On Forward Checking for Non-binary
Constraint Satisfaction *

Christian Bessiére!, Pedro Meseguer?, Eugene C. Freuder®, and Javier Larrosa*

! LIRMM-CNRS, 161 rue Ada, 34392 Montpellier, France
bessiere@lirmm.fr,
2 TIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain
pedro@iiia.csic.es,
8 University of New Hampshire, Durham, NH 03824, USA
ecf@cs.unh.edu,
* Dep. LSI, UPC, Jordi Girona Salgado, 1-3, 08034 Barcelona, Spain

larrosa@lsi.upc.es

Abstract. Solving non-binary constraint satisfaction problems, a cru-
cial challenge for the next years, can be tackled in two different ways:
translating the non-binary problem into an equivalent binary one, or ex-
tending binary search algorithms to solve directly the original problem.
The latter option raises some issues when we want to extend definitions
written for the binary case. This paper focuses on the well-known for-
ward checking algorithm, and shows that it can be generalized to several
non-binary versions, all fitting its binary definition. The classical version,
proposed by Van Hentenryck, is only one of these generalizations.

1 Introduction

Up to now, most of the research done in constraint satisfaction assumes that con-
straint problems can be exclusively formulated in terms of binary constraints.
While many academic problems (n-queens, zebra, etc.) fit this condition, many
real problems include non-binary constraints. It is well known the equivalence
between binary and non-binary formulations [8]. Theoretically, this equivalence
solves the issue of algorithms for non-binary problems. In practice, however,
it presents serious drawbacks concerning spatial and temporal requirements,
which often make it inapplicable. The translation process generates new vari-
ables, which may have very large domains, causing extra memory requirements
for algorithms. In some cases, solving the binary formulation can be very ineffi-
cient [1]. In any case, this forced binarization generates unnatural formulations,
which cause extra difficulties for constraint solver interfaces with human users.

An alternative approach consists in extending binary algorithms to non-
binary versions, able to solve non-binary problems in their original formulations.

* P. Meseguer and J. Larrosa were supported by an Integrated Action financed by the
Generalitat de Catalunya, and by the Spanish CICYT project TIC96-0721-C02-02,
C. Bessiére was supported by an “action CNRS/NSF” under Grant no. 0690, and
E.C. Freuder by the National Science Foundation under Grant No. IRI-9504316.

This approach eliminates the translation process and its drawbacks, but it raises
other issues, among which how a binary algorithm is generalized is a central
one. For some algorithms, like backtracking or MAC, this extension presents
no conceptual difficulties: their binary definitions allow only one possible non-
binary generalization. For other algorithms, like forward checking (FC), several
generalizations are possible.

In this paper, we study how the popular FC algorithm can be extended to con-
sider non-binary constraints. We present different generalizations, all collapsing
to the standard version in the binary case. Our intention is mainly conceptual,
trying to draw a clear picture of the different options for non-binary FC. We
also provide some experimental results to initially assess the performance of the
proposed algorithms with respect to other non-binary FC algorithms previously
presented.

This paper is organized as follows. In Section 2, we present basic concepts
used in the rest of the paper. In Section 3, we show the different ways in which
binary FC can be generalized into non-binary versions. In Section 4, we provide
properties and analysis of these generalizations, relating them to the algorithm
FC+ [1]. In Section 5, we provide experimental results of the proposed algorithms
on random ternary problems. Finally, Section 6 contains some conclusions and
directions for further research.

2 Preliminaries

A finite constraint network CN is defined as a set of n variables X = {1, ...,z },
a current domain D(x;) of possible values for each variable z;, and a set C of
constraints among variables. A constraint c¢; on the ordered set of variables
var(cj) = (zj,,-.., %),) specifies the relation rel(c;) of the allowed combina-
tions of values for the variables in var(c;). rel(c;) is a subset of Do(zj,) X --- X
Do (zj,;), where Do(z;) is the initial domain of z;. (The definition of a constraint
does not depend on the current domains.) An element of Do(x;,) X -x Do(j, ;)
is called a tuple on var(c;). An element of D(zj,) x---x D(;, ;) is called a valid
tuple on var(cj). We introduce the notions of initial and current domains to ex-
plicitly differentiate the initial network, CNy, from a network CN, obtained at
a given node of a tree search after some operations (instantiations and/or filter-
ing). The tuple Ip on the ordered set of past variables P represents the sequence
of instantiations performed to reach a given node. The set X'\ P of the future
variables is denoted by F. The tuple Ip on P is said to be consistent iff for all
¢ such that var(c) C P, Ip satisfies c.

A value a for variable z is consistent with a constraint ¢ iff & ¢ var(c), or
there exists a valid tuple in rel(c) with value a for x. A variable x is consistent
with a constraint c iff D(x) is not empty and all its values are consistent with
c. A constraint ¢ is arc consistent iff for all € var(c), is consistent with c. A
set of constraints C' is arc consistent iff all its constraints are arc consistent [6,
7.

Let C = {c1,...,ci} be a set of constraints. We will denote by AC(C) the
procedure which enforces arc consistency on the set C.! Given an arbitrary
ordering of constraints ¢y, ..., ¢k, we say that AC is applied on each constraint
in one pass (denoted by AC({c1}),...,AC({cr})) when AC is executed once
on each individual constraint following the constraint ordering. We will denote
by II,csD(x) the Cartesian product of the domains of the variables in S. Let
o be a tuple on the set of variables S. The projection of o on a subset S’ of S,
denoted by o[S’], is the restriction of o to the variables of S’. The projection
c[S'] of the constraint ¢ on the subset S’ of var(c) is a constraint defined by
var(c[S']) = S', and rel(c[S']) = {t[S]/t € rel(c)}. The join of o and a relation
rel(c) on var(c), denoted by o X rel(c), is the set {t/t is a tuple on S U var(c),
and t[var(c)] € rel(c), and ¢[S] = o}.

3 From Binary to Non-binary FC

FC (from now on, bFC) was defined in [4] for binary constraint networks. They
described bFC as an algorithm pursuing this condition at each node,

there is no future unit having any of its labels inconsistent with any past
unit-label pairs

where unit stands for variable, and label for value. Values in future domains are
removed to achieve this condition, and if a future domain becomes empty, bFC
backtracks. This condition is equivalent to require that the set 057 » composed
of constraints connecting one past and one future variable, is arc consistent. To
do this, it is enough performing arc consistency on the set Cg s of constraints
involving the current and a future variable, each time a new current variable
is assigned (Proposition 2, Section 4.1). In addition, arc consistency on this set
can be achieved by computing arc consistency on each constraint in one single
pass (Corollary 1, Section 4.1). With this strategy, after assigning the current
variable we have,

AC(Cy ;) = AC(CYf) = AC({er}), ..., AC({ey}) (@)
where ¢; € C! ; and |C! ;| = ¢. So, bFC works as follows,

bFC: After assigning the current variable, apply arc consistency on each con-
straint of C’g s in one pass. If success (i-e., no empty domain detected), con-
tinue with a new variable, otherwise backtrack.

How can the FC strategy be extended for non-binary constraints? It seems
reasonable to achieve arc consistency (the same level of consistency as bFC)

! Abusing notation, we will also denote by AC(C) the set of values removed by the
procedure AC(C).

on a set of constraints involving past and future variables. In the binary case,
there is only one option for such a set: constraints connecting one past variable
(the current variable) and one future variable. In the non-binary case, there are
different alternatives. We analyze the following ones,

1. Constraints involving at least one past variable and at least one future vari-
able;

2. Constraints or constraint projections involving at least one past variable and
ezactly one future variable;

3. Constraints involving at least one past variable and ezactly one future vari-
able.

Considering option (1), we define the set C}' ; of the constraints involving at
least one past variable and at least one future variable, and the set Cg‘, s composed
of constraints involving the current variable and at least one future variable. The
big difference with the binary case is that, in these sets, we have to deal with
partially instantiated constraints, with more than one uninstantiated variable.
In this situation, the equivalences of (a) no longer hold for the non-binary case,
that is,

AC(Cyp) # AC(CLy) # AC({er}), .-, AC({eq}) (B)
where ¢; € C7!; and |C}' ;| = g. Then, we have different alternatives, depending
on the set of constraints considered (C’g jorCF f) and whether arc consistency
is achieved on the whole set, or applied on each constraint one by one. They are
the following,

nFC5: After assigning the current variable, make the set CJ! s arc consistent. If
success, continue with a new variable, otherwise backtrack.

nFC4: After assigning the current variable, apply arc consistency on each con-
straint of CI’)" 7 in one pass. If success, continue with a new variable, otherwise
backtrack.

nFC3: After assigning the current variable, make the set C'! ¢ arc consistent. If
success, continue with a new variable, otherwise backtrack.

nFC2: After assigning the current variable, apply arc consistency on each con-
straint of C’g 7 in one pass. If success, continue with a new variable, otherwise
backtrack.

Regarding options (2) and (3), we define the set C}'; of the constraints in-
volving at least one past variable and exactly one future variable, and the set C'';
of the constraints involving the current variable and exactly one future variable.
Analogously, we define the set C'P}’; of the constraint projections? involving at
least one past variable and exactly one future variable, and the set CP!; of the
constraint projections involving the current variable and exactly one future vari-
able. Both cases are concerned with the following generalization of («) (proved

in Section 4.1), stating that after assigning the current variable we have,
AC(Cy,) = AC(CLy) = AC({ar}), -, AC({eq}) ()

2 A constraint projection is computed from the constraint definition which involves
initial domains.

X ={z,y,z,u,v,w}, every domain is {a,b, c}

C1 c2 c3
z y zlu v wlz y w
a a ala a ala a a
a b cla b blab c
a c blc ¢ ¢
Assign| Alg. Action
(z,a) [nFCO none
nFCLAC({erle, y]}), AC({e1[z, 21}), AC({esle, y]}), AC ({es[e, w]})
nFC2 AC({c1}), AC({c3})
nFC3 AC({C17 63})
nFC4 AC({c1}), AC({c3})
nFC5H AC({c1,c3})
(u,a) [nFCO none
nFCl AC ezl 1)), AC({ealu wl})
nFC2 C({c2})
nFC3 C({c2})
nFC4 AC({c1}), AC({CQ}) AC ({c3})
nFC5 AC({c1,c2,c3})
(z, a)[nFCO[nFC1[nFC2[nFC3[nFC4|[nFC5
D(z)] a a a a a a
D(y)|a,b,c| a,b | a,b | a,b | a,b | a,b
D(z)|a,b,cla,b,cla,b,c ¢ |a,b,c| a,c
D(u)|a,b,cla,b,c|a,b,cla,b,cla,b,cla,b,c
D(v)|a,b,c|a,b,c|a,b,cla,b,cla,b,cla,b,c
D(w)|a,b,c| a,c | a,c | a,c | a,c | a,c
(u, a)[nFCO[nFC1[nFC2[nFC3[nFC4[nFC5
D(z)| a a a a a a
D(y)|a,b,c| a,b | a,b | a,b a a
D(z)|a,b,c|a,b,cla,b,c| a,c | a,c a
D(u)| a a a a a a
D(v) |a,b,c| a,b a a a a
D(w)l|a,b,c| a a a a a

Fig.1. A simple problem and the filtering caused by the six algorithms, after the as-
signments (z,a) and (u,a).

where ¢; € CF') and |C7,| = ¢. As a result, only one alternative exists for each
of the options (2) and (), and they are the following,

nFC1: ([5]) After assigning the current variable, apply arc consistency on each
constraint of C2; UC P in one pass. If success, continue with a new variable,
otherwise backtrack.

nFCO0: ([10]) After assigning the current variable, apply arc consistency on each
constraint of C'; in one pass. If success, continue with a new variable, oth-
erwise backtrack.

To illustrate the differences between the six proposed algorithms, a simple
example is presented in Figure 1. It is composed of 6 variables {z,y, z, u, v, w},
sharing the same domain {a,b,c}, and subject to three ternary constraints,
c1(z,y,2), ca(u,v,w) and cs(x,y,w). After the assignment (x,a), none of the
constraints have two instantiated variables. Therefore, nFCO does no filtering.

nFC1 applies arc consistency on the constraint projections of ¢; and c¢3 on the
subsets {z,y}, {z, 2z} and {x,w}, removing ¢ from D(y) and b from D(w). nFC2
applies arc consistency on ¢; and later on c3, pruning the same values as nFC1.
Notice that if we consider these constraints in a different order, the filtering will
be different. nFC3 achieves arc consistency on the subset {c;,c3}, which causes
the filtering of nFC2 plus the removal of b from D(z). Given that x is the first
instantiated variable, nFC4 applies arc consistency on the same constraints as
nFC2, and it causes the same filtering. For the same reason, nFC5 performs the
same filtering as nFC3.

After the assignment (u,a), none of the constraints have two instantiated
variables. So, nFC0 does no filtering. nFC1 applies arc consistency on the con-
straint projections of ¢; on the subsets {u,v} and {u,w}, removing ¢ from D(v)
and ¢ from D(w). nFC2 applies arc consistency on ¢2, and it removes b and ¢
from D(v) and ¢ from D(w). nFC3 achieves arc consistency on the subset {c2},
thus causing the same filtering as nFC2 (differences in D(z) come from the pre-
vious assignment). nFC4 applies arc consistency on the constraints ¢;, co and
c3, removing b from D(y) and D(z), b and ¢ from D(v) and ¢ from D(w). nFC5
achieves arc consistency on the whole constraint set. It removes b from D(y), ¢
from D(z), b and ¢ from D(v) and ¢ from D(w).

4 Formal Results on nFC

4.1 Properties

In the next results, we prove the equivalences of () used in Section 3.

Proposition 1 Let ¢ be a constraint such that all its variables but one are in-
stantiated. If ¢ is made arc consistent, it remains arc consistent after achieving
arc consistency on any other problem constraint.

Proof. Let ¢ be another constraint sharing an uninstantiated variable z; with
c. If ¢ is made arc consistent after ¢, this may cause further filtering in D(z;)
but ¢ will remain arc consistent since all remaining values in D(z;) are already
consistent with ¢. O

Corollary 1 Let C be a set of constraints such that all their variables but one
are instantiated. Achieving arc consistency on C is equivalent to make each of
its constraints arc consistent in one pass.

Proposition 2 Let P be the ordered set of past variables. Let Cp, 1 be the set of
constraints involving at least one past variable and exactly one future variable.
If each time a variable of P was assigned, the set C.1 of constraints involving
that variable and one future variable was made arc consistent, the set Cp, 1 is arc
consistent.

Proof. Let us assume that C.; has been made arc consistent after assigning
each variable in P. If C}, ; is not arc consistent, this means that there is at least
one of its constraints ¢ which is not arc consistent. Let z; be the last assigned
variable in wvar(c). Because of Proposition 1 this is in contradiction with the
assumption that it was made arc consistent after assigning xy. Therefore, C), 1
is arc consistent. O

Regarding the correctness of the proposed algorithms, we have to show that
they are sound (they find only solutions), complete (find all solutions) and ter-
minate. All algorithms follow a depth-first strategy with chronological back-
tracking, so it is clear that all terminate. Then, we have to show soundness and
completeness.

Proposition 3 Any nFCi (i:{0,...,5}) is correct.

Proof. Soundness. We prove that, after achieving the corresponding arc con-
sistency condition, the tuple Ip of past variables reached by any algorithm is
consistent. When this tuple includes all variables, we have a solution. The sets
of constraints to be made arc consistent by the proposed algorithms all include
the set Cp 1 of nFCO. By Proposition 1, we know that once those constraints are
made arc consistent, they remain arc consistent after processing any other con-
straint. So, proving this result for nFC0O makes it valid for any nFCi algorithm
(i:{0,...,5}). If Ip of nFCO is inconsistent then at least one constraint ¢ involv-
ing only variables in P is inconsistent. Let z; and z; be the two last assigned
variables in var(c), in this order. After assigning x;, ¢ was in Cj1 which was
made arc consistent. Assigning «; a value inconsistent with ¢ is in contradiction
with the assumption that C); was made arc consistent. So, Ip is consistent.

Completeness. We show completeness for nFC5, proofs for other algorithms
are similar. Given a variable ordering, it is clear that nFC5 visits all successors
of nodes compatible with such ordering where the set C}'; can be made arc
consistent. Let us suppose that there is a node solution, Ip, where all variables
are past. If z,, is the last variable to be instantiated, the parent node Ip\(,,}
is a node where Cz?,f can be made arc consistent. By induction, nFC5 visits the
node solution [p. O

At a given node k, we define the filtering caused by an algorithm nFCi,
P(nFCi, k), as the set of pairs (x,a) where a is a value removed from the future
domain D(z) by the corresponding arc consistency condition.

Proposition 4 At any node k these relations hold,

1. $(nFCO,k) C $(nFC1,k) C $(nFC2, k)
2. ®(nFC2,k) C (nFC3,k) C $(nFC5, k)
3. (nFC2,k) C $(nFC4,k) C $(nFC5, k)

Proof. Regarding nFC0 and nFC1, the relation is a direct consequence of C!y C

o1 UCP, . Regarding nFC1 and nFC2, constraint projections are semantically
included in C ;. Regarding nFC2 and nFC3, applying arc consistency on each
constraint of C’g ;s In one pass is part of the process of achieving arc consistency

on the set C'' ;. Regarding nFC3 and nFC5, C'; C CF ;. Regarding nFC2 and
nFC4, C, C CF ;. Regarding nFC4 and nFC5, applymg arc consistency on each
constraint of C”’ s in one pass is part of the process of achieving arc consistency
on the set C’I’}J. O

Regarding nFC3 and nFC4, their filterings are incomparable as can be seen in
example of Figure 1. (After assigning (z, a), nFC3 filtering is stronger than nFC4
filtering; the opposite occurs after assigning (u,a).) A direct consequence of this
result involves the set of nodes visited by each algorithm. Defining nodes(nF C1)
as the set of nodes visited by nFCi until finding a solution,

Corollary 2 Given a constraint network with a fized variable and value order-
ing, the following relations hold,

1. nodes(nFC2) C nodes(nFC1) C nodes(nFCO0)
2. nodes(nFC5) C nodes(nFC3) C nodes(nFC2)
3. nodes(nFC5) C nodes(nFC4) C nodes(nFC2)

4.2 Complexity Analysis

In this subsection, we give upper bounds to the number of constraint checks
the different nFC algorithms perform at one node. First, let us give an upper
bound to the number of checks needed to make a variable x; consistent with
a given constraint c. For each value b in D(x;), we have to find a subtuple ¢
in ITyeypar(c)\{z;} P() such that o extended to (x;,b) is allowed by c. So, the
number of checks needed to make z; consistent with ¢ is in O(d - |V]), where
V' = Hyevar(e)\{z,;} P(2), and d denotes the maximal size of a domain.

In nFCO0, a constraint ¢ is made arc consistent at a given node iff var(c)
contains only one future variable. Thus, enforcing arc consistency on ¢ is in O(d)
since |V | = 1. (Domains of past variables are singletons.) Therefore, the number
of checks performed by nFCO at one node is in O(|C;;| - d). For the same reason
the number of checks performed by nFC1 at one node is in O(|C2; UC P, |- d), as-
suming that the constraint projections have been built in a preprocessmg phase.

In nFC2 and nFC4, |V| is bounded above by dlv*"()"FI=1 for a given con-
straint ¢, and a given future variable z; in var(c). Thus, making «; consistent
with ¢ is bounded above by d - dlvem()"FI=1 "and enforcing arc consistency on c
is in O(|var(c) NF|-dver()"F]) since there are |var(c) N F| variables to make arc
consistent with c¢. So, the number of checks performed at one node is in O(|C7 ;|-
lvar(c) N F| - dver(©)0Fl) for nFC2, and in O(|C ol lvar(c) N | ~dlver(@nFly for
nFC4.

At a given node in the search, nFC3 (resp. nFC5) deals with the same set of
constraints as nFC2 (resp. nFC4). The difference comes from the propagations
nFC3 (resp. nFC5) performs in order to reach an arc consistent state on C';
(resp. C’I’}J), whereas nFC2 (resp. nFC4) performs “one pass” arc consistency
on them. Thus, if we suppose that arc consistency is achieved by an optimal
algorithm, such as GAC4 [7] or GAC-schema [2], the upper bound in the number
of constraint checks performed by nFC3 (resp. nFC5) at a given node is the same

as nFC2 (resp. nFC4) bound. (With an AC3-like algorithm [6], nFC3 and nFC5
have a greater upper bound.)

4.3 FC+ and nFC1

The hidden variable representation is a general method for converting a non-
binary constraint network into an equivalent binary one [3,8]. In this represen-
tation, the problem has two sets of variables: the set of the ordinary variables,
those of the original non-binary network, with their original domain of values,
plus a set of hidden variables, or h-variables. There is a h-variable h. for each
constraint ¢ of the original network, with rel(c) as initial domain (i.e., the tuples
allowed by ¢ become the values in Dg(h.)). A h-variable h. is involved in a bi-
nary constraint with each of the ordinary variables z in var(c). Such a constraint
allows the set of pairs {(a,t)/a € Do(x),t € Do(he), t[x] = a}.

FC+ is an algorithm designed to run on the hidden representation [1]. It
operates like bFC except that when the domain of a h-variable is pruned, FC+
removes from adjacent ordinary variables those values whose support has been
lost. Besides, FC+ never instantiates h-variables. When all its neighboring (or-
dinary) variables are instantiated, the domain of a h-variable is already reduced
to one value. Its assignment is, in a way, implicit. Therefore, there is a direct
correspondence between the search space of FC+ and any nFC. The following
proposition shows that FC+ is equivalent to nFC1.

Proposition 5 Given any non-binary constraint network, nFC1 visits exactly
the same nodes as FC+ applied to the hidden representation, provided that both
algorithms use the same variable and value orderings.

Proof. Because of the algorithmic description of FC+, we know that h-variables
may only have their domain pruned by the bFC look ahead. An arbitrary h-
domain, D(h.), may only be pruned if P Nwvar(c) # 0, and D(h.) = {(Ip X
rel(c))[var(c)]}. Domains of ordinary variables may only be pruned by the extra
look ahead of FC+. At a given node, value b for a future variable x; belongs to
D(x;) iff it still has support from all its adjacent h-variables that may have been
pruned. That is, Vz; € F, b € D(x;) iff Ve s.t. var(c) N P # 0 and z; € var(c),
b€ D(he)lz;] = ((Ip W rel(c))[var(c)])[z;] = (Ip M rel(c))[z;]. Now, because
of its definition, we know that at a given node nFC1 ensures that value b for
a future variable z; belongs to D(x;) iff it is consistent with the projections
rel(c)[var(c) N P U {z;}] for all the constraints ¢ such that var(c) N P # 0
and x; € var(c). That is, Va; € F, b € D(z;) iff Ve s.t. var(c) N P # § and
zj € var(c), b € (Ip M (rel(c)[var(c) N P U {z;}]))[x;] = (Ip X rel(c))[var(c) N
PU{xz;}][z;] = (Ip M rel(c))[z;], which is exactly what we found for FC+. Since
FC+ and nFC1 prune exactly the same values on the ordinary variables at a
given node, we have the proof. O

5 Experimental Results

We have performed some experiments to preliminary assess the potential of
the proposed algorithms. In our experiments we have used random problems
extending the well known four-parameter binary model [9] to ternary problems
as follows. A ternary random problem is defined by four parameters (n, m, p1, p2)
where n is the number of variables, m is the cardinality of their domains, p; is the
problem connectivity as the ratio between existing constraints and the maximum
number of possible constraints (the problem has exactly pin(n — 1)(n — 2)/6
constraints), and p, is the constraint tightness as the proportion of forbidden
value triplets between three constrained variables (the number of forbidden value
triplets is exactly 7' = pam?). The constrained variables and their nogoods are
randomly selected following a uniform distribution.

We performed experiments on the following classes of problems:

(a) (10,10,100/120, p2),

(b) (30,6, 75/4060, p2),

(c) (75,5,120/67525, p2).

Regarding connectivity, (a) is a dense class while (b) and (c) are sparse classes.
The complexity peak location appears in (a) at low tightness, in (b) at medium
tightness, and in (c) at high tightness.

We solved 50 instances for each set of parameters, using nFC0, nFC1, FC+,
nFC2, nFC3, nFC4, and nFC5,% with the heuristic minimum % for
variable selection and lexicographic value selection. Figure 2 shows the mean
number of visited nodes to solve each problem class. Only the complexity peak
region is shown. With no surprise, it is in agreement with Corollary 2, which
establishes that nF'CO is the algorithm visiting the most nodes while nFC5 is the
one that visits the least nodes. Because of Proposition 5, nFC1 and FC+ visit
the same nodes. The new information is about the relation between nFC3 and
nFC4, algorithms unordered by Corollary 2. Consistently in the three problem
classes, nFC4 visits less nodes than nFC3, which implies that nFC4 performs
more pruning than nFC3.

Figures 3 and 4 show the average computational effort! (as mean number
of consistency checks and mean CPU time) required. We observe that, for easy
problems (with peak at low tightness) the winner is nFCO0, the algorithm that
performs the simplest lookahead. For this class of problems, sophisticated forms
of lookahead do not pay-off: the proposed algorithms nFC1 to nFC5 are 1.8 to 4.8
times slower than nFCO at the peak. FC+ on the hidden representation is orders
of magnitude slower. For problems with the peak at medium tightness, no single
algorithm clearly outperforms the others. nFC0, nFC1, nFC2, and nFC5 are very
close. nFC3 and nFC4 are slightly worse. The bad behavior of FC+ is confirmed.
For difficult problems with the peak located at high tightness, the proposed

% In nFC3 and nFC5, the technique used to achieve arc consistency on a set of con-
straints is a brute force non optimal GAC3-based algorithm.

* This effort includes the preprocessing phase for nFC1 and the conversion into the
hidden representation for FC+.

<10,10,100/120,T/1000>
10000 T T T T

mean number of nodes

10 L L L L L L L
160 180 200 220 240 260 280 300
T (number of forbidden tuples)
<30,6,75/4060,T/216>
100000 T T T T

10000

1000

mean number of nodes

100

10 L L L L L
80 90 100 110 120 130 140
T (number of forbidden tuples)

<75,5,120/67525,T/125>
1le+08 T T

nFCO0 ——

le+07
1le+06
100000

10000

mean number of nodes

1000

100

10 . . .
60 65 70 75 80 85 90 95
T (number of forbidden tuples)

Fig. 2. Average number of visited nodes for three classes of ternary random problems.

<10,10,100/120,T/1000>
le+08 T T T T

1e+07

BB

1le+06 | m&ﬁ%%:i:: % \:m?_.@

100000

mean number of ccks

10000 =7 E

1000 L L L L L L L
160 180 200 220 240 260 280 300
T (number of forbidden tuples)
<30,6,75/4060,T/216>
le+08 T T T

FC+ ——
nFC4 -+

le+07
le+06

100000

mean number of ccks

10000 F

1000 L L L L L
80 90 100 110 120 130 140
T (number of forbidden tuples)
<75,5,120/67525,T/125>
le+09 T T

FC+ ——

1le+08
le+07

le+06

mean number of ccks

100000

10000 [¥

1000 . . .
60 65 70 75 80 85 90 95
T (number of forbidden tuples)

Fig. 3. Average number of checks for three classes of ternary random problems.

<10,10,100/120,T/1000>

100 T T T T
FC+ ——
m
(7]
2]
£
[}
£
=
Q.
o
c
©
(5]
1S
001 & L L L L L
160 180 200 220 240 260 280 300
T (number of forbidden tuples)
<30,6,75/4060,T/216>
100 T T T T
FC+ ——
nFC4 —+—
nFC3 -=--
nFCL
nFCO -&--
10 ¢ NFC2 -x- 7
S nFC5 o
Q
2]
£
[}
£ 1f
=)
Q.
o
c
©
(3]
1S
0.1
80 90 100 110 120 130 140
T (number of forbidden tuples)
<75,5,120/67525,T/125>
1000 T T T
nFCO ——
I
[
2]
£
Q
£
3
Q.
=]
c
3
Q
£
0.01 % ‘ ‘ ‘ ‘
60 65 70 75 80 85 90 95

T (number of forbidden tuples)

Fig. 4. Average cpu time for three classes of ternary random problems.

algorithms nFC1 to nFC5 clearly outperform nFCO0. Even FC+ performs better
than nFCO. The winner is nFC5, the algorithm which performs the greatest effort
per node, and causes the highest filtering. It is 32 times faster than nFCO at the
peak. The good behaviour of nFC4 in number of visited nodes has no translation
in performance. However, nFC2 visiting more nodes than nFC4 is the second
best algorithm in performance in the three problem classes. Considering FC+,
it has the worst performance for loose and medium constraints, and it is the
second worst (after nFCO) for tight constraints. Any of the proposed algorithms
outperforms FC+ in the three problem classes.

We can also point out some other noteworthy phenomena that are not vis-
ible in the figures reported here. First, on the problem classes presented there,
nFCO is the only algorithm that encountered an exceptionally hard problem,
located in the satisfiable region of the (75,5,120/67525, p2) class. Second, when
the heuristic minimum domain size for variable selection is used instead of
minimum demainsize) B becomes more frequently subject to thrashing, even

degree
on problem sizes remaining very easy for the algorithms nFC1 to nFC5.

6 Summary and Conclusion

We presented several possible generalizations of the FC algorithm to non-binary
constraint networks. We studied their properties, and analyzed their complex-
ities. We also compared these non-binary algorithms to the binary FC+ algo-
rithm, which runs on the hidden conversion of non-binary networks.

We provided initial empirical results on the performance of these algorithms.
From them, we conclude that the proposed algorithms outperform existing ap-
proaches on sparse problems with tight constraints. On easier problems, the
benefits caused by their early lookahead do not outweigh the propagation effort.
This unsurprising conclusion fits the already known trade-off between benefits
and costs in constraint satisfaction. Nevertheless, more empirical studies are
needed to substantiate which of these algorithms are promising, and on which
constraints they perform better. An ultimate goal could be to exhibit a crite-
rion under which to decide when a constraint should be processed by the nFCO
principle, and when it should be propagated with a more pruningful mechanism.
The result would be a mixed algorithm, taking the best of both techniques.

References

1. F. Bacchus and P. van Beek. On the conversion between non-binary and binary
constraint satisfaction problems. In Proceedings AAAI’98, pages 311-318, Madison
WI, 1998.

2. C. Bessiére and J.C. Régin. Arc consistency for general constraint networks: pre-
liminary results. In Proceedings IJCAI’97, pages 398-404, Nagoya, Japan, 1997.

3. R. Dechter. On the expressiveness of networks with hidden variables. In Proceedings
AAATI’90, pages 556-562, Boston MA, 1990.

4. R.M. Haralick and G.L. Elliot. Increasing tree seach efficiency for constraint sat-
isfaction problems. Artificial Intelligence, 14:263-313, 1980.

10.

. J. Larrosa and P. Meseguer. Adding constraint projections in n-ary csp. In J.C.
Régin and W. Nuijtens, editors, Proceedings of the ECAI’98 workshop on non-
binary constraints, pages 41-48, Brighton, UK, 1998.

A K. Mackworth. On reading sketch maps. In Proceedings IJCAI’77, pages 598—
606, Cambridge MA, 1977.

R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings ECAI’8S,
pages 651-656, Munchen, FRG, 1988.

F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfaction
problems. In Proceedings ECAI’90, pages 550-556, Stockholm, Sweden, 1990.

B. Smith. Phase transition and the mushy region in constraint satisfaction prob-
lems. In Proceedings ECAI’9/, pages 100-104, Amsterdam, The Netherlands, 1994.
Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge, MA, 1989.

