
Artificial Intelligence 173 (2009) 1204–1219
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Solving connected row convex constraints by variable elimination

Yuanlin Zhang ∗, Satyanarayana Marisetti

Department of Computer Science, Texas Tech University, Lubbock, TX, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 July 2008
Received in revised form 18 May 2009
Accepted 26 May 2009
Available online 2 June 2009

Keywords:
Constraint satisfaction problems
Connected row convex constraints
Variable elimination
Path consistency
Constraint composition

We propose an algorithm for the class of connected row convex constraints. In this
algorithm, we introduce a novel variable elimination method to solve the constraints. This
method is simple and able to make use of the sparsity of the problem instances. One of
its key operations is the composition of two constraints. We have identified several nice
properties of connected row convex constraints. Those properties enable the development
of a fast composition algorithm whose complexity is linear to the size of the variable
domains. Compared with the existing work including randomized algorithms, the new
algorithm has favorable worst case time and working space complexity. Experimental
results also show a significant performance margin over the existing consistency based
algorithms.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Constraint satisfaction techniques have found widespread applications in combinatorial optimisation, scheduling, con-
figuration, and many other areas [3]. However, Constraint Satisfaction Problems (CSP) are NP-hard in general. One active
research area is to identify tractable CSP problems and find efficient algorithms for them.

Many interesting tractable problems have been identified (see [3]). The focus of this paper is on a class of connected row
convex constraints (CRC). Some problems, e.g., the scene labeling problem and constraint based grammar examples given in
[8], are CRC constraints.

Row convex constraints were first proposed by van Beek and Dechter [8]. If a problem composed of row convex con-
straints is path consistent, it is tractable to find one of its solutions. However, in general path consistency does not preserve
the row convexity of constraints. Global consistency is therefore not guaranteed after path consistency is enforced on a row
convex problem. Deville et al. [4] restrict row convexity to connected row convexity (CRC) which is preserved under the path
consistency enforcing operations – intersection and composition of constraints. One can find a solution of CRC constraints
by enforcing path consistency. Deville et al. also provide an algorithm more efficient than the general path consistency al-
gorithm by making use of certain properties of row convexity. The algorithm has a worst case time complexity of O (n3d2)

with space complexity of O (n2d) where n is the number of variables, d the maximum domain size. Recently, Kumar [5]
has proposed a randomized algorithm for CRC constraints with time complexity of O (γn2d2) and space complexity O (ed)

(personal communication) where e is the number of constraints and γ the maximum degree of the constraint graph.
In this paper, we propose a new algorithm to solve CRC constraints with time complexity of O (nσ 2d + e′d2) where σ

is the elimination degree and e′ the number of edges of the triangulated graph of the given problem. We observe that the
satisfiability of CRC constraints is preserved when a variable is eliminated with proper modification of the constraints on
the neighbors of the eliminated variable. The new algorithm simply eliminates the variables one by one until it reaches a
special problem with only one variable.

* Corresponding author.
E-mail address: yzhang@cs.ttu.edu (Y. Zhang).
0004-3702/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2009.05.004

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:yzhang@cs.ttu.edu
http://dx.doi.org/10.1016/j.artint.2009.05.004

Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219 1205
In the matrix representation of a CRC constraint, the contour of the 1’s shows some “monotonicity” which results in
very nice properties. Those properties make it possible to develop a fast algorithm with time complexity of O (d) for the
composition of two constraints, a key operation of the elimination algorithm.

In this paper, we present the elimination algorithm (Section 3) after the preliminaries on CRC constraints (Section 2).
The properties of CRC constraints and methods to compute their composition are then shown in Section 4. We discuss the
elimination algorithm on problems with sparse constraint graphs in Section 5. Empirical study of the algorithm is presented
in Section 6 before we conclude the paper.

2. Preliminaries

A binary constraint satisfaction problem (CSP) [6,7] is a triple (V , D, C) where V is a finite set of variables, D = {Dx | x ∈ V
and Dx is the finite domain of x}, and C is a finite set of binary constraints over the variables of V . As usual, we assume
there is only one constraint on a pair of variables. We use n, e, and d to denote the number of variables, the number of
constraints, and the maximum domain size of a CSP problem. We use i, j, . . . and x, y, . . . to denote variables in this paper.
The constraint graph of a problem (V , D, C) is a graph with vertices V and edges E = {{i, j} | ci j ∈ C}. A CSP is satisfiable if
there is an assignment of values to variables such that all constraints are satisfied.

Assume there is a total ordering on each domain of D . Functions succ(u, Di) (u ∈ Di) and pred(u, Di) (u ∈ Di) denote
respectively the successor and predecessor of u in the current domain Di∪ {head, tail} where head and tail do not belong to
any domain and head (tail respectively) is smaller (larger respectively) than any other value of the domain. The domain Di
is omitted when it is clear from the context.

Given a constraint ci j and a value a ∈ Di , the extension set ci j[a] is {b ∈ D j | (a,b) ∈ ci j}. ci j[a] is also called the image of a
with respect to ci j . We use ci j[a].min to denote min{v ∈ ci j[a]}, and ci j[a].max to denote max{v ∈ ci j[a]}. Clearly, ci j[head] =
ci j[tail] = ∅.

Standard operations of intersection and composition can be applied to constraints. The composition of cix and cxj , denoted
by cix ◦ cxj , is a constraint

{
(a, c) | a ∈ Di, c ∈ D j, ∃b ∈ Dx such that (a,b) ∈ cix and (b, c) ∈ cxj

}

on i and j. It is convenient to use a Boolean matrix to represent a constraint ci j . Its rows and columns are ordered by the
ordering of the values of Di and D j .

A constraint ci j is arc consistent (AC) if every value of Di has a support in D j and every value of D j has a support in Di .
A CSP problem is arc consistent if all its constraints are arc consistent. A path x, . . . , y of a constraint graph, i.e., a sequence
of variables, is consistent if for any assignments x = a and y = b such that (a,b) ∈ cxy , there is an assignment for each of
other variables in the path such that all constraints over the path are satisfied by the assignments. A constraint graph is
path consistent if every path of the graph is consistent. A CSP is path consistent if the completion of its constraint graph is
path consistent. A CSP is partially path consistent if its constraint graph is path consistent [1].

A constraint ci j is row convex if there exists a total ordering on Di and D j respectively such that the 1’s are consecutive in
each row and column of the matrix of ci j , i.e., for any u ∈ Di (v ∈ D j respectively) ci j[u] = [ci j[u].min, ci j[u].max] (c ji[v] =
[c ji[v].min, c ji[v].max] respectively). The reduced form of a constraint ci j is obtained by removing from Di and D j those
values whose images with respect to ci j are empty. For a row convex constraint ci j , the image of a ∈ Di can be represented
as an interval [u, v] where u is the minimal and v is the maximal value of D j such that (a, u), (a, v) ∈ ci j . A row convex
constraint ci j is connected if the images [a,b] and [a′,b′] of any two consecutive rows or columns of ci j are not empty
and satisfy that their intersection is not empty, b = pred(a′), or b′ = pred(a). A constraint ci j is connected row convex if
its reduced form is row convex and connected. The constraints obtained from the intersection or composition of two CRC
constraints are still connected row convex. The transposition of a CRC constraint is still connected row convex. Enforcing
path consistency on a CSP of CRC constraints will make the problem globally consistent [4].

The consistency property on row convex constraints is due to some nice property on convex sets. Given a set U and a
total ordering � on it, a set A ⊆ U is convex if its elements are consecutive under the ordering, that is

A = {v ∈ U | min A � v � max A}.
Consider a collection of sets S = {E1, . . . , Ek} and an ordering � on

⋃
i=1...k Ei such that every Ei (1 � i � k) is convex. The

intersection of the sets of S is not empty if and only if the intersection of every pair of sets of S is not empty [8,12].

3. Variable elimination in CRC

Consider a problem (V , D, C) and a variable x ∈ V . The relevant constraints of x, denoted by Rx , are the set of constraints
{c yx | c yx ∈ C}. To eliminate x is to transform (V , D, C) to (V − {x}, D, C ′) where C ′ = C ∪ {cix ◦ cxj ∩ ci j | c jx, cix ∈ Rx and
i �= j} − Rx . In the elimination, when composing cix and cxj , if ci j /∈ C we simply take ci j as a universal constraint, i.e.,
Di × D j .

Theorem 1. Consider an arc consistent problem P = (V , D, C) of CRC constraints and a variable x ∈ V . Let P ′ = (V ′, D ′, C ′) be the
problem after x is eliminated. P is satisfiable iff P ′ is satisfiable.

1206 Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219
Algorithm 1. Basic elimination algorithm for CRC constraints.

Proof. We first prove if P is satisfiable, so is P ′ . Let s be a solution of P , sx an assignment of x by s, and sx̄ be the restriction
of s to V ′ . We only need to show that sx̄ satisfies c′

i j ∈ C ′ for all cix, cxj ∈ C . Since s is a solution of P , sx̄ satisfies cix , c jx

and ci j . Hence, sx̄ satisfies c′
i j .

Next we prove if P ′ is satisfiable, so is P . Let t be a solution of P ′ . We will show that t is extensible consistently to x
in P . Let V x be {i | cix ∈ Rx}. For each i ∈ V x , let the assignment of i in t be ai . Let S = {cix[ai] | i ∈ V x}. Since all constraints
of P are row convex and P is arc consistent, the sets of S are convex and none of them is empty.

Consider any two sets cix[ai], c jx[a j] ∈ S . Since t is a solution of P ′ , (ai,a j) ∈ c′
i j where c′

i j is a constraint of P ′ . The fact
that c′

i j = cix ◦ cxj ∩ ci j , where ci j is either in C or universal, implies that there exists a value b ∈ Dx such that ai,a j and b
satisfy cix, c jx and ci j . Hence, cix[ai] ∩ c jx[a j] �= ∅. By the property on the intersection of convex sets, the intersection of the
sets of S is not empty. For any v ∈ ⋂

E∈S E , it is easy to verify that (t, v) is a solution of P . Therefore, P is satisfiable. �
Based on Theorem 1, we can reduce a CSP with CRC constraints by eliminating the variables one by one until a trivial

problem is reached.
The procedure eliminate((V , D, C), consistent, s) in Algorithm 1 eliminates the variables of (V , D, C). When it returns,

consistent is false if some domain becomes empty and true otherwise; the eliminated variables are pushed to the stack s
in order, and C will contain only the “removed” constraints associated with the eliminated variables. Most parts of the
algorithm are clear by themselves. The body of the while loop (lines 7–20) eliminates the variable x. Lines 14 and 15
remove values no longer supported by the newly generated constraints and propagate these removals, whose nature is very
close to arc consistency enforcing. The main purpose of this processing is for the correctness of the algorithm. Details will
be discussed in Section 4.2. Line 18 discards from C ′ the constraints incident on x, i.e., C ′

x and lines 19–20 push x to the
stack and put the constraints C ′

x , which are associated to x, into C ′′ . After eliminate, the stack s, D (revised in lines 2,
15), and C will be used to find a solution of the original problem.

With the elimination algorithm, it is rather straightforward to design an algorithm to find a solutions of a problem of
CRC constraints. A procedure solve is shown in Algorithm 2. L (line 5) represents the assigned variables. Cx in line 8
consists of only those constraints that involve x and an instantiated variable. In line 10, when Cx is empty, the domain Dx

is not modified.

Theorem 2. Assume the time and working space complexity of the composition (and intersection respectively) of two constraints are
O (α) and O (1). Further assume the time and space complexity of enforcing arc consistency are O (ed2) and O (β). Given a CRC problem
P = (V , D, C), a solution of the problem can be found in O (n3α + n2d2) with working space O (n + β).

Proof. In the worst case, the constraint graph of P is complete. For every variable, there are at most n − 1 neighbors. So, to
eliminate a variable (lines 10–14 of Algorithm 1) takes O (n2α). A total of n variables are removed. So, the time complexity

Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219 1207
Algorithm 2. Find a solution of CRC constraints.

of eliminate is O (n3α). The procedure eliminate dominates the complexity of solve and thus to find a solution of
P takes O (n3α + x) where x is the cost of removing values and its propagation (line 15 of Algorithm 1). In fact, x is O (n2d2)

because of the following reasons. Line 15, playing a role of arc consistency enforcing, is called every time a variable is
eliminated. In the analysis of the worst case complexity of an arc consistency algorithm (e.g., [11]), one assumes all values
of the domains have been removed. Therefore, the worst case complexity (O (ed2)) of a single invocation of line 15 is the
same as that of n invocations. The number of constraints of the problem may be increased to as many as n2.

Working space here excludes the space for the representation of the constraints and the new constraints created by elimination.
Throughout this paper, space complexity refers to working space complexity by default. A stack s and a set L are used by
solve and eliminate to hold variables. They need O (n) space. The total space used by solve is O (n + β) where β is
the space cost (amortizable) of removing values and its propagation. �
4. Composing two CRC constraints

In this section, we will introduce a basic composition method, a procedure to remove values without support, the prop-
erties of CRC constraints and finally a linear composition algorithm.

Since in the main algorithm eliminate, arc consistency is enforced (lines 2 and 15 of Algorithm 1) during the variable
elimination, all constraints, including the original and the newly generated ones, are row convex and connected before
composition is applied to them. Therefore, we assume all constraints are row convex and connected in this section.

The following property is useful across this section.

Property 1. Let ci j be the composition of cix and cxj . If both cix and cxj are row convex and connected, for any u ∈ Di , ci j[u] �= ∅.

Proof. Since cix is row convex and connected, cix[u] is not empty. For any value v ∈ cix[u], cxj being row convex and
connected implies that cxj[v] is not empty. Therefore, for all d ∈ cxj[v], d ∈ ci j[u]. Hence, ci j[u] �= ∅. �

To compose two constraints cix and cxj , one can simply multiply their matrices, which amounts to the complexity of
O (d3). We will present fast algorithms to compute the composition in this section. Thanks to the row convexity, a constraint
ci j is represented here as intervals: {[ci j[a].min, ci j[a].max] | a ∈ Di}.

4.1. Basic algorithm to compute composition

With the interval representation, we have procedure compose in Algorithm 3. For any value u ∈ Di and v ∈ D j , lines 6–8
compute whether (u, v) ∈ cix ◦ cxj .

Proposition 1. The procedure of compose has a time complexity of O (d2) with working space complexity of O (1).

Proof. The two while loops (lines 2, 5) give a time complexity of O (d2). The procedure needs only constant working
space. �

Note that, due to the interval representation of constraints, for any constraint ci j , we need separate representation of ci j
and c ji . For any cix and cxj , we call compose twice (with cix, cxj and c jx, cxi respectively) to compute ci j and c ji respectively.
This does not affect the complexity of those algorithms using compose.

1208 Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219
Algorithm 3. Basic algorithm for computing the composition of two constraints.

Algorithm 4. Remove values.

4.2. Remove values without support

Although composition does not lead to the removal of values under our assumption, the intersection will inevitably
cause the removal of values. In this case, to maintain the row convexity and connectedness, we need to remove values
without support from their domains (line 15 of Algorithm 1). The algorithm removeValues, listed in Algorithm 4, makes
use of the interval representation (lines 6–11) to propagate the removal of values. If a domain becomes empty (line 13),
we let the program involving this procedure exit with an output indicating inconsistency. One can verify that algorithm
removeValues((V , D, C), Q)), where Q is the “initially" unsupported values of the problem, achieves arc consistency on
the problem (V , D, C).

Proposition 2. Given a CSP problem (V , D, C) of CRC constraints with an interval representation, the worst case time complexity of
removeValues is O (ed2) with space complexity of O (nd).

Proof. Let δi be the degree of variable i ∈ V . To delete a value (lines 3–12), the cost is δid. In the worst case, nd values are
removed. Hence the time complexity is

∑
i∈1...n δid × d = O (ed2). The space cost for Q is O (nd). �

Given a problem of CRC constraints that are represented by matrices, for each constraint ci j and u ∈ Di , we set up
ci j[u].min and ci j[u].max and collect the values of Di without support. Let Q contain all the removed values during the
setup stage, we then call removeValues to make the problem arc consistent.

By the process above, Theorem 1, and Proposition 2, it is clear that the procedure solve equipped with compose
and removeValues has the following property. Note that the time and space cost of removeValues are “amortized” in
eliminate.

Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219 1209
Fig. 1. (a) The abstract shape of 1’s in the matrix of a CRC constraint. (b) The matrix of a row convex and connected constraint ci j . Its rows and columns
are indexed by a1 to a5. Assume the total ordering on the values is a1,a2, . . . ,a5. ci j[a2] = {a1,a2,a3}, ci j [a2].min = a1 and ci j[a2].max = a3. For ci j , t = a1,
l� = l⊥ = a2, b = a5, r� = a4, and r⊥ = a5.

Corollary 1. Given a problem of CRC constraints, solve can find a solution in time O (n3d2) with space complexity O (nd).

4.3. Properties of row convex and connected constraints

In this section, we will present the properties of row convex and connected constraints. As one may see, compose
makes use of the row convexity to the minimal degree. In fact, we can do better.

It is useful to point out that “a constraint is row convex and connected” is not identical to “a constraint is CRC” since
the latter means that its reduced form is row convex and connected.

The 1’s in the matrix of a CRC constraint form an abstract shape (the shaded area in Fig. 1(a)) where the slant edges
mean monotonicity rather than real boundaries. It is characterised by the following fields associated with ci j . Let min =
min{ci j[u].min| u ∈ Di} and max = max{ci j[u].max| u ∈ Di}. The field ci j .t denotes the value of Di corresponding to the first
row that contains at least a 1, ci j .b the value of Di corresponding to the last row that contains at least a 1, ci j .l� the first
value u of Di such that ci j[u].min = min, ci j .l⊥ the last value v of Di such that ci j[v].min = min, ci j .r� the first value u of
Di such that ci j[u].max = max, and ci j .r⊥ the last value v of Di such that ci j[v].max = max. As an example, see Fig. 1(b). If
ci j is row convex and connected, ci j .t = succ(head, Di) and ci j .b = pred(tail, Di). The fields are related as follows.

Property 2. Given a row convex and connected constraint ci j , for all u ∈ Di such that ci j .l� � u � ci j .l⊥ , ci j[u].min = min; for all u
such that ci j .r� � u � ci j .r⊥ , ci j[u].max = max; and the relation between cij .l� (ci j .l⊥) and cij .r� (ci j .r⊥) can be arbitrary.

We present below the connectedness and monotonicity property of row convex and connected constraints that are the
basis of other properties in this section. Intuitively, the monotonicity results from the observation that in general from the
first row to the last row of the matrix of a row convex and connected constraint, the left ends of the rows decrease first
and then increase while the right end of the rows increase first and then decreases. This phenomenon is clearly shown in
the picture of Fig. 1(a).

Property 3 (Connectedness). Consider a row convex and connected constraint ci j and values e, f ∈ D j and u, v ∈ Di such that e ∈
ci j[u] and f ∈ ci j[v] and e � f . For any value a of D j such that a ∈ [e, f], there exists a value w ∈ Di such that w ∈ [u, v] and
a ∈ ci j[w].

Proof. Without loss of generality, we assume u � v . When u = v , for any a ∈ [e, f], there exists w(= u) such that a ∈ ci j[w].
Now assume u < v . We also assume a �= e and a �= f because otherwise the property holds immediately.

We prove the claim by contradiction. Assume for all w ∈ [u, v], a /∈ ci j[w]. Since ci j is row convex, the values in [u, v]
fall into two classes: left = {w | ci j[w].max � pred(a)} and right = {w | ci j[w].min � succ(a)}. Set left is not empty because
e ∈ ci j[u] and e < a. Similarly, right is not empty because of f . Starting from u, we can find u′ ∈ left and succ(u′) ∈ right
because u ∈ left and v ∈ right. Since a /∈ ci j[u′] and a /∈ ci j[succ(u′)], row u′ is not connected to succ(u′), contradicting the
connectedness of ci j . �

Remember that the slant edges in Fig. 1 denote the monotonicity of the ends of consecutive 1’s in the matrix, which is
formalized in the following property.

Property 4 (Monotonicity). Consider a row convex and connected constraint ci j . The value ci j[u].min is decreasing for u ∈
[ci j .t, ci j .l�], i.e., ∀u ∈ [ci j .t, ci j .l�], ci j[u].min � ci j[succ(u)].min, and increasing for u ∈ [ci j .l�, ci j .b], i.e., ∀u ∈ [ci j .l� ,
ci j .b), ci j[u].min � ci j[succ(u)].min. The value ci j[u].max is increasing for u ∈ [ci j .t, ci j .r�] and decreasing for u ∈ [ci j .r�, ci j .b].

1210 Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219
Fig. 2. The possible shapes of the strips of a constraint that is row convex and connected.

Proof. We first show that ci j[u].min is decreasing for u ∈ [ci j .t, ci j .l�]. We prove this claim by contradiction. Assume
there exists w ∈ [ci j .t, ci j .l�) such that ci j[w].min < ci j[succ(w)].min. By definition of l� , ci j[w].min > ci j[ci j .l�].min. So,
ci j[w].min ∈ [ci j[succ(w)].min, ci j[ci j .l�].min]. By Property 3, there exists u3 ∈ [succ(w), ci j .l�] such that ci j[w].min ∈
ci j[u3]. Since ci j[w].min /∈ ci j[succ(w)], the 1’s in the column ci j[w].min of ci j is not consecutive, contradicting the row
convexity of ci j .

In a similar fashion, we can prove the rest of this property. �
Consider a row convex and connected constraint ci j . Let l1, l2, l3, l4 be the sorted (ascendingly) values of ci j .l� , ci j .r� ,

ci j .l⊥ , and ci j .r⊥ . For example, in Fig. 1(b), l1 = l� = a2, l2 = l⊥ = a2, l3 = r� = a4, l4 = r⊥ = a5. The matrix of ci j can be
divided into the following strips.

(1) Top strip: the rows from ci j .t to l2,
(2) middle strip: the rows from l2 to l3, and
(3) bottom strip: the rows from l3 to ci j .b.

By definition of the strips and the row convexity and connectedness of the constraints, the 1’s in the top strip can be of
only ‘b’ shape or ‘d’ shape, the 1’s in the middle strip of only ‘\’ shape, ‘o’ shape, or ‘/’ shape, and the 1’s in the bottom
strip of only ‘q’ shape or ‘p’ shape (see Fig. 2). Note that these shapes are abstract shapes and do not have the ordinary
geometrical properties. The strips and shapes are characterised by the following property.

Property 5 (Shapes). Top strip: for any u1, u2 ∈ [ci j .t, l2], u1 � u2 implies ci j[u1] ⊆ ci j[u2].
Middle strip: one of the following cases holds.

• For any u1, u2 ∈ [l2, l3], u1 � u2 implies ci j[u1].min� ci j[u2].min and cij[u1].max� ci j[u2].max, corresponding to ‘\’ shape.
• For any u1, u2 ∈ [l2, l3], ci j[u1] = ci j[u2], corresponding to ‘o’ shape.
• For any u1, u2 ∈ [l2, l3], u1 � u2 implies ci j[u2].min� ci j[u1].min and cij[u2].max� ci j[u1].max, corresponding to ‘/’ shape.

Bottom strip: for any u1, u2 ∈ [l3, ci j .b], u1 � u2 implies ci j[u2] ⊆ ci j[u1].

Proof. In this proof, t , b, l� , l⊥ , r� , and r⊥ without prefix denote those of ci j .
Top strip. By Property 2, Property 4 and definition of l⊥ and r⊥ , for all u ∈ [t, l⊥), ci j[u].min � ci j[succ(u)].min, and

for all u ∈ [t, r⊥), ci j[u].max � ci j[succ(u)].max. Note that l2 � l⊥ and l2 � r⊥ . So, for all u ∈ [t, l2], u � l⊥ and u � r⊥ .
Therefore, ci j[u] ⊆ ci j[succ(u)]. Hence, u1 � u2 implies ci j[u1] ⊆ ci j[u2].

Similarly, we can prove the property of bottom strip.
Middle strip. Since l� � l⊥ and r� � r⊥ , there are only four cases for the relations among them: 1) l⊥ < r� , 2) l� > r⊥ ,

3) r� ∈ [l�, l⊥], and 4) l� ∈ [r�, r⊥]. In cases 1, rows from l2 to l3 form ‘\’ shape, in case 2 they form ‘/’ shape, and in other
cases they form ‘o’ shape.

We only prove case 1 for ‘\’ shape. The rest is similar. In case 1, l2 = l⊥ and l3 = r� . By Property 4, for every
u ∈ [l2, l3), ci j[u].min � ci j[succ(u)].min and ci j[u].max � ci j[succ(u)].max. So, for any u1, u2 ∈ [l2, l3], u1 � u2 implies
ci j[u1].min�ci j[u2].min and ci j[u1].max�ci j[u2].max. �

Let ci j be the composition of cix and cxj . In the rest of this section, we present the properties of ci j in terms of the strips
(rows) of cix .

Both cix and cxj are assumed to be row convex and connected in Properties 6–11. Notations of t, b, l1 , l2 , l3 , and l4 without prefix
denote those of cix .

For any u1, u2 ∈ Di such that u1, u2 ∈ [t, l2] (top strip of cix), there is a nice relation between ci j[u1].min and ci j[u2].min
(and between ci j[u1].max and ci j[u2].max).

Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219 1211
Property 6. Consider the top strip of cix. For all u1, u2 ∈ [t, l2], u1 � u2 implies ci j[u1].min � ci j[u2].min and cij[u1].max �
ci j[u2].max.

Proof. For any u1, u2 ∈ [t, l2], by Property 5, u1 � u2 implies cix[u1] ⊆ cix[u2]. Let ci j[u1].min = d, which implies that
cix[u1] ∩ c jx[d] �= ∅. Therefore, cix[u2] ∩ c jx[d] �= ∅. Hence, ci j[u2].min � d = ci j[u1].min. Similarly, we have ci j[u1].max �
ci j[u2].max. �

We have symmetric results for u1, u2 ∈ [l3,b] (bottom strip of cix).

Property 7. Consider the bottom strip of cix. For all u1, u2 ∈ [l3,b], u1 � u2 implies ci j[u1].min � ci j[u2].min and cij[u1].max �
ci j[u2].max.

Proof. The property can be proved in a fashion similar to Property 6. �
For u ∈ [l2, l3] (the middle strip of cix of shape ‘\’ or ‘/’), the next four properties (Properties 8 to 11) show that there

exists a value w ∈ [l2, l3] such that the monotonicity of the left ends (right ends respectively) of the rows of ci j between l2
and l3 changes from non-increasing for rows above w to non-decreasing for those below w (from non-decreasing for rows
above w to non-increasing respectively for those below w respectively). We give the proof of Property 8 in Appendix A. The
proofs of the other properties are similar and thus are omitted.

Property 8. Consider the ‘\’ shape of the middle strip of cix. Let w ∈ Di be the first value in [l2, l3] such that

ci j[w].min = min
u∈[l2,l3]

{
ci j[u].min

}
.

(1) For all u1, u2 ∈ [l2, w], u1 � u2 implies ci j[u1].min � ci j[u2].min, and
(2) for all u1, u2 ∈ [w, l3], u1 � u2 implies ci j[u1].min � ci j[u2].min.

Property 9. Consider the ‘\’ shape of the middle strip of cix. Let w ∈ Di be the first value in [l2, l3] such that

ci j[w].max = max
u∈[l2,l3]

{
ci j[u].max

}
.

(1) For all u1, u2 ∈ [l2, w], u1 � u2 implies ci j[u1].max � ci j[u2].max, and
(2) for all u1, u2 ∈ [w, l3], u1 � u2 implies ci j[u1].max � ci j[u2].max.

Property 10. Consider the ‘/’ shape of the middle strip of cix. Let w ∈ Di be the first value in [l2, l3] such that

ci j[w].min = min
u∈[l2,l3]

{
ci j[u].min

}
.

(1) For all u1, u2 ∈ [l2, w], u1 � u2 implies ci j[u1].min � ci j[u2].min, and
(2) for all u1, u2 ∈ [w, l3], u1 � u2 implies ci j[u1].min � ci j[u2].min.

Property 11. Consider the ‘/’ shape of the middle strip of cix. Let w ∈ Di be the first value in [l2, l3] such that

ci j[w].max = max
u∈[l2,l3]

{
ci j[u].max

}
.

(1) For all u1, u2 ∈ [l2, w], u1 � u2 implies ci j[u1].max � ci j[u2].max, and
(2) for all u1, u2 ∈ [w, l3], u1 � u2 implies ci j[u1].max � ci j[u2].max.

Finally, we have the property for the mid strip of ‘o’ shape which follows immediately from Property 5.

Property 12. Consider the ‘o’ shape of the middle strip of cix. For all u1, u2 ∈ [l2, l3], ci j[u1].min = ci j[u2].min, ci j[u1].max =
ci j[u2].max.

4.4. Fast composition of constraints

The new algorithm to compute cix ◦ cxj , listed in Algorithm 5, is based on the following two ideas. 1) We first compute
ci j[u].min for all u ∈ Di (lines 2–21), which is called min phase, and then compute ci j[u].max for all u ∈ Di (lines 22–41),
which is called max phase. 2) In the two phases, the properties of ci j in terms of the shapes and strips of cix are employed to

1212 Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219
Algorithm 5. Fast algorithm for computing the composition of two row convex and connected constraints.

speed up the computation. We present below the two phases before discussing some other issues related to the composition
algorithm.

In the min phase, the algorithm starts from the top strip of cix . Let u = cix.t . Find ci j[u].min (line 5) and let it be v . Thanks
to the property of the top strip (Property 6), we can find ci j[u].min for all u ∈ [ci j .t, l2] in order by scanning once from v
down to head of D j , i.e., searching to the left of v (line 7). The search procedure searchToLeft is listed in Algorithm 6
where one needs to note that v is replaced by v1 in line 4. Similarly, by Property 7, we can process the bottom strip by
searching to the right of v ∈ D j (line 21). For the middle strip, we have three cases for the three shapes in accordance with
Property 5. For the ‘o’ shape, lines 9–11 are quite straightforward, by Property 12. For the ‘\’ shape (lines 12–15), if v is
not the first column of cxj (i.e., not the first value of D j) and cix[u] is “above” the interval of the column before v of cxj

(line 13), i.e., cix[u].max < c jx[pred(v)].min, from case b) in the proof of Property 8, we need to search to the left of v until
the w defined in Property 8 is found. After we hit the head of D j and no support is found, we need to search to the right
until tail (line 14) if necessary because ci j[u].min is increasing for u ∈ [w, l3] according to the second claim of Property 8.
This process is implemented as searchToLeftWrap (lines 5–12 of Algorithm 6). However, if v is the first column of cxj

Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219 1213
Algorithm 6. Search methods for computing the composition of two constraints.

or cix[u] is “below” the interval of the column before v of cxj (line 19), i.e., cix[u].min > c jx[pred(v)].max, there is no need
to search to left of v in terms of the proof of case a) for Property 8. In other words, v = w . Therefore, we only need to
search to the right of v by Property 8, which is implemented by the procedure searchToRight (lines 13–16). The process
for the ‘/’ shape is similar to that for the ‘\’ shape with some “symmetrical” differences (line 17). The max phase is similar.

To simplify the analysis of the complexity of the algorithm, we assume the quantities of l1, . . . , l4 (line 1), b and t of
a constraint cix are computed whenever cix is composed with another constraint. Recall that a constraint is represented
as intervals. By scanning once cix[u] (cix[u].min and cix[u].max) with u changing from the minimum value of Du to the
maximum, we can find t , b, l�, l⊥, r� and r⊥ , which takes O (d) steps (due to their definitions and the monotonicity property
of cix). By sorting l�, l⊥, r� and r⊥ , we obtain l1, . . . , l4 in constant time. In the implementation of the algorithm, one may
use an incremental way to maintain these quantities.

The shape of the middle strip of cix (lines 9, 12, 16) can be decided as follows. If cix[l2].min = cix[l3].min and cix[l2].max =
cix[l3].max, the strip is of ‘o’ shape. Otherwise, it is of ‘\’ shape if cix[l2].min < cix[l3].min, or else of ‘/’ shape.

Proposition 3. The algorithm fastCompose is correct and composes two constraints in time complexity of O (d) with working space
complexity of O (1).

1214 Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219
Fig. 3. Example on elimination variable ordering.

Proof. Consider the composition, ci j , of cix and cxj . By Properties 6 and 7, the algorithm processes the top and bottom strips
correctly. For each phase, it scans at most O (d) elements of D j and thus has complexity of O (d).

For the middle strips, we consider only ‘\’ shape for the min phase. The other cases are similar. Property 8 shows that
ci j[u] increases for u ∈ [l2, w] and decreases for u ∈ [w, l3] where w is defined in Property 8. Let ci j[l2].min = v . If v is
the first column of cxj , v = w . Otherwise, if cix[l2].max < c jx[pred(v)].min, v = w as shown in the proof of case a) for
Property 8. In either case above, the algorithm does not need to search to the left of v , and thus searchToRight is
sufficient in terms of the second claim of Property 8. If cix[l2].min > c jx[pred(v)].max, searchToLeftWrap finds w first
(and find ci j[u].min for all u ∈ [l2, w] in the process) by searching to the left of v , which is correct by the first claim of
Property 8. After w is found, it searches to the right for the values between w and l3, which is correct in terms of the
second claim of Property 8. Properties 12 and 10 assure the correctness of the min phase for ‘o’ and ‘/’ shape respectively.
In the worst case, searchToLeftWrap scans the values of D j twice. So, its complexity is O (d). Hence, the complexity of
the min phase is O (d). Similarly, Properties 9, 12, and 11 guarantee the correctness of the max phase of the algorithm. The
time complexity of the max phase is also O (d).

The algorithm only needs constant space for data t , b, l� , l⊥ , r� , r⊥ and l1 to l4. So, its working space complexity is
O (1). �
5. CSPs with sparse constraint graphs

The efficiency of eliminate is affected by the ordering of the variables to be eliminated. Consider a constraint graph
with variables {1,2,3,4,5} that is shown in the top left corner of Fig. 3. In the first row, we choose to eliminate 1 first and
then 3. In this process, no constraints are composed. However, if we first eliminate 2 and then 4 as shown in the second
row, eliminate needs to make 3 compositions in eliminating each of variable 2 and 4.

The topology of a constraint graph can be employed to find a good variable elimination ordering. Here we consider
triangulated graphs. An undirected graph G is triangulated if for every cycle of length 4 or more in G , there exists two
non-consecutive vertices of the cycle such that there is an edge between them in G . Given a vertex x ∈ G , N(x) denotes
neighbors of x: {y | {x, y} is an edge of G}. A vertex x is simplicial if the subgraph of G induced by N(x) is complete. A nice
property of triangulated graphs is that there is a simplicial vertex for each triangulated graph and a triangulated graph
remains triangulated after a simplicial vertex and its incident edges are removed from the graph. A perfect vertex elimination
order of a graph G = ({x1, x2, . . . , xn}, E) is an ordering 〈y1, y2, . . . , yn〉 of the vertices of G such that for 1 � i � n − 1, yi is
a simplicial vertex of the subgraph of G induced by {yi, yi+1, . . . , yn}.

Given a perfect elimination order 〈y1, y2, . . . , yn〉 of a graph G , the elimination degree of yi (1 � i � n), denoted by σi , is
the degree of yi in the subgraph of G that is induced by {yi, yi+1, . . . , yn}. We use σ to denote the maximum elimination
degree of the vertices of a perfect elimination order.

It is well known that, for a graph G that is not complete, it can be triangulated in time O (n(e + f)) where f is the
number of edges added to the original graph and e the number of edges of G [1]. A perfect elimination order can be found
in O (n + e).

For CSP problems whose constraint graph is triangulated, the elimination algorithm has a better time complexity bound.

Theorem 3. Consider a CSP problem P whose constraint graph G is triangulated. The procedure eliminate equipped with fast-
Compose has a time complexity of O (nσ 2d + ed2) and space complexity of O (nd).

Proof. Let 〈y1, y2, . . . , yn〉 be a perfect elimination for G . Clearly, to eliminate yi , eliminate has to compose σ 2
i con-

straints. Since n − 1 variables are eliminated by eliminate, its complexity is O (nσ 2d + ed2) where O (ed2) is due to the
removeValues. The space complexity is also due to removeValues. �
6. Experimental results

We have carried out experiments to evaluate empirically our new algorithm. As in [4], we use random connected row
convex problems. Four parameters are used to generate a random connected row convex problem instance: n – the number

Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219 1215
Fig. 4. The other parameters of the problem instances in this diagram are n = 100, d = 100, l = 30%. The values on X axis are the percentage of the number
of constraints of an instance over the number of all possible constraints over the variables of the instance.

of variables, d – the size of the domains (all variables have the same domain with values from 1 to d), e – the number of
constraints, and l – the looseness of the constraints, i.e., the ratio of the number of allowed tuples over d2.

For comparison purpose, we select the existing algorithm PC-CRC proposed by Deville et al. [4]. The reason we did not
use the path consistency on triangulated graphs (PPC) is as follows. In terms of the (major) operations of composition and
intersection, the initial phase of PPC uses exactly the same number of operations needed by the whole of our algorithm. It
involves more operations in its propagation phase. Therefore, the practical difference between PPC and our algorithm lies
in the implementation of the detailed operations on CRC constraints. Bliek and Sam-Haroud [1] recommend to use those
proposed in PC-CRC algorithm [4] that is an efficient version of path consistency algorithm specialized for CRC constraints.
In addition, we are able to obtain an efficient implementation from the authors of PC-CRC algorithm.

Both our program for the elimination algorithm and Deville et al.’s program for PC-CRC are written in C++. The programs
are run on a DELL PowerEdge 1850 (two 3.6 GHz Intel Xeon CPUs) with Linux.

Our algorithm can deal with problem instances whose constraint graphs are not complete. Due to the nature of path
consistency, PC-CRC program requires the graphs to be complete. When the constraint graph of a problem instance is
not complete, we create its completed version by adding a universal constraint between variables on which there is no
constraint. In our experiments, we feed the original problem instances to our program while their completed versions to
PC-CRC program.

The difference of worst time complexity of our algorithm and PC-CRC lies in the size of the domain and the sparsity of
the problem instances. The performance of the algorithms is shown in Fig. 4 with varying sparsity, and Fig. 5 with varying
domain size.

As expected, the more sparse a problem is, the more speedup is gained by the elimination algorithm. One observation
is that the PC-CRC program becomes faster as the instance becomes less sparse. By [4], the CPU time of PC-CRC program
increases as the looseness of the constraints increases. The more sparse a problem is, the more universal constraints (whose
looseness is 100%) we have in its completed version. This explains that the performance of PC-CRC improves as the number
of constraints in a problem is increased (with other parameters fixed). Note that when the problem instances’ constraint
graphs become complete, completion of the graphs as required by the PC algorithms does not introduce any new constraints.
Therefore, a PPC algorithm equipped with PC-CRC methods has the same performance as the PC-CRC algorithm in this case.
However, our algorithm still has a significant performance margin (about 10 times) over PC-CRC.

For problems with varying domain sizes, the new algorithm is more than ten times faster than PC-CRC. However, the
speedup increases only slightly as d increases. This can be explained by the observation in [4] that CPU time for PC-CRC is
linear to the domain size when n is fixed.

We also did an exhaustive experiment on varying all the parameters: n from 30 to 150 with step 30, d from 20 to 100
with step 20, e from 10 to 90% with step 20%, l from 10 to 50% with step 10%. The scatter graph of the performance data
is shown in Fig. 6.

For most of the problem instances, the performance improvement of our algorithm is around 20 times. For the improve-
ment around hundreds of times, the problem instances are usually arc inconsistent, i.e., some domain becomes empty during
arc consistency enforcing. In this case, the huge time saving results mainly from the fact that the elimination algorithm is
not invoked.

1216 Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219
Fig. 5. The other parameters of the problem instances in this diagram are n = 100, e = 2475 (50% of all possible constraints), l = 30%.

Fig. 6. Results of an exhaustive experiment.

In the experiments above, our implementation uses a perfect elimination ordering to eliminate the variables. We have
also carried out an experiment on the effectiveness of the perfect elimination ordering against a lexicographical ordering.
The result is shown in Fig. 7.

From the experimental result, although perfect elimination ordering is better than lexicographical ordering on the sparse
graphs, the difference is not very significant. In summary, the better performance of our algorithm results from a combi-
nation of factors: faster composition algorithm, less number of constraints are involved (compared with path consistency
algorithms) and good variable orderings.

7. Related work and conclusion

We have proposed a simple elimination algorithm to solve CRC constraints. Thanks to this algorithm, we are able to focus
on developing a fast algorithm to compose constraints that are row convex and connected. We show that the composition
can be done in O (d) time, which benefits from a new understanding of the properties of row convex and connected
constraints. In addition to the simplicity, our deterministic algorithm has some other advantages over the existing ones. The
working space complexity O (nd) of our algorithm is the best among existing deterministic or randomized algorithms of
which the best is O (ed). However, when a graph is sparse, in contrast to the randomized algorithms, our algorithm needs
space O (f d) to store newly created constraints where f is the number of edges needed to triangulate the sparse graph.

Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219 1217
Fig. 7. Perfect elimination ordering vs lexicographical ordering on random problem instances with n = 100, d = 100, l = 30% and density of the constraint
graphs changing from 10% to 100%.

For problems with dense constraint graphs (e = Θ(n2)), our algorithm (O (n3d + ed2)) is better than the best (O (n3d2))
of the existing algorithms.

For problems with sparse constraint graphs, the traditional path consistency method [4] does not make use of the spar-
sity. Bliek and Sam-Haroud [1] proposed to triangulate the constraint graph and introduced path consistency on triangulated
graphs. For CRC constraints, their (deterministic) algorithm achieves path consistency on the triangulated graph with time
complexity of O (δe′d2) and space complexity of O (δe′d) where δ is the maximum degree of the triangulated graph and
e′ the number of constraints in the triangulated graph. The randomized algorithm by Kumar [5] has a time complexity of
O (γn2d2) where γ is the maximum degree of the original constraint graph. Our algorithm can achieve O (nσ 2d + e′d2)

where σ is the maximum elimination degree of the triangulated graph. Since σ � δ, γ � δ, σ 2 � e′ � n2 (σ and γ are not
comparable), our algorithm is still favorable in comparison with the others.

Our extensive experiments on random problems of CRC constraints also show that the new algorithm has a clear perfor-
mance margin over the existing deterministic algorithms.

It is worth mentioning that, in addition to “determinism”, a deterministic algorithm has a great efficiency advantage over
randomized algorithms when more than one solution is needed.

Dechter has proposed variable elimination (bucket elimination) to solve general CSP problems [2]. To eliminate a variable,
one needs to join all the constraints on this variable, which may lead to exponential time and space complexity. We propose
a variable elimination method (not through join) for connected row convex CSPs, which takes only polynomial time.

We also notice the work by Xu and Choueiry [9] who proposed an efficient algorithm, based on [1], to solve simple
temporal problems, a special class of CRC constraints. The ideas and algorithms presented here may be used to produce
more efficient algorithms for simple temporal algorithms and other problems with (connected) row convex constraints.

We point out that we introduce removeValues just for simplifying the design and analysis of the composition algo-
rithms. It might be possible to design a refined propagation mechanism and/or composition algorithms to discard the ed2

component from the time complexity and decrease the working space complexity of the elimination algorithm to O (n).

Acknowledgements

The research leading to the results in this paper was funded in part by NASA-NNG05GP48G. We thank Yves Deville for
providing us with the source code for the random problem generator and PC-CRC algorithm and many discussions on these
programs and experiments. Part of the work reported here has been published in [10].

Appendix A

Here is a proof of Property 8.

Proof. By Property 1, for any u ∈ [l2, l3], ci j[u] is not empty. Let ci j[l2].min = a and ci j[w].min = f .
We now prove 1).
If a is the first value of D j , the proof of 1) is trivial because w = l2. So, we can assume pred(a) exists. Similarly, we can

assume l2 < w .
Since ci j[l2].min = a, cix[l2] ∩ c jx[pred(a)] = ∅. There are two cases: a) cix[l2].min > c jx[pred(a)].max or b) cix[l2].max <

c jx[pred(a)].min.

1218 Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219
Fig. 8. The diagram represents cxj with rows and columns indexed by Dx and D y respectively. The shaded bars together with the letters on top of them
denote the images of the corresponding letters with respect to cix . For example, the shaded bar with w denotes cix[w]. Note that cix[w] ⊆ Dx . The white
bars with letters below them denote the images of the corresponding letters with respect to c jx . For example, the white bar with letter f denotes c jx[f].
Note that c jx[f] ⊆ Dx .

For case a), we will show w = l2 and thus the proof of 1) is trivial.
We show first that for all a1 ∈ [c jx.t,a), c jx[a1].max < cix[l2].min. Since ci j[l2].min = a, c jx[a1].max < cix[l2].min or

c jx[a1].min > cix[l2].max. Assume there exists a2 ∈ [c jx.t,a) such that c jx[a2].min > cix[l2].max. Without loss of gener-
ality, assume a2 is the maximal value of D j satisfying the conditions. So, c jx[succ(a2)].max < cix[l2].min, implying
c jx[a2].min > c jx[succ(a2)].max. Therefore, c jx[a2] and c jx[succ(a2)] are not connected, contradicting that cxj is connected.

We next show that for all u ∈ [l2, l3] and a1 ∈ [c jx.t,a), cix[u] ∩ c jx[a1] = ∅. We have cix[u].min � cix[l2].min because of
the ‘\’ shape. Since cix[l2].min > c jx[a1].max, cix[u] ∩ c jx[a1] = ∅.

Therefore, w = l2.
Consider case b), i.e.,

(1) cix[l2].max < c jx[pred(a)].min.

We first show that a � c jx.l� . Assume a > c jx.l� . Since c jx is row convex and connected, by monotonicity Property 4,
c jx[pred(a)].min � c jx[a].min. By (1), we have cix[l2].max < c jx[a].min and thus cix[l2] ∩ c jx[a] = ∅, which contradicts that
ci j[l2].min = a.

Since a � c jx.l� , ∀u ∈ [c jx.b,a), by Property 4,

(2) c jx[succ(u)].min � c jx[u].min.

Consider u1, u2 ∈ [l2, w] such that u1 � u2. Let ci j[u1].min = d1 and ci j[u2].min = d2.
We next show that d1 ∈ [f ,a]. Construct g′ = min(cix[l2] ∩ c jx[a]) and g′′ = max(cix[w] ∩ c jx[f]).
To help ease the memory of the many involved quantities and their relationships, we give a typical situation on these

quantities in Fig. 8.
By definition of g′ and g′′ , we have

(3) g′ � cix[l2].min or g′ � c jx[a].min, and
(4) g′′ � cix[w].min and g′′ � c jx[f].min.

By the property of ‘\’ shape,

(5) cix[l2].min � cix[w].min.

By (2),

(6) c jx[a].min � c jx[f].min.

(3), (4), (5) and (6) imply g′′ � g′ .
Since u1 � w , cix[u1].min � cix[w].min. So, by (4),

(7) g′′ � cix[u1].min.

By (3), g′ � cix[l2].max. Hence, cix[l2].max � cix[u1].max implies

(8) g′ � cix[u1].max.

(7) and (8) imply that cix[u1] ∩ [g′, g′′] �= ∅.

Y. Zhang, S. Marisetti / Artificial Intelligence 173 (2009) 1204–1219 1219
Take u ∈ Dx such that u ∈ cix[u1] ∩ [g′, g′′]. Note that g′ ∈ c jx[a] and g′′ ∈ c jx[f]. By Property 3, there exists e ∈ D j
such that e ∈ [f ,a] and u ∈ c jx[e]. Since u ∈ cix[u1], cix[u1] ∩ c jx[e] �= ∅. Therefore, ci j[u1].min � e � a. By definition of w ,
ci j[u1].min � f . Hence, d1 ∈ [f ,a].

Since d1 ∈ [f ,a], by replacing u1 by u2, l2 by u1, d1 by d2 and a by d1 in the proof above for d1 ∈ [f ,a], we can show
that d2 ∈ [f ,d1]. Therefore, ci j[u1].min = d1 � d2 = ci j[u2].min.

We next prove 2).
Let w1 ∈ [w, l3] be the last row of cix such that ci j[w1].min = ci j[w].min. We will show for all w2 ∈ [w, w1],

ci j[w2].min = ci j[w].min. Let g′ = min(cix[w] ∩ c jx[f]) and g′′ = max(cix[w1] ∩ c jx[f]). Similarly to the proof above, we
can show g′ � g′′ and cix[w2] ∩ [g′, g′′] �= ∅. Therefore, there exists u ∈ cix[w2] and e ∈ [f , f] such that cix[w2] ∩ c jx[e] �= ∅,
which, together with the definition of w , implies that ci j[w2].min = ci j[w].min.

When l3 = w1, the proof of 2) is trivial. Let w1 < l3.
By definition of w1, ci j[succ(w1)].min > f , i.e., ci j[succ(w1)].min > ci j[w1].min.
Consider any u1, u2 ∈ (w1, l3] and u1 � u2. Let ci j[u2].min = h.
Since w1 is the last row such that ci j[w1].min = ci j[w].min, the definition of w implies that h > f .
By definition of w1, cix[succ(w1)] ∩ c jx[f] = ∅. So, we have either cix[succ(w1)].min > c jx[f].max or cix[succ(w1)].

max < c jx[f].min. Consider the latter case. Since cix[succ(w1)].max � cix[w1].max, cix[w1].max < c jx[f].min, which con-
tradicts cix[w1] ∩ c jx[f] �= ∅. Therefore, the former case holds: cix[succ(w1)].min > c jx[f].max. Since cix[u2].min �
cix[succ(w1)].min,

(9) cix[u2].min > c jx[f].max.

Let g′ = min(cix[w1] ∩ c jx[f]) and g′′ = max(cix[u2] ∩ c jx[h]). Since g′′ � cix[u2].min, (9) implies that g′′ > c jx[f].max. By
definition of g′ , g′ � c jx[f].max. Therefore, g′ < g′′ . We have cix[u1].min � cix[u2].min � g′′ , and cix[u1].max � cix[u1].min �
cix[succ(w1)].min > cix[f].max > g′ . Therefore, cix[u1] ∩ [g′, g′′] �= ∅.

Take v ∈ Dx such that v ∈ cix[u1] ∩ [g′, g′′]. Note that g′ ∈ c jx[f] and g′′ ∈ c jx[h]. By Property 3, there exists e ∈ D j such
that e ∈ [f ,h] and v ∈ c jx[e]. So, cix[u1] ∩ c jx[e] �= ∅. Therefore, ci j[u1].min � e � h = ci j[u2].min. �
References

[1] Christian Bliek, Djamila Sam-Haroud, Path consistency on triangulated constraint graphs, in: Proceedings of the International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, IJCAI Inc., 1999, pp. 456–461.

[2] R. Dechter, Bucket elimination: A unifying framework for reasoning, Artificial Intelligence 113 (1999) 41–85.
[3] R. Dechter, Constraint Processing, Morgan Kaufmann, San Francisco, CA, 2003.
[4] Yves Deville, Olivier Barette, Pascal Van Hentenryck, Constraint satisfaction over connected row-convex constraints, Artificial Intelligence 109 (1–2)

(1999) 243–271.
[5] T.K. Satish Kumar, Simple randomized algorithms for tractable row and tree convex constraints, in: Proceedings of the National Conference on Artificial

Intelligence, AAAI Press, Boston, MA, 2006, pp. 74–79.
[6] Alan K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1) (1977) 118–126.
[7] Ugo Montanari, Networks of constraints: Fundamental properties and applications, Information Science 7 (2) (1974) 95–132.
[8] Peter van Beek, Rina Dechter, On the minimality and global consistency of row-convex constraint networks, Journal of the ACM 42 (3) (1995) 543–561.
[9] Lin Xu, Berthe Y. Choueiry, A new efficient algorithm for solving the simple temporal problem, in: Proceedings of the 10th International Symposium

on Temporal Representation and Reasoning/4th International Conference on Temporal Logic (TIME-ICTL 2003), 8–10 July 2003, Cairns, Queensland,
Australia, 2003, p. 212.

[10] Yuanlin Zhang, Fast algorithm for connected row convex constraints, in: Proceedings of the International Joint Conference on Artificial Intelligence,
Hyderabad, India, IJCAI Inc., 2007, pp. 192–197.

[11] Yuanlin Zhang, Roland H.C. Yap, Making AC-3 an optimal algorithm, in: Proceedings of the International Joint Conference on Artificial Intelligence,
Seattle, IJCAI Inc., 2001, pp. 316–321.

[12] Yuanlin Zhang, Roland H.C. Yap, Consistency and set intersection, in: Proceedings of the International Joint Conference on Artificial Intelligence, Aca-
pulco, Mexico, IJCAI Inc., 2003, pp. 263–268.

	Solving connected row convex constraints by variable elimination
	Introduction
	Preliminaries
	Variable elimination in CRC
	Composing two CRC constraints
	Basic algorithm to compute composition
	Remove values without support
	Properties of row convex and connected constraints
	Fast composition of constraints

	CSPs with sparse constraint graphs
	Experimental results
	Related work and conclusion
	Acknowledgements
	References

