
algorithm that are applied) that if the input to the algorithm is a closed-acyclic
hypergraph, then the algorithm terminates with a dosed-acyclic hypergraph.

500 C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

Assume first that rule (b) is applied. Then the hypergraphs ~ and v'f' have the
same reduction. Recall that under our definition of"closed-acyclic," a hypergrapli is
closed-acydic precisely ff its reduction is. Thus, since owls closed-acyclic, and since
it has the same reduction as .~ ' , also v'f' is closed-acyclic.

Now assume that rule (a) is applied. Let us call a node of a hypergraph isolated if
it appears in exactly one edge. Let us denote by D the edge of .Yt°tliat contains the
isolated node A that is deleted by the application of rule (a). If S is an edge of
then let S' be S ff S # D, and S ' -- D - {/4} otherwise. We say that S and S' are
corresponding edges of .Ytand ~e,,. Let ~ ' be a nontrivial, connected, closed set of
edges, with no articulation set, in the reduction of Yt'. To show that ~ ' is closed-
acyclic, we must show that ~ ' has an articulation set. Let ~ be the set of correspond-
hag edges in the reduction of ~ . It is easy to see that ~ is closed, nontrivial, and
connected, and hence has an articulation pair (E, F). It is straightforward (except for
one subtlety) to verify that the corresponding edges E', F ' o f ~ ' form an articulation
pair for ~ ' . The subtlety is as follows. Assume that E = D, where D is the edge with
the isolated node A that was just deleted. Assume that after articulation of J~ by the
articulation set E tq F, there are two connected components, one of which consists of
the node A by itself. Then why should E ' t3 F ' be an articulation set for ~ ' ? The
answer is as follows. Under the circumstances we have described, D' is a proper
subset ofF . But then D' is not an edge in the reduction o f ~ ' . This is a contradiction,
since we have assumed that ~ ' is in the reduction of Y~'. Thus ~ ' has an articulation
set E ' f3 F' , as desired.

By assumption, the input to Graham's algorithm is a closed-acyclic hypergraph,
and Graham's algorithm does not succeed. That is, the algorithm terminates with a
hypergraph (call it ~) that is not empty. We just showed that because the input to
Graham's algorithm is closed-acyclic, so is the output. Thus, f# is a closed-acyclic
hypergraph that is nonempty, and to which we cannot apply either of rules (a) or (b)
of Grabam's algorithm. We shall derive a contradiction.

Let us define a knob of a hypergraph to be an edge that contains an isolated node.
(Recall that a node is isolated if it appears in exactly one edge.) We now prove
inductively on the number n of edges in a hypergraph that each reduced, dosed-
acyclic hypergraph with at least two edges contains at least two knobs. We shall then
have our contradiction. For, hypergrapli ~ above is reduced and closed-acyclic. It
has at least two edges: it is nonempty, and if it had only one edge, then every node
would be isolated, and we could apply rule (a) of Graham's algorithm. It has no
knobs, or else we could apply rule (a) of Graham's algorithm.

The basis (n = 1) of the induction is trivial, since it doesn't occur. For the induction
step, assume that ~ is a reduced, closed-acyclic hypergraph with n edges (n > 1),
and that every closed-acydic hypergraph with at least two edges but less than n edges
has at least two knobs. We must show that ~ has at least two knobs.

Since ~ is reduced, closed-acyclic, and has at least two edges, it has an articulation
pair (E, F). Let us write the articulation set E tq F as Q. We can thus partition the
edges of H into two disjoint, nonempty sets ~ and 4 such that whenever F1 ~ ~1
and F2 ~ 4 , then F1 f3 F2 __C Q. There are three cases.

Case 1. ~ and 4 are both singletons. The single member of ~1 is then a knob,
as is the single member of 4 .

Case 2. One of ~ and 4 , say ~ , is a singleton, and the other is not. The edge in
is a knob, since it contains a node not in Q and hence not in any member of 4 .

Now 4 contains at least one of E or F (since ~1 is a singleton). It follows easily that
4 is closed. Now a closed subset of a closed-acyclic hypergraph is a closed-acyclic

Acyclic Database Schemes 501

hypergraph; this follows easily from the simple fact [17] that a dosed subsot of a
closed subset is closed. Thus ~ , considered as a hypergraph, is dosed-acyclic. So by
the induction hypothesis, it contains at least two knobs. We shall show that at least
one of these knobs is a knob of the original hypergraph ~ . There are two subcases.

Case 2a. The edge in 4 is one of E or F, say E. Then F ~ ~ , but E ~ ~ . Now
at least one of the knobs o f ~ is not F. Call this knob V. Then Vhas a node v not in
any other edge in ~ . Hence v ~ F. So v ~ Q, and so v is not in the edge E of 4
(because every node in both an edge of 4 and an edge o f ,~ is in Q). We have
shown that V is a knob of ~ .

Case 2b. The edge in 4 is neither E nor F. So E and F are both in ~ . Now
has two knobs V and W. Since V is a knob of ~ , let v be a node of V that is in

no other member of ~ . Since E and F are both in ~ , we know that v is not in
E N F = Q, and so v is not in the edge of 4 . Hence V is a knob of ~ .

Case 3. 4 and ~ each have at least two edges. There are two subcases.

Case 3a. E and F are not both in the same 4 ; say E ~ 4 and F ~ ~z. Then,
as in case 2, each of 4 and ~ is closed and acyclic, and so by the induction
hypothesis, each contains at least two knobs. Now at least one of the knobs of 4
(respectively, ~) is not E (respectively, F); call one such knob Vx (respectively, V2).
By an argument almost identical to that in case 2a, it follows that V1 and V2 are
knobs of the hypergraph ~ .

Case 3b. E and F are both in the same 4 , say 4 . Let . ,~ = 4 , and let ~ =
U {E}. Thus ~ has all of the edges o f ~ , along with one more edge, namely, E.

It is easy to see that #-~ and ~-~ are closed. Hence, as before, each is a ¢losed-acyclic
hypergraph with at least two edges. It is clear that ~ has strictly fewer edges than
A~, since ff~ has none of the edges in ~z. Further, Y~ has strictly fewer edges than
~ , since ~ does not contain the edge F. So by the induction hypothesis, ~ and
~ each have at least two knobs, and in particular, each has some knob that is not
E. Let V~ be a knob of ~ , where E # E (i = 1, 2). Clearly 111 # V-2, since the only
edge that ~ and ~,~ have in common is E. We now show that V1 and V2 are each
knobs of the hypergraph ~ . Let v be a node in /I1 that does not appear in any other
edge in 4 . Then v ~ E, and so v is not in any edge of ~ (because every node that is
in both an edge of 4 and an edge of ~ is in E tq F). Thus v is an isolated node of
~ , and so V~ is a knob o f ~ . Similarly, II2 is a knob o f ~ .

(10) =* (12): Assume that R has the running intersection property. Let R 1 , . . . , Rn
be an ordering of R as guaranteed by the running intersection property. Thus for
2 _ i ___ n there exists j , < i such that R, (q (RI 0 . . . to R,-~) C. Rj . We now show
that (. . . ((R~ t~ R~) t~ R~) . . . t~ Rn) is a monotone, sequential join expression.
That is, we shall show that if r = (r~ rn) is a pairwise consistent database over
R = (R1 R,~), then the join r~ t~ . . . t~ r~ (which we abbreviate as q,) is consistent
with r,+~ (1 _ i < n).

By an identical argument to that used to prove (6.8), except with r, playing the role
of r', in (6.8), it follows that rm = q,[Rm] whenever m <_ i. In particular, let m = ji+l,
and let V = R~+~ ~ (R~ tA . . . tO R,). Since V _ Rm, it follows that r,~[1I] = q,[V]. But
also r,+~[V] = r,~[V], since r,+~ and rm are consistent. Hence r~+x[V] = q)[V]. So r,+t
is consistent with q,, which was to be shown.

(12) =~ (11): This is immediate, since every monotone, sequential join expression
is a monotone join expression.

502 C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

(11) ,,~ (7): Assume that R has a monotone join expression. We must show that
every pairwise consistent database over R is globally consistent. Let r be a pairwise
consistent database over R. It is not hard to see that since no tuples are lost in joining
together the relations in r as dictated by the monotone join expression, it follows that
every member of r is a projection of the final result Mr. Hence r is globally consistent,
which was to be shown.

This completes the proof. []

7. The MVDs That Are Implied by a Join Dependency

In this section we obtain several characterizations of sets M of MVDs (multivalued
dependencies) such that M is the set of MVDs that are the consequences of a given
join dependency. For simplicity of notation we shall consider only MVDs with the
left-hand and right-hand sides disjoint (recall [15] that every MVD X-->--* Z is
equivalent to an MVD, namely, X-->--~ Z - X, with the left-hand side and right-
hand side disjoint). Thus M + will denote the set of all MVDs X--->--} Y, with X and
Y disjoint, that are implied by the set M. We begin with some definitions.

I f .,~ is a hypergraph, then the set of multivalued dependencies generated by
is the set of MVDs X --->--, Y, where X and Y are (disjoint) sets of nodes and Y is
the union of some connected components of the hypergraph . , ~ - X. (A ,~ - X
is the hypergraph obtained from ~ by deleting the set X of nodes, i.e., g~ - X ---
{E - X: E is an edge of A '~) - (0) .) We then say that X separates off Y (from the rest
of the nodes). A set M of multivalued dependencies is hypergraph generated i f there
is a hypergraph that generates M. Similarly, M is graph generated if there is a graph
(treated as a hypergraph) that generates M. The following theorem is quite helpful.

THF.O~M 7.1 [17, 30, 39]. The set of MVDs implied by a join dependency t~R is
exactly the set of MVDs generated by the hypergraph R.

A multivalued dependency X-->--> Y (with X and Y disjoint) splits two attributes
A and B if one of them is in Y and the other is in U - XY, where U is the set of all
the attributes. A set M of MVDs splits .4 and B if some MVD in M splits them.

LEMMA 7.2. Two attributes A and B are split by a set M of MVDs if and only if
they are split by its closure M +.

PROOF. The "only i f" direction is obvious, since M C M +. For the " if" direction,
consider a relation r with two tuples that agree in all attributes except A and B. It is
easy to see that this relation satisfies exactly those MVDs that do not split A and B.
If M does not split A and B, then r satisfies M and therefore also has to satisfy M+;
hence M + does not split A and B. []

Thus, two logically equivalent sets of MVDs split exactly the same pairs of
attributes. Given a set M of multivalued dependencies, we can construct a graph
G(M) with the attributes as nodes and an edge (A, B) between two attributes A and
B if A and B are not split by M.

Example 7.3. Let U -- {-4, B, C, D} and M = {A --->---> C, C--->--> D). The first
MVD splits C and B, and C and D, and the second MVD splits D and A, and D and
B. The graph G(M) of M is shown in Figure 8. []

LEMMA 7.4. Let M be a set of MVDs, G(M) its graph, and N the set of MVDs
generated by G(M). Then M + CC. N.

PROOF. Let X --->--> Y be an MVD in M +. For every A in Y and B in U - XY,
the MVD X--->-* Ysplits A and B. From Lemma 7.2, M splits A and B, and therefore

Acyclic Database Schemes 503

A A,,~

BI -" OD
FIGURE 8

there is no edge in G(M) connecting a node in Y to a node in U - XY. Thus X
separates off Y from the rest of the nodes, and X--->---> Y is in N. []

The converse to the lemma does not hold; in Example 7.3, the MVD O --->---> D is
generated by G(M) but is not implied by M. We shall show below that the converse
holds exactly for those sets of MVDs that form a cover of the set of MVDs implied
by a given join dependency. (We say that M1 is a cover of Ms if M~ -- M~.)

Let M be a set of MVDs. Two disjoint sets X and Y are called orthogonal if the
MVD U - X Y --->---> X (or equivalently, by the complementation rule for MVDs
[15], U - XY---~---> Y) is implied by M. It follows from Lemma 7.2 and from the
rules for manipulating MVDs [51 that two attributes A and B are orthogonal (i.e., the
singleton sets {A} and {B) are orthogonal) if and only if they are split by M. It
follows from the rules for manipulating MVDs [5] that if X and Y are orthogonal,
then for every pair A, B of attributes where A E X and B E Y, necessarily A and B
are orthogonal. We shall say that M has the orthogonality property if the converse
also holds, that is, two sets X and Y are orthogonal whenever every attribute of X is
orthogonal to every attribute of Y.

We say that M has the intersection property if whenever the MVDs X --->---~ Z
and Y -->---> Z are implied by M (with Z disjoint from both X and 10, then also
X N Y---~---> Z is implied by M.

THEOP, EM 7.5. Let M be a set of multivalued dependencies. The following are
equivalent:

(1) M is a cover of the set of M V D s implied by some join dependency.
(2) M + is hypergraph generated.
(3) M + is graph generated.
(4) There is exactly one graph that generates M r.
(5) M + is the set of MVDs generated by G(M).
(6) M has the intersection property.
(7) M has the orthogonality property.

PROOF. We shall show that (1) and (2) are equivalent and (2) and O) are
equivalent. We then show that (3) =* (6) ~=~ (7) =~ (5) =* (3). Thus, conditions
(1)-(3) and (5)-(7) are all equivalent. We then show that (5) ~=~ (4) ==~ (3), which
shows that (4) is equivalent to the others.

(1) ,~, (2): If M is the set of MVDs implied by the join dependency R, then by
Theorem 7.1 we know that M r is the set of MVDs generated by the hypergraph R.

(2) ~ (3): Let ~ be a hypergraph, and let G = G(~f ~) be the graph o f .~ ; that is,
G has the same nodes as JCfand an edge between every pair of nodes that are in the
same hyperedge of ~ . It is easy to see that a set X of nodes separates off another set
Y in g fff X separates off Y in G. Therefore, the set of MVDs generated by .,~ is the
same as the set of MVDs generated by G.

(3) =* (2): Obvious, since every graph is a hypergraph.

(3) =* (6): Let G be a graph that generates M r. Suppose that X-->---> Z and
Y--->---~ Z are in M r. Because X---~---> Z is in M r, there is no edge in G connecting

504 C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

a node in Z to a node in U - X Z. Similarly, there is no edge in G connecting a
node in Z to a node in U - YZ. Therefore, there is no edge in G connecting a node
in Z to a node in U - [(X n Y) u Z]. Thus X n Y separates off Z in G, and
X n Y ---~---~ Z is in M +.

(6) =* (7): Let X = (A1, A2 Ak} and Y = (Bx, B2 Bm} be two disjoint
sets with every A, orthogonal to every B~. Let Z = U - X Y , let X, = X - A, (i =
1 k), and let Yj = Y - B~ (j -- 1 , m). Since every A, is orthogonal to every
Bj, we have ZX, Y~ --,---~ A, for each i and j. Since M has the intersection property, we
have O (Z X , Y~:j = 1 m} ---~---~ A,. But A { Z X , Y j : j = 1 , m) = ZX,. Thus
ZX, ---~---~ A, or, equivalently, by the complementation rule [15] for multivalued
dependencies, ZX , ---~---~ Y, for each i. Again from the intersection property,
N{ZX, : i = 1 k} ---~--, Y. Since N(ZX, : i = 1 k} -- Z, we have Z---~---~ Y
or, equivalently, Z--~---~ X.

(7) =* (5): Suppose that M has the orthogonality property, and let N be the set of
MVDs generated by G(M). From Lemma 7.4, M + _ N. For the other inclusion, let
X---~--* Ybe an MVD in N, and let Z -~ U - XY . From the definition of N, there is
no edge in G(M) connecting a node in Y to a node in Z. Thus every attribute of Y
is orthogonal to every attribute of Z. Therefore, because of the orthogonality property,
Yis orthogonal to Z, and X---~---~ Yis in M ÷.

(5) =* (3): Obvious.

(5) ~ (4): Let G be a graph that generates M ÷. Let A and B be attributes. A and
B are split by M iff the edge (A, B) is not in G. But also, A and B are split by M iff
the edge (A, B) is not in G(M). Therefore G ffi G(M).

(4) ~ (3): Obvious. []

We can use Theorem 7.5 (and its proof) to give a necessary and sufficient condition
for two join dependencies to imply the same set of multivalued dependencies.

COROLLARY 7.6. Two join dependencies t~R1 and ~R2 imply the same set o f
multivalued dependencies i f and only i f G(R1) = G(R2).

PRoof. (~) : From the proof of Theorem 7.5, the set of MVDs implied by a join
dependency MR is equal to the set of MVDs generated by the hypergraph R and
equal to the set of MVDs generated by the graph G-(R). The result follows easily.

(=*): Let M be the set of MVDs implied by ~R~. By assumption, M is also the set
of MVDs implied by t~R2. Note that M = M +, since M is clearly closed under
implication. From the proof of Theorem 7.5, we see that M is generated by G(R1),
and, similarly, M is generated by G(R2). We know that (1) of Theorem 7.5 holds.
Therefore, by Theorem 7.5 we know that (4) of Theorem 7.5 holds. By (4) of
Theorem 7.5 it follows that G(R1) -- G(R2). []

8. Conflict-Free Sets o f M V D s

The notion of conflict-free sets of MVDs was introduced by Lien [26], who examined
the relationship between the network and relational models. He showed that certain
network structures can be mapped to relational structures whose semantics are
described by a set of MVDs with the contlict-free property (and another additional
property).

As we stated in Section 4, conflict-free sets of MVDs have several nice properties:
(1) They allow a unique fourth-normal-form [15] decomposition, and (2) all MVDs

Acyc l i c Da tabase S c h e m e s 505

participate in the decomposition process; that is, the phenomenon where decomposing
according to one MVD prevents another MVD from being applied does not occur.
Furthermore, Sciore [36, 37] claims that "real-world" sets of MVDs are conflict free.
He argues that if the specified set of MVDs is not conflict free, then this indicates
that part of the semantics is not adequately captured, and he presents ways for
enforcing conflict-freedom.

Let M be a set o f multivalued dependencies. The left-hand sides of the MVDs of
M are called the k e y s of M. This is, of course, a nonstandard use of the word "key."
For all sets X, Y, Z, whenever the MVDs X--->---> Y and X--->--> Z hold (are implied
by M), then also MVDs X--->---> Y A Z, X--->---> Y Z , and X--+---> Y - Z h o l d [15];
that is, the family of sets S such that X --->----> S holds is closed under intersection,
union, and set difference. A consequence of this fact is [15] that there is a partition
of U - X such that X--*---> Y holds iff Y is the union of some sets in this partition.
This partition is called [5] the dependency basis of X and is denoted by DEP(X).

Let us say that an MVD (or set of MVDs) splits a set X if it splits two attributes in
X. Recall that a multivalued dependency V--->---> W splits two attributes A and B if
one of them is in W and the other is in U - VW, where U is the set of all the
attributes. Recall also that a set M of MVDs splits A and B if some MVD in M splits
them. If M is a set of MVDs, then we say that a key X of M splits attributes A and
B if some MVD in M with key X splits A and B.

Defini t ion A. A set M of MVDs is confl ict f r e e if

(1) M does not split its keys, and
(2) DEP(X) fq DEP(Y) ___ DEP(X f3 Y); that is, those sets that are in the dependency

bases of both X and Y are also in the dependency basis of X f') Y.

We shall show later (Corollary 8.10) that part (2) of Definition A can be replaced
by any of the equivalent conditions of Theorem 7.5. Part (2) above is a weak form of
the intersection property of Section 7, restricted only to keys. We shall discuss this
fact in more detail later in this section.

In Theorem 8.9 below, we shall show that a set ~ of MVDs has a conflict-free
cover if and only if X is equivalent to an acyclic join dependency. The (weaker) fact
that a conflict-free set of MVDs is equivalent to a join dependency has been shown
by Sciore [37], with a different proof.

The following definition, which is not very intuitive, is technically useful.

Defini t ion B. " Let X, Y be two keys with dependency bases DEP(X), DEP(Y). X
and Y are confl ict f r e e if

(1) DEP(X) = (V1, . . . , Vk, X , , . . . , X , Z a Y , . . . Y j) and DEP(Y) -- (V1 V~,
YI Yj , Z b X t . . . X ,) , with Z a X = ZbY , and

(2) the sets II1, . . . , Vk that are common to the dependency bases are also in the
dependency basis of X t3 Y; that is, { 1"1 Vk} __ DEP(X N Y).

Part (1) of Definition B requires that the attributes of Y - X belong to the same
set in the dependency basis of X, and similarly for the attributes in X - IT. In Lemma
8.1 below, we shall relate Def'mitions A and B.

We shall make use several times of the following useful inference rule [22], which
Biskup [13] calls the subset rule for MVDs.

Subse t rule f o r M V D s . Assume that Y and W are disjoint. Then the MVDs
X ---~---~ Y and W --->---~ V taken together imply the MVDs X -+-+ Y f) V and
X--)--) Y- V.

506 C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

LEMMA 8.1. The dependency bases of the keys of M have the form of part (1) in
Definition B if and only if M does not split its keys. In particular, a set M of MVDs is
conflict free by Definition A if and only if every pair of its keys is conflict free by
Definition B.

Pt~oor. (=,): Suppose that the dependency bases o f the keys o f M are as in part
(1) in Definition B. Let N = (X--->-, Z : X i s a key of M and Z E DEP(X)}. Then N
is a cover of M, and no MVD of N splits a key. Therefore M does not split its keys.

(4=): Let X, Y be two keys. Let 111, . . . , Vk be the sets common to DEP(X) and
DEP(Y).

Case 1. X - Y # O and Y - X # 0 . Since keys are not split, Y - X is contained
in one set of DEP(X), say Z, which cannot be any of the V~'s, since V~ n Y = 0 .
Similarly, X - Yis contained in a set WofDEP(Y) . Let X1,' Xi be the rest of the
sets in DEP(X) (other than V1 Vh, Z), and Y1, . . . , Y~ the rest of the sets in
DEP(Y) (other than Vx Vk, W). If for some m, n, we had Xm O Y,, not equal to
any of X~, Yn, or ~ , then Xm (respectively, Yn) should be replaced in the dependency
basis DEP(X) (respectively, DEP(Y)) by Xm n Yn and Xm - Y,, (respectively,
Xm n Yn and Yn - Xm); this follows from the subset rule for MVDs (above) and
the fact that Xm and Yn are each disjoint from each of X and Y. Therefore, for every
X,~, Yn, either Xm n Yn = O or Xm n Y,, -- Xm ---- Yn. The last case is impossible,
since the common sets are Vx Vk. Thus Xm n Yn = @. Since Xm n Y = @ for
each m and Y,, n X = O for each n, we must have Xm __C W and Yn _C Z. Let L --
U - XYV~ . . . VkX~ . . . X,Y~ . . . Yj. Then Z = (Y - X)LYx . . . Yj and W - -
(X - Y)LX1 . . . X,. Let Za = (Y - X)L and Zb -- (X - Y)L. Then Z~,X=
XYL = ZbY.

Case 2. X___ Y(or Y _ X). The arguments are similar. The idea is that DEP(Y)
is a refinement of DEP(X). However, only one set of DEP(X) is refined, namely, the
one that contains Y - X (or X - Y, if Y __C_ X).

Finally, the second sentence of Lemma 8.1 follows immediately from the first
sentence. []

As we noted earlier, part (2) of Definition A is a weak form of the intersection
property of Section 7, restricted only to keys. The definition depends on the keys of
M. That is, a set of MVDs that is not conflict free may have a conflict-free cover. For
example, one can always add to a conflict-free set of MVDs some redundant MVDs
to destroy conflict-freedom.

Example 8.2. Suppose M = (E -->---> B, EA --->---> C} where U = (.4, B, C, D,
E}. Clearly, M is conflict free: DEP(E) = (B, ACD}, and DEP(EA) - (B, C, D}.
However, i f we add the (redundant) MVD EAB --->---> C to M, it is no longer conflict
free, since the key EAB is split by E --->---> B. []

Lien [26] circumvents this problem by requiring that every pair of essential keys be
conflict free. A key is essential if deleting from M all the MVDs that have it as the
key will change the closure M +. Lien deals with a different kind of MVDs than we
do, called "MVDs with nulls," where pseudotransitivity [5] does not hold. In this
case, (1) DEP(X) for a key X is determined by those MVDs whose key is contained
in X, and, as a consequence, (2) two logically equivalent sets of MVDs have the same
essential keys.

Since here we are dealing with ordinary MVDs, we shall first revisit some of the
properties of conflict-free sets of MVDs in our context. First, let us note that

Acyclic Database Schemes 507

properties (1) and (2) above do not hold for sets of ordinary M-VDS~ event i f t l~ set
is conflict free.

Example 8.3. Failure of property (1): Let U = (A, B, C, D} and M -
{.4 ---~--, B, AB ---~--, C}. Clearly, M is conflict free: DEP(A) = {B, C, D}
and DEP(AB) = {C, D}. However, the MVD A --~--* C cannot be derived with-
out AB ---~---~ C. Failure of property (2): Let U = {.4, B, C, D, E} and N =
(E ---~.--, B, EAB ----~---, C}. It is easy to see that N is logically equivalent to the set M
of Example 8.2. Both sets are minimal covers of M + and N +, and thus each key is
essential for the corresponding sets. However, M and N have distinct (essential) keys,
and moreover N is not even conflict-free, since the key EAB is split. O

Properties (1) and (2) above hold in some form even for conflict-free sets of
ordinary MVDs. Let us call a set M of MVDs full i f it contains all MVDs in
the dependency basis of its keys; that is, if the dependency basis of a key X is
DEP(X) = (X1 Xn}, then M contains the MVDs X---~---~ X, for i = 1 n. I f
N is any set of MVDs, the full version of N is the full set M of MVDs that has the
same keys as N and is logically equivalent to N. From the definition it follows that
N is conflict free if and only if its full version is also conflict free.

LEMMA 8.4. Let M be a full set of MVDs that does not split its keys. Then for every
set X, the dependency basis of X is determined by the keys that are contained in X; that
is, if Mx is the set of those MVDs in M whose key is contained in X, then M implies an
MVD X---~---~ Y if and only if Mx implies it.

PROOF. Let ~- be the dependency basis of X with respect to Mx. We need only
show that ~ is the dependency basis of X with respect to M. Assume not; we shall
derive a contradiction. Since ~ i s not the dependency basis of X with respect to M,
it follows from a result of Hagihara et al. [22], which is essentially a converse to the
subset rule for MVDs, that there is an MVD V---~---* W in M but not in Mx (thus
V ~ X), and there is a set S in ~ s u c h that V f~ S = ~ and W N S~is neither empty
nor equal to S. Since V ¢3 S = O and V ~ X, there is some attribute in V - X that
is in a different member of ~ t h a n S, and so there is a key X1 _ X of M that splits
an attribute of V - X and an attribute of S. Since S is a set in ~ we know that S is
not split by the key X1; since keys are not split, V - X1 is also not split by X1. But by
the subset rule for MVDs, the dependency V--,---~ W can be used to split the set
containing S in the dependency basis of X1. Thus there is a nonempty proper subset
S~ of S such that the MVD Xx ---~--* S~ is a consequence of M. Since M is a full set
of MVDs and X~ is a key of M, it follows that the MVD X~ --*---~ S~ is in M. By
definition of Mx, it follows that this MVD is also in Mx. By augmentation [5], this
MVD X1 ---~---~ S~ logically implies the MVD X ---~--* $1. Thus Mx logically implies
the MVD X---~--~ Sa, and so S ~ ~ since $1 is a nonempty proper subset of S. This
is a contradiction. []

LEMMA 8.5. Let M be a full set of MVDs that does not split its keys. Then X is an
essential key if and only if there are two attributes A and B that are split by an MVD
implied by M with key X but not by an MVD in M with key properly contained in X.

PROOF. (7) : Let X be an essential key. Define M ' to be the result of deleting
from M all MVDs with key X. The dependency basis of X with respect to M must be
a freer partition of U - X than the dependency basis of X with respect to M' , since
X is an essential key. Let S ' be the set in the dependency basis of X with respect to
M' , such that S ' properly contains a set S of the dependency basis of X with respect
to M. Let A be an attribute in S, and let B be an attribute in S ' - S. Clearly, A and

508 C. BEERI, R. FAGIN, D. MAIER~ AND M. YANNAKAKIS

B are split by the MVD X---,--, S, which is an MVD implied by M. We need only
show that A and B are not split by any MVD in M with key properly contained in
X. Assume not; we shall derive a contradiction. Thus we assume that A and B are
split by an MVD X' ---~---~ Y in M with key X' ~ X. Since X' ---~---, Y is in M' , it
follows by augmentation [5] that M' implies the MVD X--*---~ Y. Since S' N Y and
S' - Y are each nonempty (one contains A and one contains B), this contradicts the
fact that S ' is in the dependency basis of X with respect to M'.

(~) : Let A and B be two attributes that are split by an MVD implied by M with
key X but not by any MVD in M with key that is a proper subset of X. Assume that
X is not an essential key; we shall derive a contradiction. By assumption, there is an
MVD X ---.--, Y that is implied by M such that one of A or B is in Y - X and the
other is in U - XY. As before, define M ' to be the result of deleting from M all
MVDs with key X. Since X is not an essential key, and since M ~ X --*---~ Y, we
know that M ' ~ X---,---~ Y. By Lemma 8.4 it follows that M ~ X---.---~ Y. Now M~
does not split A and B, and so, by Lemma 7.2, neither does (M~) ÷. However,
X---~---~ Y splits A and B, and we just showed that X---~---. Y is in (M~) ÷. This is a
contradiction. []

COROLLARY 8.6. Let M and N be two logically equivalent full sets of MVDs that
do not split keys. Then M and N have the same essential keys.

PROOF. Let X be an essential key of M; we must show that X is an essential key
of N. By Lemma 8.5 there is an MVD X ---~--, Y with key X in M that splits two
attributes A and B that are not split by any key of M properly contained in X. Since
X --*---~ Y is in M and M ÷ = N ÷, it follows that N ~ X --*--* IT. So, to show that X
is an essential key of N, it follows from Lemma 8.5 that we need only show that A
and B are not split by any MVD)(1 ---~---~ Y1 of N where X~ is a proper subset of X.
If not, then since Xx ---~---* Y~ is in N and M + = N +, it would follow that M
Xt --*---~ Y~. By Lemma 8.4 it would follow that Mxl ~ XI ---~---~ Yx. But then A and
B would be split by a key of M that is contained in X~ and hence properly contained
in X. This is a contradiction. []

Given a set M of MVDs, a decomposition algorithm replaces a relation scheme
R by the two relation schemes R N X Y and R N XZ, on the basis of an MVD
X ---~---~ Y in M (where Z = R - XY); these new relation schemes can be further
decomposed on the basis of another MVD in M, etc. Lien proposed [28] a decom-
position algorithm which from a set M of MVDs produces a fourth normal form [15]
nonredundant database scheme R, that is, a fourth normal form database scheme R
that cannot be further decomposed and such that no relation scheme is contained in
another relation scheme. This algorithm is a modification of Fagin's decomposition
algorithm [15], where (1) the full version of the set M of MVDs is used, that is, for
every key K we include all MVDs K---*--, Y, where Y E DEP(K), and (2) keys are
processed in nondecreasmg order, that ts, the keys are ordered as K1 Kn with
K, ~ Kj if t > j, and in the ith stage (i = 1 n) the existing relation schemes are
decomposed according to the dependency basis of If.,. An ordering as in (2) above is
called a p-ordering. For example, any ordering of the keys by nondecreasing cardi-
nality is a p-ordering, Lien [26] shows that if M is a conflict-free set of MVDs, then
all p-orderings produce the same decomposition. We shall show that this decompo-
sition has a join dependency which is equivalent to M.

LEMMA 8.7. Let M be a conflict-free set of MVDs and G(M) its graph. For any
p-ordering, Lien's algorithm produces a database scheme R which consists of the
maximal cliques of G(M). Moreover, M is equivalent to the join dependency t~R.

Acyclic Database Schemes 509

0o

sO/"

FIGURE 9

PROOF. We can consider the application of Lien's algorithm as the construction
of a decomposition tree T with the nodes labeled by sets of attributes, where the root
is labeled with the set U of all the attributes and the leaves are labeled with the
schemes of R. Every internal node v is labeled with a set Rv which at some stage
(when v was a leaf) was decomposed by the MVDs of a key into subsets of Re that
label the sons of v. We shall identify a node of T with its label.

We begin by showing that (1) every clique of G(M) is contained in some leaf of T,
and (2) every leaf of T is a clique of G(M).

(1) From the construction of G(M), no key can split a clique of G(M). The
conclusion follows then, by an easy induction, from the fact that every clique of
G (M) is contained in the root U.

(2) Suppose that a leaf S of T contains two attributes A and B that are not adjacent
in G(M). Let Ks be a minimal key of M that splits A and B. Let Wbe the lowest
(smallest) ancestor of S that contains K,. Since Ks splits A and B (two elements
of S), it follows that the ancestor of S that was a leaf at this stage (just before the
MVDs with key K, were applied) did not contain K,. Therefore, Wis an ancestor
of S that was decomposed by some key Kj, with j < i. W is in fact a proper
ancestor of S (i.e., W # S), since Ks _ Wbut K, ~ S (because S is a leaf). Let W1
be the son of W in the path to S, and let W2 be the son that contains Ks; see
Figure 9. (Some son of W contains K,, since M does not split its keys.) We have
Ks _ W, W2 and K, (~ W1. Let DEP(K,) = {VI Irk, X1 Xn,
ZaYI . . . Ym) and DEP(Kj) -- { V~ Vk, Y~ , Ym, ZbX~ . " X,,) with
ZaK, = ZbKj. Since j < i, it follows that K, - Kj # 0 (from the p-ordering), and
so hq N Zb # ~. By construction, W2 is the interse'ction of Wwith KjT, where
T is a member of the dependency basis of Kj. Since W2 contains Ks and
K, fq Zb # O, this member of the dependency basis is ZbX1 . . . Xn. Therefore
W2 = W N (K~ZbX~ . . . Xn). Thus S C. W~ C_ KjVI . . . VkY1 . . . ym.
Since K, splits A and B, it follows that at least one of A or B, say A, must
belong to some Vt and B ~ Vt. (This is because from the fact that W1 _
KjVt . . . VkY~ . . . Ym, it follows that the only sets of DEP(K,) that can contain
members of W~ are the Vt's and one other, namely, Z. Y~ . . - Ym.) From conflict-
freedom, M implies the MVD K, N Kj -->---> Vt, and therefore, from Lemma 8.4,
there is a key Ks contained in Ks A ~ such that Ks --->--) Vt, and thus this MVD
splits A and B. Since K, ~ Kj, it follows that Ks is a proper subset of K~. This
contradicts the minimality of Ks.

From (1) and (2) it follows that every maximal clique of G(M) is a set in R, the
database scheme produced by the algorithm. Since as Lien showed [28], the algorithm
produces nonredundant database schemes, it follows from (2) that R is precisely the
set of maximal cliques of G(M). Therefore, the graph G(R) equals G(M), and the set
of MVDs implied by the join dependency tmR is equal to the set N of MVDs
generated by the hypergraph R, which is equal to the set of MVDs generated by the

510 C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

graph G(M). By Theorem 7.1 we know that t~R ~ N, and from Lemma 7.4 we have
N ~ M. So by transitivity, t~R ~ M. From 'the correctness of the algorithm,
M ~ t~R. Thus M is equivalent to the join dependency t~R. [:]

We shall now prove a converse to Lemma 8.7 and thereby establish the equivalence
of condition (6) in Theorem 3.4 to the rest of the conditions. It is already known [17]
that the set of MVDs implied by an acyclic join dependency t~R has a cover of size
polynomial in the size (number of sets) of R. We shall construct a linear conflict-free
c o v e r .

THEOREM 8.8. Let R be an acyclic hypergraph, where ~/~ is the set t3R of nodes.
The join dependency t~R is equivalent to a conflict-free set M of multivalued depend-
encies with I g l -< min(IRI - l , I X I - 1).

Note. By I s I we mean the number of members of set S.

PROOV. The join dependency of a hypergraph and the join dependency of its
reduction are logically equivalent [7]. It follows easily that we can therefore assume
without loss of generality that R is a reduced acyclic hypergraph.

We now show that since R is reduced and acyclic, it follows that [R I -< I -Arl • One
way of seeing this is by using Theorem 3.4(3) and Theorem 3.2. Since R is reduced
and acyclic, it consists precisely of the maximal cliques of a chordal graph. A chordal
graph has at most [d¢'[maximal cliques [18], and therefore [R[_< [~/'1. Another way
of proving this inequality is by defming a mapping h: ~---> R, where h(A) is the
unique set of R that contains A, when A is eliminated in the application of Graham's
algorithm to R. It is not hard to show then that h is onto; that is, for every Rj in R
there is an A such that h(A) = Rj.

Let T be a join tree for R. Let (Rj, Rk) be an edge of T labeled by the set S =
R~ N Rk. Deletion of the edge breaks T into two subtrees T' and T". Let .A/", M/" be
the unions of the nodes in these two subtrees, respectively. We correspond to the
edge (R~, Rk) the multivalued dependency S--->---> X - S. Note that the other MVD
S--->---> .At" -- S can be derived from S--->---> ~ ' - S. It follows easily from Theorem
7.1 that t~R implies every such MVD, since Tis a join tree and S = ~ ' N .At".

Let M be the set of MVDs that correspond to the edges of T. Since Tis a tree with
I R I nodes , w e have I M I -- I R I - 1 (see, e.g., [101). W e noted above that t~R ~ M.
It remains to show that (1) M ~ t~R, and (2) M is conflict free.

(1) M implies t~R. The proof is by induction on I R I. The basis ([R I -- l) is trivial.
For the induction step, suppose that the result holds for I R[___ n - 1, and let R =
{R1 Rn} be an acyclic reduced hypergraph with n hyperedges. Let T be a join
tree for R, and let M be the corresponding set of MVDs.

Let R, be a leaf of T, let Rj be the node adjacent to it in the join tree, and let S --
R, N Rj. Let JV' be the union of all nodes of T but R,. From the definition of a join
tree we have R, rl .A ~' = R, n R~ -- S. Let T' be the tree obtained from T by deleting
R,; T' is a join tree for R' = R - (R,}, and R' is a reduced, acyclic hypergraph.

Let X---~---> Y be the MVD in M that corresponds to an edge of T other than the
edge (R,, Rj). The MVD that corresponds to the same edge in T' is X---~--->
Y N JV'. The MVD X-->---, Y (with universe ~/') implies [15] the embedded MVD
X --->---> Y rl Jv ' with universe ~4/"; in other words, if a relation r over the set
of attributes ./V satisfies X --->--> Y, then its projection on ~4/" satisfies X ---->---,
YA ~V'.

Let r now be a relation over .A ~ that satisfies the set M of multivalued dependencies.
The projection r ' of r on ~r, satisfies the set M ' of multivalued dependencies that

Acyclic Database Schemes 511

correspond to the edges of T'. From the induction hypothesis, r ' satisfies the join
dependency t~R'; that is, r' is equal to the join of its projections on the sets Rk in R
with k # i. Since Rk _C aV', we have r'[Rk] = r[Rk] for every such Rk. From the
MVD of M that corresponds to the edge (R,, Rj), we conclude that r satisfies the
MVD S ---~---> R~ - S, that is, r = r[R~] ~ r'. Therefore, r = r[R1] ~ . . . ~ r[Rn], and
r satisfies the join dependency t~R.

(2) M is conflict free. Since every key of M is contained in a hyperedge of R (a
node of T), it is easy to see that M does not split keys, and therefore M satisfies
condition (1) of conflict-freedom by Lemma 8.1. Since M is equivalent to t~R, it has
the intersection property (by Theorem 7.5) and therefore satisfies also condition (2)
of conflict-freedom. []

The following theorem relates conflict-freedom and acyclicity.

THEOREM 8.9. A set ~ of multivalued dependencies has a conflict-free cover if and
only if Y2 is equivalent to an acyclic join dependency.

PROOF. (~) : From Theorem 8.8 an acyclic join dependency is equivalent to a
conflict-free set M of MVDs. Therefore, M is a conflict-free cover of X.

(~) : From Lemma 8.7, since X has a conflict-free cover M, it follows that ~ is
equivalent to a join dependency. By Theorem 3.4, this join dependency must be
acyclic. []

Note that the word "cover" is necessary in Theorem 8.9, since a set ~ of MVDs
that is not conflict free may have a conflict-free cover M and therefore be equivalent
to an acyclic join dependency. Also, there are cyclic join dependencies t~R such that
the set of MVDs implied by ~aR has a conflict-free cover. As a simple example, the
empty set is a cover for the set of MVDs implied by the cyclic join dependency
 (AB, Bc, Ac}.

COROLLARY 8.10. A set M of multivalued dependencies is conflict free if and
only if
(1) M does not split its keys, and
(2) M satisfies any one of the (equivalent) conditions of Theorem 7.5.

Pt~ooF. The first condition is the same as condition (1) of Definition A. If M is
a conflict-free set of MVDs, then by Theorem 8.9 we know that M is equivalent
to an (acyclic) join dependency. Thus M satisfies condition (1) of Theorem 7.5.
So, if M is a conflict-free set of MVDs, then it satisfies conditions (1) and (2) of
Corollary 8.10.

Conversely, assume that M satisfies conditions (1) and (2) of Corollary 8.10. Then
M satisfies condition (1) of Definition A. Furthermore, M has the intersection
property (this is condition (6) of Theorem 7.5). It is easy to see that the intersection
property implies condition (2) of Definition A. []

ACKNOWLEDGMENTS. The authors are grateful to Marc Graham, Maria Klawe, Jeff
Ullman, Moshe Vardi, and Carlo Zaniolo for helpful comments.

REFERENCES

1 AHO, A.V, BEERI, C , AND ULLMAN, J D. The theory of joins in relational databases. ACM Trans.
Database Syst. 4, 3 (Sept. 1979), 297-314.

2. ARMSTRONG, W.W. Dependency structures of database relattonships. In Proc. IFIP 74, North
Holland, Amsterdam, 1974, pp 580-583

512 C. BEERI, R. FAGIN, D. MAIER, AND M. YANNAKAKIS

3. BACIIMAN, C.W. Data structure diagrams. Data Base 1, 2 (1969), 4-10.
4. BATINI, C., D'ATRI, A., AND MOSC~XNI, M. Formal tools for top-down and bottom-up generation

of acyclic relational schemata. Prec. 7th Int. Conf. on Graph-Theoretic Concepts in Computer Science,
Linz, Austria, 1981.

5. BEERI, C., FAGIN, R , AND HOWARD, J.H. A complete axlomatization for functional and multivalued
dependencies in database relations. In Proc. Int. Conf. on Management of Data (Toronto, Ont., Can.,
Aug. 3-5, 1977), ACM, New York, 1977, pp. 47-61.

6. BE~RI, C., FAGIN, R., MAIER, D., MENDELZON, A.O., ULLMAN, J.D., AND YA~n~AKMOS, M. Properties
of acyclic database schemes In Proc. 13th Ann. ACM Syrup. on Theory of Computing (Milwaukee,
Wise, May 11-13, 1981), ACM, New York, 1981, pp 355-362.

7. BEERI, C., MENDELZON, A.O., SAGIV, Y, AND ULLMAN, J.D. Equivalence of relauonal database
schemes. S lAM J. Comput. 10, 2 (June 1981), 352-370.

8 BEERI, C., AND RlSSANEN, J. Faithful representation of relational database schemes Res. Rep.
RJ2722, IBM Research Laboratory, San Jose, Calif., 1980.

9. BEERI, C., AND VARDI, M Y. On the properties of join dependencies. In Advances m Database
Theory, H Gallaire, J. Minker, and J-M. Nicolas, Eds, Plenum, N.Y., 1981, pp. 25-72.

10 BERGE, C Graphs and Hypergraphs. North-Holland, Amsterdam, 1976.
11 BERNSTEIN, P.A, AND CHIU, DW. Using semi-joins to solve relational queries. J ACM28, 1 (Jan.

1981), 25--40.
12. BERr~SanBIN, P.A., AND GOODMAN, N Thepowerofnaturalsemijoins SIAMJ. Comput 10,4(Nov.

1981), 751-771.
13 BISKUP, J. Inferences of multivalued dependencies in fixed and undetermined universe. Theor

Comput. Sci. 10 (1980), 93-105.
14. CODD, E.F. A relational model of data for large shared data banks Commun. ACM 13, 6 (June

1970), 377-387.
1.5. FAGIN, R. MulUvalued dependenctes and a new normal form for relational databases. A CM Trans.

Database Syst. 2, 3 (Sept. 1977), 262-278.
16. FAGIN, R Degrees of acydlctty for hypergraphs and relaUonal database schemes J ACM 30, 3

(July 1983), 514-550
17. FAGIN, R., MENDELZON, A.O, AND ULLMAN, J.D. A smaplified universal relation assumption and

tts properttes. ACM Trans. Database Syst. 7, 3 (Sept 1982), 343-360
18. GOLUMBIC, M.C. Algorahm~c Graph Theory and Perfect Graphs. Academic Press, New York, 1980
19. GOODMXN, N., AND SmaUELI, O Charactenzauons of tree database schemas Tech. Rep., Harvard

Univ., Cambridge, Mass., 1981
20. GOODMAN, N., AND SnMUELI, O. Tree queries A simple class of queries. ACM Trans. Database

Syst. 7, 4 (Dec. 1982), 653-677.
21 GRAHAM, M H. On the umversal relatton Tech. Rep., Umv. of Toronto, Toronto, Ont, Can, Sept.

1979.
22. HAGIHARA, K., ITO, M., TANIGUCHI, K , AND KASAMI, T. Decision problems for multwalued

dependencies in relauonal databases SlAM J Comput. 8, 2 (May 1979), 247-264.
23. H o r ~ v ~ N , P. Functional dependencies and the universal instance property in the relational model

of database systems Ph.D. DissertaUon, Princeton Univ., Princeton, N.J, 1980
24. HOr,mVMAN, P, Lho~r~R, R.E, AND Y^NNAKArdS, M Testing the universal instance assumpUon. Inf.

Proc. Left. 10, 1 (1980), 14-19
25. KORTH, H.F., AND ULLMhN, J.D. SYSTEM/U" A database system based on the umversal relatton

assumpnon. Prec XP1 Workshop, Stony Brook, N.Y., June 1980.
26 LmN, Y.E On the equwalence of database models J. ACM 29, 2 (Apr. 1982), 333-362
27 LIEN, Y.E. MulUvalued dependencies with null values m relational data bases. In Proc 5th Int.

Conf. on Very Large Data Bases (Rao de Janeiro, Brazil, Oct. 3-5, 1979), ACM, New York, pp. 61-66
28. LIEU, Y.E. Hierarchical schemata for relauonal databases. ACM Trans. Database Syst 6, 1 (Mar

1981), 48-69
29. MAmR, D. Discarding the universal instance assumption Preliminary results Prec XPI Workshop,

Stony Brook, N.Y., June 1980
30 MAmR, D., SAGIV, Y., AND YANNAr~rdS, M On the complexity of testing unphcaUons of functional

and join dependencies. J. ACM 28, 4 (Oct 1981), 680-695.
31. MENDELZON, A O., AND MAmR, D. Generalized mutual dependencies and the decomposmon of

database relations. In Proc. 5th Int. Conf. on Very Large Data Bases (Rao de Janeiro, Brazd, Oct 3-5,
1979), ACM, New York, pp. 75-82

32 RISSANEN, J Theory of relattons for databases--A tutorial survey. In Proc. 7th Symp on Mathe-
matical Foundations of Computer Science, Lecture Notes m Computer Science 64, J. Winkowskl, Ed,
Sprmger-Verlag, pp. 537-551

Acyclic Database Schemes 513

33. RlSSANEN, J. Independent components of relations. ACM Trans. Database Syst. 2, 4 (Dee. 1977),
317-325

34 PdSSANEN, J. On eqmvalence of database schemes. In Proc lstACM Conf. on Principles of Database
Systems (Los Angeles, Calif., Mar. 29-31, 1982), ACM, New York, 1982, pp. 23~-26.

35. SCIORE, E The umversal instance and database design. Ph D. Dissertation, Princeton, Univ,
Princeton, N.J., 1980.

36. ScIoRE, E. Some observations on real-world data dependencies Proc. XPI Workshop, Stony Brook,
N.Y, June 1980.

37. SCIORE, E. Real-world MVDs. In Proc Int. Conf on Management of Data (Ann Arbor, Mich., Apr.
29-May 1, 1981), ACM, New York, 1981, pp 121-132.

38. TAP, JAN, R.E., AND YANNAKAKIS, M. Stmple hnear-ttme algorithms to test chordality of graphs, test
acychcity of hypergraphs, and selectively reduce acychc hypergraphs. Tech. Pep., Bell Laboratories,
Murray Hill, N.J., Mar. 1982.

39. VARDI, M.Y Infernng multivalued dependencies from funcUonal and join dependencies. Tech.
Rep., Weizmarm Institute, Rehovot, Israel, 1980

40. VARDI, M.Y. On decomposiuon of relational databases. In Proc. 23rd IEEE Syrup. on Foundations
of Computer Sctence (Chicago, Ill., Oct. 1982), IEEE, New York, 1982, pp 176-185.

41. VASSILIOU, Y Null values m database management--A denotational semantics approach. In Proc.
lnt. Conf on Management of Data (Boston, Mass, May 30-June 1, 1979), ACM, New York,
pp 162-169.

42 WALKER, A Time and space m a lattice of umversal relations with blank entries. Proc. XPI
Workshop, Stony Brook, N Y, June 1980

43. YArmAKArdS, M. Algonthms for acychc database schemes. In Proc. 7th Int. Conf. on Very Large
Data Bases (Cannes, France, Sept. 9-11, 1981), ACM, New York, 1981, pp. 82-94.

44. Yu, C.T, AND OZSOYOGLU, M.Z An algomhm for tree-query membership of a distributed query
Proc 1979 IEEE COMPSAC, IEEE, N.Y., 1979, pp 306-312

45. ZAIqXOLO, C. Analys~s and destgn of relauonal schemata for database systems. Ph.D. Dissertation,
Umv of California at Los Angeles, July 1976. Avadable as Tech. Rep UCLA-ENG-7669.

RECEIVED MAY 1981; REVlSED APRIL 1982; ACCEPTED MAY 1982

Jourttal of the Assoetattort for Computing Machtttery, VoL 30, lqo 3, Iuty 1983

