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Abstract. This paper introduces a new kind of local consistency based on the general idea of singleton arc consistency (SAC).
This is a reduced form of SAC that only considers neighbourhoods of a variable with a singleton domain; hence, the name
“neighbourhood SAC” (NSAC). Like AC and SAC, NSAC has a unique fixpoint, so that NSAC algorithms will produce the
same result when applied to a problem regardless of the order in which problem elements are processed. Although NSAC is,
of course, dominated by full SAC, on many problems these algorithms produce almost as much filtering with significantly less
cost. NSAC can also be incorporated into full search, as a maintained neighbourhood SAC algorithm. The implementation of
NSAC has also inspired two new SAC algorithms. One is a full SAC algorithm that is somewhat more efficient than the classical
SAC-1 algorithm on many problems and is much easier to code than more advanced versions of SAC. The other is a partial SAC
procedure that performs almost as much domain reduction as full SAC, while requiring much less time than full SAC algorithm
on some problems. It is, therefore, a possible alternative to restricted SAC-1. These new algorithms are evaluated in experimental
tests, together with SAC-1 and three well-known advanced SAC procedures, on a variety of problem classes.
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1. Introduction

Singleton arc consistency (SAC) is a powerful en-
hancement of the best-known type of local consistency
algorithm. In this variant of arc consistency, each value
associated with a variable is considered as a singleton
domain, and arc consistency is carried out under this
assumption. Under these conditions, a failure, in the
form of a domain wipeout, implies that there is no so-
lution containing this value; hence it can be discarded.

Although SAC sometimes removes appreciably
more values than ordinary arc consistency (AC), its
drawback is that it is very expensive. It is therefore
mostly used as a preprocessing step, but even then
the overhead is appreciable. Hence, it is worthwhile to
consider new variations on the classical procedure as
well as approximations to full SAC that are more pow-
erful than AC for the same reasons, but are less expen-
sive than full SAC algorithms.

Several SAC algorithms have been proposed in the
past. The original algorithm proposed by [4] used a
multiple pass procedure in the manner of AC-1; hence,
it is referred to as SAC-1. [1] proposed a version of
SAC (SAC-2) that uses support counts in the man-
ner of AC-4. More recently, [2] presented SAC-SDS,
which is based on an optimal-worst-time SAC algo-
rithm (SAC-Opt). Both SAC-SDS and SAC-Opt use

multiple copies of the original problem in order to
avoid starting from scratch on a single copy multi-
ple times. [8] developed a greedy form of SAC called
SAC-3. The idea behind this algorithm is to extend a
singleton value to a singleton series (a “branch”) un-
til this gives an arc-inconsistent problem. With this
strategy, values added to the branch after the first are
checked against the problem reduced by the previous
singleton values, which reduces the amount of consis-
tency checking required.

The present work describes a new form of single-
ton arc consistency, called neighbourhood singleton
arc consistency (NSAC), in which SAC is established
in relation to the neighbourhood of each variable. This
form of consistency can be established with much
greater efficiency than SAC. Although dominated by
SAC, in many cases establishing NSAC serves to re-
move nearly as many domain values as establishing
full singleton arc consistency. Two basic strategies for
establishing NSAC are described, one that uses the
SAC-1 procedure, and one which uses a single queue
of variables in AC-3 style, with appropriate queue ad-
ditions to ensure that the requisite consistency is estab-
lished.

The strategy used in the latter NSAC algorithm can
also be used to establish full SAC, thus giving rise to
a new SAC algorithm, referred to as SACQ. This algo-
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rithm avoids some of the redundancy involved in SAC-
1 in much the same way that AC-3 avoids some of the
redundancy of AC-1. In addition, a form of SACQ that
approximates full SAC can be devised. In this proce-
dure, called SACQ-adj, only the neighbours of a vari-
able undergoing revision are added back to the queue.

These algorithms are compared with algorithms de-
vised previously, both theoretically and experimen-
tally. We show that SACQ is equivalent to classical
SAC algorithms in its effects, and that NSAC is dom-
inated by the neighbourhood inverse consistency algo-
rithm (NIC). We then show that for random problems,
SACQ and SACQ-adj both outperform SAC-1, as well
as the more elaborate forms of SAC described above.
In the case of SACQ-adj, there is an appreciable re-
duction of overall effort (reflected in CPU time) when
compared with SACQ, although very little is given up
in terms of values deleted. In this respect, it improves
on the restricted SAC-1 algorithm proposed by [11], al-
though the latter requires less time. Similar results are
found for NSAC in comparison with NIC for random
problems of the standard type, although for random
problems with heterogeneous features, NIC is much
more effective than NSAC in deleting values and is
even better than SAC in this case.

SAC-1 and SACQ also give comparable results on
a variety of structured problems, although again the
latter is more efficient for some problem classes. In
many cases, SAC-SDS and especially SAC-3 outper-
form these algorithms (SAC-2 never does). However,
for both advanced algorithms there is evidence of scal-
ing difficulties (severe for SAC-SDS), so that SACQ
can be considered a viable choice as a general-purpose
SAC algorithm.

The next section gives general background concepts
and definitions. Section 3 describes the present imple-
mentation of SAC-1 as well as giving brief descriptions
of the operation of the advanced SAC algorithms and
their present implementations. Section 4 introduces
the neighbourhood singleton arc consistency (NSAC)
algorithms and describes their properties, while Sec-
tion 5 discusses their relations with SAC and NIC. Sec-
tion 6 describes a new full SAC algorithm (SACQ) that
uses some of the same strategies and data structures as
algorithm NSACQ. We also describe a queue-ordering
heuristic that can be used with SACQ and the SACQ-
adj approximation. Section 7 describes results of ex-
periments on random problems, including a series with
graded tightness that has been used in earlier studies
of SAC. Section 8 describes experimental results for
a variety of structured CSPs, including publicly avail-

able benchmarks as well as “random relop” problems
devised by the author. Section 9 gives some prelimi-
nary results for a maintained neighbourhood SAC al-
gorithm. Section 10 gives conclusions.

2. Background concepts

A constraint satisfaction problem (CSP) involves as-
signing values to a set of variables subject to restric-
tions on way that values can go together.

More formally, a CSP can be defined as a tuple,
(X , D, C) where:

X is a set of variables, X1, . . . , Xn.
D is a set of domains, Di, where each Di is a set
of possible values (or labels) that can be assigned
to variable Xi.
C is a set of constraints among subsets of the vari-
ables belonging to X . Each Ci belonging to C
consists of a relation Ri and a particular subset of
the variables in X , vars(Ci), called the scope of
the constraint. Ri is based on the Cartesian prod-
uct of the values of the domains of the variables
in the scope of Ci.
A solution to a CSP is an assignment or mapping
from variables to values, A = {(X1, a), (X2, b),
. . . , (Xk, x)}, that includes all variables (k = n)
and does not violate any constraint in C.

Specific classes of constraint satisfaction problems
are often designated by the values of their main param-
eters; this is especially useful for random CSPs where
CSPs with specific values can be generated. The typ-
ical designation is in the form ⟨n, d, p1, p2⟩, where n
is the number of variables, d is the (average) domain
size, p1 is the constraint graph density, and p2 is the
(average) tightness of the constraints. By “tightness”
is meant the number of possible tuples in the Carte-
sian product of domain values associated with the con-
straint that are not allowed by the constraint’s relation.

CSPs have an important monotonicity property in
that inconsistency with respect to even one constraint
implies inconsistency with respect to the entire prob-
lem. This has given rise to methods for filtering out val-
ues that cannot participate in a solution, based on lo-
cal inconsistencies, i.e. inconsistencies with respect to
subsets of constraints. By doing this, these algorithms
establish well-defined forms of local consistency in a
problem. The most widely studied and most widely
used methods establish arc consistency.
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In problems with binary constraints, arc consistency
(AC) refers to the property that for every value a in the
domain of variable Xi and for every constraint Cij in-
volving Xi there is at least one value b in the domain of
Xj such that (a, b) satisfies that constraint. More for-
mally, a problem P with binary constraints is arc con-
sistent if ∀Xi ∈ X , ∀a ∈ Di, ∀Cij ∈ C ∃ a value
b ∈ Dj such that (a, b) satisfies Cij . A similar defini-
tion can be given for a problem with constraints whose
arity is greater than two.

Singleton arc consistency, or SAC, is a particular
form of AC in which the just-mentioned value a, for
example, is considered the sole representative of the
domain of Xi. If AC can be established for the problem
under this condition, then it may be possible to find a
solution containing this value. On the other hand, if AC
cannot be established then there can be no such solu-
tion, since AC is a necessary condition for there to be
a solution, and so a can be discarded. If this condition
can be established for all values in problem P , then
the problem is singleton arc consistent. More formally,
a problem P is singleton arc consistent if ∀Xi ∈ X ,
∀a ∈ Di, the problem P |Xi=a is arc consistent. (Ob-
viously, SAC implies AC, but not vice versa.) In what
follows, we will sometimes refer to the variable whose
domain is currently a singleton as the “focal variable”.

Before introducing the next form of local consis-
tency, we give a definition that will be useful here and
elsewhere in the paper.

Definition 1. The neighbourhood of a variable Xi is
the set XN ⊆ X of all variables in all constraints
whose scope includes Xi, excluding Xi itself. More
precisely, if the neighbourhood of Xi is designated
N (Xi), then

N (Xi) =
⋃

j:Xi∈vars(Cj )

vars(Cj) \ Xi.

Variables belonging to XN are called the neighbours
of Xi.

Neighbourhood inverse consistency, or NIC, is a
form of local consistency in which each value in the
domain of Xi can be extended to an assignment that
includes the domains of all the variables in the neigh-
bourhood of Xi [5]. If this condition can be established
for all values in problem P , then the problem is neigh-
bourhood inverse consistent. More formally, a problem
P is neighbourhood inverse consistent if ∀Xi ∈ X ,
∀a ∈ Di, ∃ an assignment A to XN ∪ Xi which in-
cludes the assignment of a to Xi, such that ∀Cj where
vars(Cj) ⊆ XN , Cj is satisfied by A.

3. Existing SAC algorithms

Here, we describe the various algorithms that have
been devised to establish singleton arc consistency for
an entire problem. We also discuss significant imple-
mentation details.

3.1. SAC-1 with AC-3

SAC-1 is the original SAC algorithm. It is simple
and straightforward in contrast to other SAC algo-
rithms, but it is still relatively efficient in comparison
with them [1,2,8].

The basic scheme of our version of SAC-1 followed
the original description in [4] exactly: an initial pass of
AC, followed by a repeat loop which is carried out until
no further values are deleted. In each step of the repeat
loop, each value in each domain is tested for singleton
arc consistency. If this test fails, then the value under
consideration is deleted, and following this deletion,
the resulting problem is made arc consistent.

For reference, pseudocode for SAC-1 is shown in
Fig. 1.

The present version of SAC-1 uses AC-3 to perform
consistency testing. This version of AC-3 uses the clas-
sical form of the queue composed of pairs of adjacent
variables, each representing a directional test of sup-
port for values in one domain by values in the other.
Assuming initial AC preprocessing and subsequent AC
processing after each deletion, it is sufficient in the lat-
ter case to initialize the AC queue to pairs consisting
of the variable with the reduced domain and each of its
neighbours (relaxing the latter against the former). If
a value in a neighbouring domain is deleted, then all
of its neighbours (sans the variable responsible for the
deletion) are added to the queue [9].

A restricted form of SAC-1 was described by [11].
In this incomplete form of SAC, there is only one pass

Procedure SAC-1
OK ← AC(P )
Repeat /* if OK */

Changed ← false
Foreach Xi ∈ X

Foreach vj ∈ dom(Xi)
dom′(Xi) ← {vj}
If AC(P ′) leads to a wipeout

dom(Xi) ← dom(Xi)/vj
OK ← AC(P )
Changed ← true

Until Changed = false or not OK

Fig. 1. Pseudocode for SAC-1 (after [4]).
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through the possible assignments. Here it will be des-
ignated SAC-1r. [11] showed that in a number of cases,
SAC-1r deletes almost as many values as a full SAC
algorithm.

3.2. Advanced SAC algorithms

Since the description of the first SAC algorithm, sev-
eral other algorithms have been proposed for achieving
this form of consistency. The motivation behind these
is to limit the large number of repeated comparisons
required by SAC-1. This has been done in various in-
genious ways. Here, we describe the three most impor-
tant algorithms: SAC-2, SAC-SDS, and SAC-3.

The SAC-2 algorithm [1] was inspired by the arc
consistency algorithm AC-4 [10]. In both cases, the ba-
sic idea is to gather and store information about sup-
port during an initial processing phase (in the form of
counters and “support lists”), in order to avoid per-
forming redundant and irrelevant constraint checks in
the course of establishing local consistency throughout
the problem. SAC-2 begins by running AC-4. Then,
analogous to AC-4, there is an SAC initialization phase
followed by a SAC pruning phase.

Recall that during the initial phase of AC-4, any do-
main values with zero support with respect to some
constraint are removed and also added to a special no-
support list. Then, in the pruning phase, by decrement-
ing counters and adding support lists to the no-support
list whenever a counter reaches zero, other domain val-
ues are removed until the no-support list is empty, at
which point the problem is arc consistent.

In the SAC-2 SAC initialization phase, SAC support
lists are built along with a list of assignments that need
to be checked, which corresponds to the no-support list
of AC-4. SAC support lists are constructed by plac-
ing each value that did not fail during the SAC-test
(in which that value was made the sole member of
its domain) on the SAC support list of every value in
the remainder of the problem. If, on the contrary, the
SAC-test fails, then an AC4-style pruning phase is car-
ried out; the only difference from AC-4 being that if
a value’s support goes to zero, in addition to it being
put on the AC no-support list, all its SAC-supports are
put on the SAC no-support list. Following all this, in
the SAC pruning phase, each value on the SAC no-
support list is tested for SAC. During this stage, if a
value fails in a SAC test, this leads to the same pro-
cedures as during SAC-initialization: a bout of AC-4-
pruning and addition of all assignments on the support
list of this value to the SAC-no-support list.

The SAC-SDS algorithm [2,3] is a modified form of
the authors’ “optimal” SAC algorithm, SAC-Opt. The
modifications are intended to produce a more practi-
cal algorithm by trading an increase in worst-case time
complexity for a reduction in the high space complex-
ity of the latter algorithm.

The key idea of SAC-SDS (and of SAC-Opt) is to
represent each SAC reduction separately, so that there
are n×d problem representations (where n is the num-
ber of variables and d is the maximum domain size),
each with one domain Di reduced to a singleton. These
are the “subproblems”; in addition there is a “master
problem”. If a SAC-test in a subproblem fails, then
the value is deleted from the master problem and this
problem is made arc consistent. If this leads to failure,
the problem is inconsistent; otherwise, all values that
were deleted in order to make the problem arc consis-
tent are collected in order to update any subproblems
that still contain those values. Along with this activity,
the main list of assignments (the “pending list”) is up-
dated, so that any subproblem with a domain reduction
is re-subjected to a SAC-test.

The main difference between SAC-Opt and SAC-
SDS is that certain data structures are not duplicated
in the latter. For example, when AC-2001 is used for
AC processing, then the Last data structure is not du-
plicated [2,3]. When AC-3 is used, however, there is
no difference of this sort. In addition, in the origi-
nal descriptions, for SAC-Opt all subproblems are cre-
ated in an initialization step (cf. Algorithm 1 of [2]),
while for SAC-SDS subproblems are created ‘on the
fly’, i.e. when the relevant assignment is taken off the
pending list (see next paragraph). Since this is really
only a difference in efficiency of implementation, the
present version of SAC-SDS can be considered an ef-
ficient version of SAC-Opt with AC-3. However, since
the coding was done on the basis of the description
of SAC-SDS in [2,3], it will be referred to under this
name.

SAC-SDS and SAC-Opt also make use of queues
(here called “copy queues”), one for each subproblem,
composed of variables whose domains have been re-
duced. These are used to restrict SAC-based arc con-
sistency in that subproblem, in that the AC-queue of
the subproblem can be initialized to the neighbours of
the variables in the copy queue. Copy queues them-
selves are initialized (at the beginning of the entire pro-
cedure) to the variable whose domain is a singleton. In
addition, if a SAC-test leads to failure, the subproblem
involved can be taken ‘off-line’ to avoid unnecessary
processing. In the present implementation, an n×d ar-
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ray of flags was used to indicate whether a given sub-
problem was still active. Subproblems need only be
created and processed when the relevant assignment
is taken from the pending list; moreover, once a sub-
problem is ‘off-line’ it will not appear on the pending
list again, so a spurious reinstatement of the problem
cannot occur. (It is worth noting that this feature plus
ensuring that redundant elements are not added to the
pending list are critical for realizing the full efficiency
of this algorithm; together they can reduce run time by
an order of magnitude on some problems.)

The SAC-3 algorithm [8] uses a greedy strategy to
eliminate some of the redundant checking done by
SAC-1. The basic idea is to perform a set of SAC tests
in a cumulative series, i.e. to perform SAC with a given
domain reduced to a single value, and if that succeeds
to perform SAC with an additional domain reduced to
a singleton, and so forth until a SAC-test fails. (This
series is called a “branch” in the original paper.) The
gain occurs because successive tests are done on prob-
lems already reduced during earlier SAC tests in the
same series. However, a value can only be deleted dur-
ing a SAC test if it is an unconditional failure, i.e. if
this is the first test in a series. This strategy is car-
ried out within the SAC-1 framework. That is, succes-
sive phases in which all of the existing assignments are
tested for SAC are repeated until there is no change to
the problem.

In order to carry out the SAC-3 procedure efficiently,
it is necessary to be able to select assignments for
SAC testing within a branch so that variables are not
repeated, since for a given assignment the domain is
a singleton that must remain constant throughout the
series. In the present implementation, this was done
by representing the queue as an array of domain lists,
each with an associated Boolean variable to indicate
whether an assignment of that (CSP) variable is or is
not currently on a branch. The branch itself was rep-
resented by an array indexed by the variable number,
with the value stored in that cell; in addition a special
cell was used to track the length of the current branch.
As with SAC-1 and SAC-SDS, the present encoding of
SAC-3 employs AC-3 as the basic AC algorithm.

4. Neighbourhood SAC algorithms (NSAC)

The main contribution of this paper is the descrip-
tion of a new form of local consistency, which is also
a form of singleton arc consistency. It is called neigh-
bourhood singleton arc consistency because it estab-
lishes SAC with respect to the neighbourhood of the
variable whose domain is a singleton.

Definition 2. A problem P is neighbourhood single-
ton arc consistent with respect to value v in the domain
of Xi, if when Di (the domain of Xi) is restricted to
v, the problem PN = (XN ∪ Xi, DN ∪ {v}, CN ) is
arc consistent, where XN is the neighbourhood of Xi,
DN is the set of domains of variables in XN , and CN
is the set of all constraints whose scope is a subset of
XN ∪ Xi.

In the last definition, note that CN includes con-
straints among variables other than Xi, provided that
these do not include variables outside the neighbour-
hood of Xi.

Definition 3. A problem P is neighbourhood single-
ton arc consistent (NSAC) if each value in each of its
domains is neighbourhood singleton arc consistent.

In this paper, two basic algorithms are described that
establish NSAC; these are referred to as NSAC-1 and
NSACQ. The first, as its name implies, is simply a ver-
sion of SAC-1, where consistency maintenance during
each “SAC phase” (line 7 of Fig. 1) is restricted to the
neighbourhood of the variable with the singleton do-
main. In other words, the line

If AC
(
P ′) leads to a wipeout

is replaced by

If AC
(
Xi + neighbours(Xi)

)
leads to a wipeout

Thus, AC is established in the subgraph formed by a
variable and its neighbours after restricting the domain
of the former to a single value v. If this attempt to es-
tablish AC fails, then value v is removed and AC is re-
established for the entire problem. As with SAC-1, this
process continues until there is a pass through all the
domain values of P in which no value deletion occurs.

We also consider a variant of NSAC-1 in which AC
following a SAC-based deletion is also restricted to the
neighbourhood of the variable currently being tested
for singleton arc consistency. We will refer to this ver-
sion of NSAC-1 as NSAC-1ACr.

NSACQ differs from the NSAC-1 algorithms in that
it also uses an AC-3 style of processing at the top-
level. This means that there is a list (a queue) of vari-
ables, whose domains are considered in turn (just as
in NSAC-1 and SAC-1); but in this case, if there is a
SAC-based deletion of a value from the domain of Xi,
then any neighbours of Xi that are not currently on the
queue are put back on. Unlike the NSAC-1 algorithms,
there is no “AC phase” following a SAC-based value
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Procedure NSACQ
Q ← X
OK ← AC(P )
While OK and not empty-Q

Select Xi from Q
Changed ← false
Foreach vj ∈ dom(Xi)

dom′(Xi) ← {vj}
If AC(Xi + neighbours(Xi)) leads to
a wipeout

Changed ← true
dom(Xi) ← dom(Xi)/vj
If dom(Xi) = ∅

OK ← false
If OK and Changed = true

Update Q to include all neighbours
of Xi

Fig. 2. Pseudocode for NSACQ.

removal (line 8 in Fig. 2). The idea behind this strat-
egy is that if a deletion from the domain of focal vari-
able Xi has any effect, it must affect the neighbours of
Xi, and any effects elsewhere in the problem can only
occur through effects on these neighbours.

We now establish some basic properties of NSAC
and these NSAC algorithms.

Proposition 1. NSAC-1 reaches a unique fixpoint.

Proof. A problem P is neighbourhood SAC consistent
if no value violates the NSAC condition. Since NSAC-
1 continues to check every value until all values meet
this criterion, it will achieve the same fixpoint regard-
less of the order in which tests are made. ✷

Next, we introduce a proposition that will be used in
some of the subsequent proofs.

Proposition 2 (Neighbourhood Lemma). For any al-
gorithm involving AC testing and no other form of con-
sistency maintenance, if removal of value v of Di (the
domain of Xi) has the removal of value z of Dj (the do-
main of Xj) as a consequence, then values must be re-
moved from successive neighbourhoods beginning with
the neighbourhood of Xi and ending with a neighbour-
hood of which Xj is a member.

Proof. In AC testing, suppose that removal of v from
Di has no effect on values in any domain Dj of a neig-
bouring variable, i.e. a variable Xj for which there is
a constraint C for which Xi ∈ vars(C) and Xj ∈
vars(C). Then it cannot affect values associated with
any constraint that does not include Xi, since the do-

1

2 3

4

a b c

a b c a b c

a b c

Fig. 3. Example showing that converse of Neighbourhood Lemma
does not hold. In this and subsequent figures, lines between values
in different domains indicate support, i.e. that the two values form
a tuple that satisfies the constraint between their variables. Further
details in text.

mains associated with the subgraph based on X − Xi
are unchanged. For the same reason, if values are re-
moved from neighbouring domains following removal
of v, then if these removals do not affect any of their
neighbouring domains, they cannot affect other parts
of the problem. Since this argument can be continued
ad infinitum along any path of successive deletions, re-
gardless of cycles, the lemma holds. ✷

Note that the converse of the Neighbourhood Lem-
ma does not hold, i.e. if value z in Dj depends on value
v in Di, then removal of v will not necessarily result
in removal of z. An example is shown in Fig. 3. Here,
if value a in the domain of variable 1 is removed, then
a in the domain of variable 4 cannot form part of a so-
lution. Yet, if successive neighbourhoods starting with
variable 1 are tested for arc consistency, this will not be
discovered, since all values in the domains of variables
2 and 3 are still supported, and some of these support
a in variable 4.

Proposition 3. NSAC-1, NSAC-1ACr, and NSACQ al-
ways reach the same fixpoint.

Proof. We consider two cases: (1) values are only re-
moved during the NSAC phase, (2) values are also
removed during an AC phase that follows an NSAC-
based removal. Obviously, any differences in the fix-
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points reached by NSAC-1 and NSAC-1ACr will de-
pend on ultimate effects of the AC phase of the al-
gorithms, since if values are only removed during the
NSAC phase, the behaviour of the two algorithms will
be identical. It is also obvious that a difference in re-
sults between the two algorithms can only occur if a
value is deleted during an AC phase of NSAC-1 but not
during the corresponding AC phase of NSAC-1ACr.

But, because of repeated testing of the entire set
of variables, even the limited form of AC in NSAC-
1ACr will eventually examine the same patterns on
non-support as the more extensive AC of NSAC-1, so
they will both reach the same fixpoint. More precisely,
if a value is removed by NSAC-1 that is not in the
neighbourhood of the value removed by SAC testing,
then by the Neighbourhood Lemma, this value will
also be removed by NSAC-1ACr.

For NSAC-1, if value a in the domain of variable
Xi is deleted during the NSAC phase of the algorithm,
then the subsequent AC will only remove a neighbour-
ing value if none of the remaining values in the do-
main of Xi support it. In this case, these values will
also be removed by NSACQ when the domains of the
neighbours of Xi are tested following the removal of a.
This is guaranteed to occur because the algorithm en-
sures that all the neighbours are on the queue follow-
ing such deletion. Moreover, this guarantee extends to
values removed during the AC phase of NSAC-1 that
are not in the neighbourhood of a, given the Neigh-
bourhood Lemma. Hence, NSAC-1 and NSACQ will
always reach the same fixpoint. ✷

The formula for worst-case complexity for NSAC-
1 resembles the one for the classical SAC-1 algorithm
[4]. In the present case the formula is O(esubn

2d5), be-
cause an ordinary AC-3 algorithm is used; in this case,
the term for number of constraints in the entire problem
(e) is replaced by a similar term for the number of con-
straints in the largest neighbourhood (esub). NSACQ
does not appear to affect this formula, since the worst-
case is bounded by the complexity of AC (O(esubd

3))
times the number of assignments (n × d), and the full
series of SAC-tests can occur up to n × d times. How-
ever, it is to be expected (and it has been verified) that
the average-case complexity is often better than that of
NSAC-1.

5. Relations between NSAC and related algorithms

Here, we describe some important dominance rela-
tions between NSAC and other forms of local consis-
tency.

Proposition 4. SAC dominates NSAC. That is, if a
value is removed by NSAC-k, then it will also be re-
moved by SAC, but the converse does not hold.

Proof. Clearly, any value removed during singleton
AC by NSAC will also be removed by SAC, since the
latter includes all the checking done by NSAC. A value
deleted by SAC and not by NSAC can only occur out-
side the neighbourhood of focal variable Xi, either by
domain wipeout during the SAC phase of the former
or by domain reduction during an AC phase. In the
latter case (AC phase reduction), deletion of values in
neighbouring domains will also occur with NSAC be-
cause these values will be tested in subsequent single-
ton phases.

It is certainly possible for reductions in neighbour-
ing domains to lead to a wipeout elsewhere in the net-
work, so that full SAC can deduce that a value can-
not participate in a solution while NSAC applied to the
same variable and value for a network in the same state
will not. In contrast to cases where values are deleted
by simple AC (where the Neighbourhood Lemma en-
sures that they will also be deleted by NSAC), such
failures will not necessarily be discovered during sub-
sequent passes of the NSAC algorithm, because dur-
ing these passes, arc consistency is not carried out un-
der the conditions (reduction of the domain of Xi to
a singleton) that led to this SAC-based wipeout. That
such conditions actually occur can be shown by exam-
ple (see Fig. 4). ✷

Since the proof of the next proposition involves the
notion of a minimal unsatisfiable core (MUC), a defi-
nition is given.

Definition 4. Let P = (X , D, C) be a CSP that is un-
satisfiable. P ′ = (X ′, D′, C ′) is an unsatisfiable core
of P , if X ′ ⊆ X , D′ ⊆ D, C ′ ⊆ C and P ′ is unsatis-
fiable. P ′ is a minimal unsatisfiable core if there is no
unsatisfiable core of P ′ that is not identical to P ′.

Proposition 5. NIC dominates NSAC.

Proof. If a value in the domain of variable Xi is re-
moved by NSAC, then this is because it led to a wipe-
out in a neighbouring domain. It cannot, therefore, be
part of any consistent assignment to that variable and
the Xj variables in the neighbourhood of variable Xi,
and NIC will, therefore, also delete this value.

To see that NIC can delete values that NSAC can-
not, consider a neighbourhood singleton arc consistent
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Fig. 4. Problem that is neighbourhood-SAC consistent but not SAC–
consistent. Testing for SAC will show that neither value belonging
to variable 3 is singleton arc consistent, while testing for NSAC will
not delete either value.

network that is also a MUC. That this is possible can
be shown by example (see Fig. 4).

Now assume that there is an additional variable
whose neighbourhood consists of this MUC, but whose
values at this stage of processing are compatible with
any value in any domain of the variables in the MUC.
This enlarged network is, therefore, still neighbour-
hood singleton arc consistent, but it is not neighbour-
hood inverse consistent. ✷

Proposition 6. NSAC dominates AC.

Proof. That neighbourhood SAC can remove values
not removed by AC can be shown by example (see
Fig. 5); hence, AC does not dominate NSAC. That
any value deleted by AC is also deleted by NSAC can
be shown by an inductive argument which considers
dependency chains of support of length r. Thus, for
r = 0, any value deleted from the original problem by
AC on the first pass, i.e. values whose removal does
not depend on the removal of other values, will also
be removed by NSAC, since it also tests every domain
Di (of variable Xi) against the domain of every other
variable in problem P that shares a constraint with Xi.
Supposing the condition is true for any chain of length
k, then because any value for which r = k + 1 will be
in the neighbourhood of the domain containing a value
with a chain of length k, this value will also be tested
following removal of the first value. ✷

1

2

3

a b

a b

a b

Fig. 5. Problem that is arc-consistent but not neighbourhood-SAC
consistent.

It should be noted that, given Proposition 6, the ini-
tial AC in the pseudocode listed in Fig. 2 is not neces-
sary. (Nor is it required if used with the SAC and NIC
algorithms.) However, since AC is so easy to compute,
and since it is sometimes possible to prove unsatisfia-
bility in this fashion, it seems reasonable to follow this
practice when establishing any of the more stringent
forms of local consistency.

6. A new SAC algorithm

6.1. Basic algorithm

The strategy used by the NSACQ algorithm can also
be used to produce a full SAC algorithm. This algo-
rithm uses a queue like NSACQ, but instead of up-
dating it with the neighbours of a variable whose do-
main was subject to reduction, all variables not on the
queue are returned to it. Pseudocode is shown in Fig. 6.
This algorithm is, therefore, similar to SAC-1 in that
it resets itself after domain reductions, but it does not
go through the entire set of variables and domain val-
ues before doing so. More importantly, resetting in this
case means putting a subset of the variables at the end
of the queue. Note that, in addition, this algorithm does
not perform AC after a SAC-based domain reduction.

Proposition 7. SACQ reaches the same fixpoint as
SAC-1.

Proof. If a value can be deleted without other values
being deleted first, this will be discovered by SACQ as
well as by SAC-1. If the deletion of a value depends
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Procedure SACQ
Q ← X
OK ← AC(P )
While OK and not empty-Q

Select Xi from Q
Changed ← false
Foreach vj ∈ dom(Xi)

dom′(Xi) ← {vj}
If AC(P ′) leads to a wipeout

Changed ← true
dom(Xi) ← dom(Xi)/vj
If dom(Xi) = ∅

OK ← false
If Changed = true

Update Q to include all Xj ∈ X

Fig. 6. Pseudocode for SACQ.

on a previous deletion, there are the usual two cases to
consider:

• The deletion depends only on previous SAC
passes.

• The deletion depends on deletions that occurred
during an AC phase that followed a SAC phase.

In the first case, it is obvious that SACQ will also make
the deletion, since all variables are put back on the
queue after each deletion. Now, any deletions during an
AC phase must involve the neighbourhood of the focal
variable, although they may include other domains as
well. This can only occur if the neighbourhood value(s)
deleted were not supported by any remaining value in
the domain of the focal variable. But in this case, the
neighbourhood values will also be deleted when an-
other value of the focal variable is tested or when the
neighbouring variable is made focal and these values
are tested as singletons, either of which will happen in
a subsequent SAC phase. But if that value is deleted,
then, by the Neighbourhood Lemma, the same argu-
ment will apply to values in domains adjacent to that
domain, and so forth. ✷

Clearly, the worst-case complexity of SACQ is no
different from that of SAC-1. Although SACQ avoids
some redundant testing, it also uses the SAC strategy
to delete any values that SAC-1 deletes in its AC phase.
As a result, it is not clear whether there will be a re-
duction in average-time complexity with SACQ.

6.2. Heuristics and approximations

One reason for considering a queue-based SAC
algorithm is that this form of SAC may be more

amenable to enhancements by ordering heuristics than
the simple repetitive form of SAC represented by SAC-
1 without resorting to elaborate data structures as with
SAC-2, SAC-SDS or SAC-3. To this end SACQ was
also tested with a queue ordered by the degree of the
variable (descending degree order). The idea is that if
a variable has a high degree, single values of its do-
main may be more likely to lead to inconsistencies, and
this may be discoverable sooner during arc consistency
testing.

In addition, a variant of SACQ, called SACQ-adj,
was tested in which, instead of returning all variables
to the queue when a domain is decremented, only the
neighbours of the variable whose domain was affected
are added back on the queue. The idea behind this
is that if a domain is decremented, then inconsisten-
cies will have to be propagated through that variable’s
neighbours to the rest of the problem. Note that AC
with a singleton value is carried out as before, to the
entire problem. In preliminary testing, it was found that
while this procedure occasionally missed a value dis-
covered by the full SAC algorithms, this was a surpris-
ingly rare occurrence. Characterizing these cases re-
mains an open problem.

The pseudocode for this restricted SAC procedure is
identical to that shown in Fig. 6, except for the last line
where

Update Q to include all Xj ∈ X

is replaced with

Update Q to include all N (Xi).

Proposition 8. SACQ dominates SACQ-adj.

Proof. Clearly, any value removed by SACQ-adj will
also be removed by SACQ, since the latter performs
all the tests carried out by the former. When a value a
of variable Xi is deleted by a full SAC algorithm, it is
possible to have a value b in the domain of a variable
outside the neighbourhood of Xi such that without a
there would be no solution containing b. However, this
dependency will not necessarily be found if only the
neighbours of Xi are put back on the queue. (Recall
that the converse of the Neighbourhood Lemma does
not hold.) That such dependencies exist can be shown
by example. Thus, in the example shown in Fig. 3, if a
is removed from the domain of variable 1 while vari-
able 4 is not in the queue, then a SAC algorithm will
add that variable back to the queue and will discover
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that a in the domain of variable 4 is not singleton arc
consistent. SACQ-adj will not add this variable, and if
nothing else causes it to be added, this procedure will
not discover this inconsistency. ✷

7. Experimental results – I

In the initial experimental tests, SAC and neighbour-
hood SAC algorithms were compared in the standard
fashion, using homogeneous random problems of vary-
ing tightness (cf. [2,4,8]). Problems were sparse; since
this test was mainly for comparison with earlier work,
it was not felt necessary to test very dense problems as
well, as in [2]. The initial experiments were followed
by a smaller experiment with a single set of random
problems with heterogeneous features. This demon-
strated some interesting contrasts in the patterns of dif-
ferences among algorithms when compared with ho-
mogeneous problems.

7.1. Notes on methods

Problems in the initial experiment had the parame-
ters used by [8]: ⟨100, 20, 0.05, t⟩, where t varied from
0.10 to 0.90 in steps of 0.05. As in that study, 50 prob-
lems were generated for each value of t. In the present
case, however, problems were always generated with
an initial spanning tree, in order to ensure that all prob-
lems were connected, and therefore truly of size 100.
Following tests with these problems, a similar series of
tests were carried out with problems having the same
parameter values, including the same number of con-
straints, but without ensuring that they formed a single
connected component. This was done to test the full
SAC algorithms on problems with features that were
identical to those reported in the literature.

The experiment on problems with more heteroge-
neous features was carried out using a single set of 100
problems. These were geometric problems [7] whose
values had varying levels of support in the domains of
variables whose nodes were adjacent in the constraint
graph. They were, therefore, randomly generated prob-
lems without the extreme homogeneity of those that
conform to standard models.

Geometric problems have constraint graphs which
are clumpy. These problems are generated by select-
ing points at random within the unit square to represent
variables, and then constraining pairs of variables if
the Euclidean distance between their points is less than
some criterion, called the “distance”. In the method

used in the present work, if there was more than one
connected component, separate components were con-
nected via the closest variables to make a single con-
nected graph. (That is, of all variable pairs (Xi, Xj)
where Xi belongs to one component and Xj to the
other, the pair with the smallest distance between such
pairs is determined and a constraint is added between
this pair.) In the present case, the value for the distance
was 0.17. In addition, a target and range was used to
ensure that only problems with 540 constraints (the tar-
get) ± 3 (the range) were included in the sample; this
gives a density of about 0.076. Problems had 120 vari-
ables and the domain size was 20. The sample size was
100.

Variation in probability of support was established
by a two-tier process: given a set of probability values,
each representing a possible likelihood of support, se-
lect one with a certain probability, and then select sup-
porting values in the adjacent domain according to the
probability selected. In the present procedure, selec-
tion of a probability of support was done independently
for each value and for each constraint. For these prob-
lems, two support probabilities were used: 0.3 and 0.7
(so corresponding tightnesses were 0.7 and 0.3, respec-
tively). The first was chosen with a probability of 0.2,
the second with a probability of 0.8. (Note that while
probabilities in the first set are independent, those in
the second set must sum to 1.)

In these experiments all of the new algorithms de-
scribed above were tested along with previously de-
scribed algorithms: SAC-1, restricted SAC-1 (SAC-
1r), SAC-2, SAC-SDS, and SAC-3.

Implementations were written in Common Lisp, and
experiments were run in the Xlispstat environment
with a Unix OS on a Dell Poweredge 4600 machine
(1.8 GHz).

In coding these algorithms, care was taken to de-
velop efficient data structures and to avoid redundant
processing. Correctness of implementation was tested
by cross-checking the number of values deleted for
all algorithms on all problems tested when a problem
was not proven unsatisfiable by the preprocessing algo-
rithm. (In the latter case, differences in the sequence of
tests can result in different numbers of values deleted
before a wipeout occurs.) Although in a few cases the
domains themselves were examined to verify that ex-
actly the same values had been deleted, this was not
considered necessary given the large number of com-
parisons made of numbers of values deleted.

In each experiment all algorithms were run sequen-
tially, one immediately after the other, to minimize va-
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garies of timing that occur over time (e.g. after several
days), and are not under the control of the experi-
menter. (These are presumably due to changes in sys-
tem configuration including resource allocation.) This
meant that if an algorithm like SAC-1 was included in
more than one experiment, it was run once in each ex-
periment even if the problems were the same. In ad-
dition, in a given experiment algorithms were all run
with the same process priority.

In some experiments a full search was carried out
after preprocessing. Search was always done with an
implementation of MAC-3 with d-way branching, us-
ing the minimum domain-over-forward-degree heuris-
tic for variable ordering. For tests with heterogeneous
random problems, search was cut off at one million
search nodes.

In this and the next section, some differences be-
tween means were evaluated statistically using the
Wilcoxon Signed Rank Test [6]. Given the marked dif-
ferences in the patterns of results across experiments
(e.g. in the problem sets tested in this section there
were no consistent trends across problems, while in
some cases in the next section (e.g. rlfapgraph and
langford problems) there was a systematic increase in
difficulty across problems), it seemed best to use a
nonparametric test statistic like the Wilcoxon T, which
only involves ordinal assumptions about the underly-
ing distribution. This test requires paired observations
(e.g. results for SAC-1 vs. SACQ on the same prob-
lem set) and is based on a ranking of differences be-
tween the paired scores, where each rank is given a
sign corresponding to the sign of the difference. Pos-
itive and negative ranks are summed, and the smaller
sum gives the Wilcoxon T statistic. Given the size of
the samples (N = 50) in the experiments in this sec-
tion a significance criterion of 0.01 was used. In or-
der to avoid doing too many tests, order-of-magnitude
differences were not tested, although given the vanish-
ingly small values for p (the probability of no actual
differences between algorithms) in most cases, the pos-
sibility of spuriously significant results is not a major
issue in these experiments.

7.2. Results of main experiments

Comparisons for SAC algorithms are presented in
two graphs. The first compares the new SAC algo-
rithms with SAC-1 and SAC-1r. The second compares
the more elaborate algorithms proposed in recent years
with SAC-1.
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Fig. 7. CPU times for new SAC algorithms compared with SAC-1
and SAC-1r. Random problems (with connected constraint graphs)
of varying tightness.

As shown in Fig. 7, SACQ was somewhat more effi-
cient than SAC-1 on the most difficult problems, while
SACQ with neighbours only added back to the variable
queue was appreciably more efficient. As expected, in
the region of greatest difficulty, SAC-1r was the fastest
procedure.

In this and the next experiment, statistical compar-
isons were made for differences at peak tightness (0.7).
In this experiment, all differences were statistically sig-
nificant (T usually equalled 0 and was at most 14;
p ≪ 0.01).

The degree ordering heuristic described in Section 6
only had a noticeable effect for problems of tightness
0.75 and 0.80. For 0.7 there was a small improve-
ment, which, surprisingly, was larger for SAC-1 than
for SACQ in either of its forms. Since the results were
so similar to the original results they are not shown
here.

Figure 8 shows comparisons among the more ad-
vanced algorithms and SAC-1. In all cases the peak
times for the advanced algorithms are appreciably
greater than for SAC-1. SAC-2 is the slowest (the mean
value for tightness = 0.7 [not shown in the graph] was
412 sec), SAC-3 is much faster, and SAC-SDS is faster
still; however, the latter is still slower than SAC-1 for
the most difficult problem classes.

In this experiment all comparisons with SAC-1 were
statistically significant (T " 6; p ≪ 0.01). In addition,
a comparison of SAC-SDS and SAC-3 showed that the
former was significantly faster, despite the fact that the
two greatest differences were in favour of the latter al-
gorithm (T = 99; p ≪ 0.01).
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Fig. 8. CPU times for advanced SAC algorithms together with
SAC-1. Same problems as in Fig. 7.

A similar pattern of results was found for the sec-
ond set of problems whose constraint graphs were not
fully connected. Curves for the full SAC algorithms
were very similar to the curves in Figs 7 and 8. For ex-
ample, for the hardest problems (tightness = 0.7), the
mean run times for SAC-1, SACQ, SAC-2, SAC-SDS
and SAC-3 were 53.6, 46.9, 551.9, 87.7 and 98.7 sec,
respectively; this is the same ordering as with the con-
nected problems with almost the same relative values.

In the tests of neighbourhood SAC algorithms, both
NSAC algorithms were significantly faster than NIC,
while the NSACQ version was distinctly faster than
NSAC-1, the version based on SAC-1 (see Fig. 9). In-
terestingly, NSAC-1ACr was slower than NSAC-1.

In this case, since the peaks for different algorithms
occurred at different tightnesses, statistical tests were
made for three tightness values. For tightness 0.7 and
0.75 all differences were statistically significant (T = 0
for all three tests). For tightness 0.8, both comparisons
with NSACQ were statistically significant (T " 167.5;
p < 0.01).

Interpretation of these results is facilitated by con-
sidering the number of values deleted by each algo-
rithm and especially by the number of problems of
higher tightness that were proven unsatisfiable by pre-
processing, shown in Table 1. There are several points
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Fig. 9. CPU times for NIC, neighbourhood SAC (NSAC), and AC
only. Same problems as in Fig. 7.

Table 1

Number of problems proved unsatisfiable with different forms of
preprocessing

Algorithm type Tightness

0.65 0.70 0.75 0.80 0.85 0.90

SAC 0 2 50 50 – –

SAC-1r 0 0 50 50 – –

SAC-adj 0 2 50 50 – –

NIC 0 0 1 43 – –

NSAC 0 0 1 43 – –

AC 0 0 0 0 50 50

Notes: Maximum value in each case is 50. For problems with tight-
ness < 0.65, no problems were shown to be unsatisfiable during pre-
processing. In Tables 1–5 “algorithm type” refers to algorithms that
produce a distinct type of consistency.

of interest in this table. For the two highest tightness
values, the initial AC pass is sufficient to prove unsat-
isfiability. Among other things, this ensures that CPU
times will be almost identical for all algorithms in these
cases. Interestingly, at the next lowest tightness value
(0.8), none of the problems can be proven unsatisfiable
with this method, even though all are in fact unsatisfi-
able. NIC and NSAC are almost as effective for prov-
ing unsatisfiability as full SAC when the tightness is
0.8; but at 0.75, the latter is still highly effective while
the former are not. In addition, in all cases NSAC is
just as effective as NIC for proving problems unsatis-
fiable. (In all cases where the number proven unsatisfi-
able is less than 50, the same problems are discovered
by NIC and NSAC.) SAC-adj is more effective than
SAC-1r in proving problems unsatisfiable with prob-
lems of intermediate tightness (here 0.7).
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The number of values deleted by each algorithm is
shown in Table 2. Note that the figures for SAC, NIC
and NSAC are for deletions that are in addition to those
deleted by the preliminary AC. Also, the frequency
counts and means are for problems not proven unsatis-
fiable. For unsatisfiable problems, SAC-1 deletes many
more values before proving unsatisfiability, but this
does not necessarily translate into greater time, since
SACQ performs more singleton AC steps.

These results show that SACQ with queue additions
restricted to neighbours (SACQ-adj) is almost as effec-
tive as the full SAC algorithms in detecting values that
cannot occur in a solution. The only differences were
found for tightness = 0.70; here there were eight prob-
lems (out of 48) where 1–3 more values were deleted
by full SAC. As with problems proven to be unsatisfi-
able, this algorithm is more effective than the one-pass
SAC-1 procedure, because it is better able to detect sin-
gleton inconsistencies that depend on other singleton
inconsistencies.

These results also show that a clear dominance of
SAC over NIC and NSAC occurs primarily in regions

of the problem space where problems are difficult. For
example, for tightness = 0.75, AC + NIC or AC +
NSAC deleted only 80 values (out of 2000) on aver-
age, while SAC proved all of these problem unsatisfi-
able. For problems with looser constraints, the few val-
ues detected by SAC are also detected by more limited
assessment of singleton values.

In addition, the results show that NIC and NSAC are
almost identical in their effects with these problems. In
fact, there were only 2 problems (in the 0.7 and 0.75
tightness groups) where one or two inconsistent values
were detected by NIC but not by NSAC.

Since preprocessing is done in order to speed up
subsequent search (if the latter cannot be avoided al-
together), it was of interest to examine the effects of
different forms of AC filtering on subsequent search
effort. The results of this analysis are shown in Table 3.

There are several important features of these results.
Search efficiency after SACQ-adj showed little or no
decrement in comparison with full SAC. The only dif-
ference was found for tightness 0.70 where there was
a difference of a few nodes for a few problems. This

Table 2

Number of values deleted with different forms of preprocessing

Algorithm type Tightness

0.60 0.65 0.70 0.75 0.80

prb del prb del prb del prb del prb del

SAC 4 1.3 22 1.4 48 21.0 – – – –

SAC-1r 4 1.3 22 1.4 48 17.0 – – – –

SACQ-adj 4 1.3 22 1.4 48 20.8 – – – –

NIC 4 1.2 20 1.3 50 6.1 49 49.4 7 294.4

NSAC 4 1.2 20 1.3 50 6.1 49 49.3 7 294.4

AC 14 1.1 34 2.0 50 6.5 50 30.6 50 143.8

Notes: Means (and numbers of problems) based on problems not proven unsatisfiable for
which there were deletions. For SAC, NIC and NSAC, entries for deletions do not include
initial AC.

Table 3

Search effort after different forms of preprocessing

Algorithm type Tightness

0.50 0.55 0.60 0.65 0.70 0.75 0.80

prb srch prb srch prb srch prb srch prb srch prb srch prb srch

SAC 50 100 50 100.3 50 100.5 50 9948.1 48 2238.2 – – – –

SAC-1r 50 100 50 100.3 50 105.5 50 9948.1 50 2147.8 – – – –

SACQ-adj 50 100 50 100.3 50 100.5 50 9948.1 48 2238.5 – – – –

NIC 50 100 50 100.3 50 100.5 50 9948.1 50 2554 49 33.6 7 8.9

NSAC 50 100 50 100.3 50 100.5 50 9948.1 50 2554 49 33.6 7 8.9

Satisfiable 50 50 50 50 0 0 0

Notes: Means (and numbers of problems) based on problems not proven unsatisfiable by preprocessing. Means are search nodes. Number of
problems that were satisfiable is shown on last line.
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was also true for SAC-1r, although search was required
for the two problems proven unsatisfiable by the other
SAC methods. Using NIC or NSAC only led to notice-
able decrements for tightness 0.70. (Recall however,
that they were much less effective than SAC algorithms
for proving unsatisfiability when problems had slightly
higher tightness (0.75 and 0.80).) Search after NSAC
was always as efficient as after NIC. (Recall that the
capacity to prove unsatisfiability was also identical on
these problems.)

For these problems, the usual MAC search gave re-
sults that were identical or only slightly worse than af-
ter preprocessing with SAC, NIC, or NSAC. Differ-
ences were restricted to tightness of 0.70 or greater, the
major difference occurring at tightness 0.70.

7.3. Results for heterogeneous problems

The results of the experiments on geometric prob-
lems with varying degrees of support are shown in Ta-
bles 4–5. (Results with more advanced SAC algorithms
were similar to those found with homogeneous random
problems (all were slower overall than SAC-1, which
in turn was slower than SACQ), so they are not re-
ported here. In addition, NSACQ was again found to
be faster than the other NSAC algorithms (by a factor
of two), so only times for this algorithm are reported
here.) For purposes of analysis, the problem set was
divided into four groups for each algorithm:

(1) not satisfiable, proved during preprocessing,
(2) not satisfiable, proved during subsequent search,
(3) satisfiable,
(4) search reached 106 node cutoff before finishing.

For the first category, only frequencies (i.e. number of
problems falling in that category for each algorithm)
and times are given, because the number of values
deleted is not a deterministic quantity (and, of course,
there is no search tree). Categories 2 and 3 include
these statistics along with the mean number of values
deleted from a problem by the preprocessing algorithm
and the mean size of the search tree. For the last cate-
gory, only the number of problems is given, since the
same cutoff was used throughout. Note that the times
for unsatisfiable problems with search pertain to only
one problem for the SAC and NIC algorithms. Also,
number of values removed pertains to removals after
an initial pass of AC, which removed 39 values on av-
erage.

Several points are of interest. Firstly, for these prob-
lems, SACQ-adj is as effective as the full SAC algo-
rithms (SAC-1 and SACQ), while being faster overall.
In contrast, SAC-1r proves fewer problems unsatisfi-
able, as well as removing fewer values. This has defi-
nite effects on the subsequent search, which is more ex-
tensive both for unsatisfiable and satisfiable problems
in comparison with full SAC. Secondly, for these prob-
lems, SACQ is appreciably faster than SAC-1. Thirdly,
for these problems, NIC removes appreciably more

Table 4

Algorithm performance on heterogeneous problems I. Frequencies, mean removals and search nodes

Algorithm type nsol-pre nosol Solution Cutoff

# # del nodes # del nodes #

SAC 43 1 168 378 55 224 528 1

SAC-1r 16 27 187 670 55 154 1507 2

SACQ-adj 43 1 168 378 55 224 528 1

NIC 42 1 259 71 56 275 299 1

NSAC 35 8 211 819 55 158 1456 2

Notes: # is number of problems in category, other values are category means. “del” is number of
values removed, “nodes” is search nodes.

Table 5

Algorithm performance on heterogeneous problems II. Search times

Algorithm type no-sol-preproc No-solution Solution

SAC1 71 133 152

SACQ 47 55 97

SAC-adj 47 69 75

NIC 10 41 42

NSAC 7 17 16

Note: Mean times (sec).
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values than does NSAC, and this has a beneficial ef-
fect on search. NIC also proves more problems unsat-
isfiable. Nonetheless, NSAC(Q) in combination with
MAC is faster overall than NIC. In addition, for these
problems, NIC is more effective than SAC with respect
to values removed and somewhat more effective with
respect to the reduction in search nodes.

Due to differences in sample size and problems in-
cluded in different conditions for different algorithms,
it was not possible to evaluate all these differences sta-
tistically. However, it could be shown that the differ-
ence between SACQ and SAC-1 is statistically signif-
icant both for cases where unsatisfiability was proven
by SAC and for problems with solutions (T = 0
(N = 43) and T = 3 (N = 55), respectively; p ≪
0.01 for both comparisons).

8. Experimental results – II

In this section performance of the different SAC and
NSAC algorithms is compared for various structured
problems. This includes four types of benchmark prob-
lems downloaded from the website of C. Lecoutre.1 In
addition, tests were made with “random relop” prob-
lems. With problems of this type, density can be varied
in order to produce a graded series of problems anal-
ogous to the graded series of random problems, and
it is possible to produce samples of equal size at each
separate point in the range.

In these experiments, due to time constraints, only
SAC and NSAC algorithms were tested. This is in line
with the main focus of this part of the work, which
was to determine the generality of differences found
for SAC and NSAC algorithms with random problems.

8.1. Notes on methods

The problems used in the first set of experiments are
shown in Table 6, along with the number of instances
and, if known, whether they are satisfiable or unsatisfi-
able. Rlfap-sub problems are the “subinstance” class at
the benchmark website. Rlfap-graph are the four mid-
size (200–400 variable) problems in the graphs cate-
gory that are satisfiable. (There are also three unsatis-
fiable problems in this size range, but since these can
be proven unsatisfiable by arc consistency, they were
not useful for the present work.) The langford-2 and
langford-3 problems and the blackhole-4-4, -4-7, and

1http://www.cril.univ-artois.fr/lecoutre/benchmarks.html.

Table 6

Classes of structured problem used in this study

Problem class No. of instances sat/unsat

rlfap-sub 9 unsat

rlfap-graph 4 sat

langford-2 23 both?

langford-3 21 both?

blackhole-4-4 10 unsat

blackhole-4-7 20 ?

blackhole-4-13 7 ?

jobshop e0ddr1 10 sat

relop (#, ̸=) 50 sat

-4-13 problems are the sets available at the benchmark
website. Both sets of langford problems contain 24 in-
stances, but for each set the largest problems could not
be used because they exceeded the memory bound of
the lisp system during processing by SAC-2. All of the
blackhole problems were used that were available. Job-
shop problems were the e0ddr1 series originally cre-
ated by N. Sadeh [13]. (Since problems from the other
series in this group gave similar results, one series of
this type was deemed sufficient.) Information on these
problems, including subcategories used and numbers
of problems is given in Table 6. Some of these (rlfap
and jobshop) have been used in earlier work on SAC
[8].

Rlfap problems have binary distance constraints,
where the difference between the values of two vari-
ables must either be greater than some value k (where
k is specific to that constraint) or (in a small number
of cases) equal to k. Langford problems include an
n-ary all-different constraint; this is represented by a
set of binary inequality constraints. In addition there
are n/2 distance constraints based on the equality rela-
tion, where k takes on values between 2 and approxi-
mately n/2. Blackhole problems have non-random ex-
tensional constraints. The jobshop problems have two
kinds of constraints. In both cases the form of the
constraint is V 1 + k " V 2; most are disjunctive
(V 1 + k1 " V 2 ∨ V 2 + k2 " V 1), but about a third
are non-disjunctive.

Successive problems in the rlfapgraph and lang-
ford series are progressively more difficult. For other
benchmark classes, problems are more homogeneous
with respect to difficulty, and there are no discernible
trends for successive problems.

In these tests, random relop problems were 100-
variable binary CSPs with # and ̸= constraints in equal
proportions. Not-equals constraints ensured that this
class of problems is intractable in the worst case. These



360 R.J. Wallace / SAC and neighbourhood SAC

problems had domain sizes of 20 and a graph density
of 0.26 (1291 constraints); in all cases the constraint
graph was connected.

In addition to these problems, a relop series was
tested in an experimental design corresponding to the
initial experiment with random problems described in
the previous section. These problems had 60 variables
and domain sizes of 20. Half the constraints were >
and half were ̸= constraints. A graded series was pro-
duced by varying the graph density from 0.10 to 0.70
in steps of 0.05. As in the earlier experiment with ran-
dom problems, the number of problems generated for
each density value was 50.

8.2. Results

Tables 7 and 8 give (arithmetic) mean runtimes for
the SAC and NSAC algorithms, respectively, for the
different classes of problems shown in Table 6. (Note
that for these jobshop problems, SAC does not delete
any values.)

For each problem class, statistical comparisons were
made between (1) the SAC algorithm with the best
average time and the one with the worst, excluding
SAC-2, (2) the former algorithm and the one with the
second-best mean. If the first comparison was statisti-
cally significant, the mean for the superior algorithm
is shown in bold in the tables; if the second was, the
mean is underlined. (Although these conventions could
not be used for the rlfapgraph problems because of the
small sample size (even T = 0 is not statistically sig-
nificant), differences between SACQ and the other two
algorithms were large and consistent, while differences
between the latter was not.) In addition comparisons
were made between the two approximation procedures.
Here, statistically significant differences are indicated
by boldface. Other statistical tests (not shown in the ta-
bles) were made between SAC-1 and SACQ, in order
to evaluate the latter as an alternative to the standard
SAC algorithm.

Table 7 shows that in most cases SAC-3 gives
the fastest run-times and that the in these cases dif-

Table 7

Runtimes for different SAC procedures for different classes of structured problems

Problems SAC-1 SACQ SAC-2 SAC-SDS SAC-3 SAC-1r SACQ-adj

rlfap-sub 1.11 0.54 19.4 0.77 1.15 1.14 0.54
rlfap-graph 5985 4116 – – 6110 1555 3107

langford-2 507 502 3111 3377 154 498 484
langford-3 581 562 6265 1263 218 573 788

blackhole-4-4 0.56 0.56 3.33 0.58 0.53 0.56 0.55
blackhole-4-7 44.6 44.5 774 43.4 33.9 44.3 44.7

blackhole-4-13 1170 1178 44,849 1957 893 1174 1188

relop-geneq 727 707 38,224 260 322 116 364

jobshop 184 255 6992 178 129 182 190

Notes: Values are mean times in sec. Runs on rlfap-graph problem #4 could not be completed for
SAC-2 and SAC-SDS. Here and in Table 8 times in boldface indicate that algorithm was significantly
better than other (N)SAC algorithms. See text for further details.

Table 8

Runtimes for different NSAC algorithms for different classes of structured problems

Problems NSAC-1 NSAC-1ACr NSACQ AC

rlfap-sub 1.10 0.47 0.49 0.16

rlfap-graph 771 679 414 1.00

langford-2 410 386 416 0.11

langford-3 543 558 554 0.25

blackhole-4-4 0.46 0.49 0.42 0.14

blackhole-4-7 27.2 29.9 26.3 1.07

blackhole-4-13 803 899 795 15.2

relop-geneq 60.8 47.2 41.4 0.09

jobshop 62.2 53.9 56.9 0.15

Notes: Values are mean times in sec. Times for arc consistency are included for fuller comparison and
evaluation of Table 9 results.
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ferences with the second- and fourth-best algorithms
are always statistically significant. SAC-SDS gave the
fastest times for the relop problems, while SACQ
was fastest for the rlfap problems. SAC-2 was always
markedly inferior, giving times that were sometimes
an order of magnitude greater than those for the other
algorithms.

SAC-1 and SACQ gave roughly comparable re-
sults overall. SACQ was decisively better on the rl-
fap problems, while SAC-1 was definitely superior on
the jobshop problems. The differences in means for the
langford-3 and relop problems, which favoured SACQ,
were also statistically significant, while the difference
for the blackhole-4-13, which favoured SAC-1, was
statistically significant.

The results with the largest problems (rlfap-graph)
suggest that SAC-SDS does not scale well in practice
for number of variables. There is some evidence from
the same problems for similar effects with SAC-3, but
to a much smaller degree.

For rlfap-graph and the relop problems, SAC-1r was
appreciably faster than SACQ-adj. In other cases the
two were similar, although there were some differences
that were consistent enough to give statistical signifi-
cance.

Table 8 uses the same conventions used in Table 7,
in this case to evaluate the best average time against the
second- and third-best times. NSACQ was definitely
faster than NSAC-1 in some cases (see Table 8), and
was never less efficient. In some cases it was also sig-
nificantly faster than NSAC-1ACr. In contrast to the
random problems, NSAC-1ACr was sometimes faster
than NSAC-1, but except for the rlfap-sub problems,
the proportional differences were small.

Table 9 shows mean values removed with different
forms of consistency and consistency approximation.
With some problem classes (langford and blackhole)
there is little or no improvement over AC with any of
the stronger forms of consistency. (This is also true for
the jobshop problems, where no algorithm deleted any
values.) However, for langford-3 problems, AC only
proved the first problem unsatisfiable, while all of the
SAC, NSAC and restricted SAC algorithms proved the
first four problems unsatisfiable. In addition, SACQ-
adj required fewer value deletions to do this; the mean
was 78.3 versus 104 for the other procedures.

For other problem classes, however, the difference is
marked. In these cases, therefore, there is an important
tradeoff between time and amount of filtering. We also
see that SACQ-adj does as well as full SAC. (The one
difference in the table is for unsatisfiable problems; in

Table 9

Number of values removed by different procedures for different
classes of structured problems

Problems AC SAC NSAC SAC-1r SACQ-adj

rlfap-sub 470.7 1145.6 1145.6 1145.6 497.1

rlfap-graph 279 1037.5 777.5 1012 1037.5

langford-2(np) 336.4 337.6 337.6 337.6 337.6

langford-3(np) 812.4 812.4 812.4 812.4 812.4

blackhole-4-4 290 290 290 290 290

blackhole-4-7 280 280 280 280 280

blackhole-4-13 793 793 793 793 793

relop-geneq 0 758.1 554.8 536.8 758.1

Notes: Values are mean numbers removed. “(np)” indicates that these
are the problems not proven unsatisfiable by any preprocessing al-
gorithm.
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Fig. 10. CPU times for SAC algorithms. Random relop problems
(50% greater-than, 50% not-equal constraints) of varying density.

this case SACQ-adj was able to prove unsatisfiability
after markedly fewer deletions than the other SAC pro-
cedures.) NSAC generally deletes fewer values than
SAC, although appreciably more than AC when there
are differences among the procedures.

For the relop problems, these differences had a
marked effect on subsequent search. (Note: Search was
not attempted for the langford and blackhole problems.
For the rlfap-graph problems, search was backtrack-
free in all cases.) The mean numbers of search nodes
were: following AC, > 438,717 (in this case search
was cut off for one problem after ten million nodes),
following SAC, 1148, and following NSAC, 9757.

The results for SAC algorithms on the graded series
of relop problems are shown in Fig. 10. Here, again,
SACQ is somewhat better than SAC-1 on the harder
problem classes. In this case, SAC-3 is roughly com-
parable to SACQ, being faster for the problems with
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the sparser constraint graphs and somewhat slower for
problems with denser constraint graphs. Interestingly,
SAC-SDS is appreciably faster than either of these al-
gorithms except for the densest problems. SAC-2 is
again much slower than the other algorithms on all
but the densest problems. (For this algorithm, mean
times for densities 0.1–0.35 ranged between 69 and
180 sec.) For these problems, NSAC algorithms gave
mean times that were always less than 1.75 sec.

To evaluate these results statistically, peak mean val-
ues were compared as with the random problems; here,
this occurred at density = 0.25. The differences be-
tween SAC-SDS and the other algorithms were highly
significant statistically. In addition, the differences be-
tween SAC-1 and SAC-3 and between SAC-1 and
SACQ were statistically significant at well beyond the
0.01 level.

9. A hybrid neighbourhood SAC algorithm

One reason for considering NSAC algorithms is that
these consistency algorithms are efficient enough to
be used in combination with backtrack search, where
they would be expected to restrict search more effec-
tively than AC procedures. Obviously, they can be used
in a variety of ways ranging from a forward-checking
version, in which NSAC is only applied to the im-
mediate neighbourhood of the current variable, to a
full maintained-AC version. To date only the latter,
“maintained neighbourhood singleton arc consistency”
(MNSAC) algorithm has been coded and tested.

The present version uses NSACQ, which in turn
uses AC-3 for AC maintenance; hence it will be re-
ferred to as MNSACQ-3. Like the other algorithms
discussed in this paper, it was coded in lisp. Since
the general structure of the algorithm is exactly the
same as the classical MAC-3 algorithm [12], it will
not be described in detail here. In the present version,
the NSACQ procedure follows the procedure shown in
Fig. 2 exactly; thus, there is an initial AC pass, and if
this does not fail, then the remainder of the NSACQ
procedure is carried out as shown.

MNSACQ-3 was compared with MAC-3 on a few
problem sets. The first was a set of 100 50-variable ran-
dom CSPs used in previous work (e.g. [15]), with pa-
rameters ⟨50, 10, 0.184, 0.369⟩. The variable ordering
heuristic was minimum domain/forward-degree; val-
ues were chosen lexically. On these problems MAC-3
required an average of 1621 search nodes, and the CPU
time was 4 sec. MNSACQ-3 solved these problems in
an average of 751 nodes, with a CPU time of 37 sec.

In addition, these algorithms were tested on the het-
erogeneous problems described above. Here, the dif-
ference in nodes was much greater; in many cases, the
CPU time was also in favour of MNSACQ-3, since the
reduction in search was in orders of magnitude. How-
ever, MNSACQ-3 failed to solve one problem because
it had a much larger search tree; search was terminated
after several hours. MAC-3 also failed to solve this
problem, but it reached the million-node cutoff after
two hours.

From these preliminary results, I draw the tentative
conclusion that maintained neighbourhood SAC prob-
ably cannot serve as a robust, ‘all-purpose’ algorithm
like MAC or forward-checking. However, it is interest-
ing that it is a viable competitor in some cases, which
is not generally true of algorithms that try to estab-
lish higher levels of consistency during search. Fur-
ther work should focus on the possibility of using this
form of consistency maintenance more selectively dur-
ing search, since these results show that it does restrict
search much more effectively than AC in many cases.
It is also possible that MNSAC will prove to be more
effective than MAC on specialized classes of problems.

10. Conclusions

Although singleton arc consistency is often a more
powerful filtering algorithm than ordinary arc consis-
tency, its increased effectiveness comes with consid-
erable cost. A standard approach to this type of prob-
lem is to discover procedures, or even better, forms of
consistency that are not as strong as a given type but
which are adequate for many purposes and which al-
low more efficient algorithms to be devised. In this pa-
per we present results of this type: (i) a reduced form
of consistency which is still a kind of SAC, with algo-
rithms that achieve it, (ii) new algorithms for achieving
full SAC or approximations to it.

Neighbourhood SAC is a new form of consistency
with some appealing properties. It is characterized by
a well-defined fixpoint. In addition, it often produces
impressive results (number of values deleted) in a frac-
tion of the time that SAC requires. This is true both for
random and for some structured problems.

There are also a priori reasons for considering
NSAC algorithms. NSAC combines the pruning power
of SAC with the neighbourhood aspect that is inher-
ent in AC processing, as first shown by AC-2/3 [9,16].
This allows it to be reasonably effective while at the
same time avoiding the massive overhead that comes
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with full SAC procedures. These features also made it
possible to devise a new hybrid algorithm, maintained
neighbourhood SAC, that was sometimes competitive
with MAC, even with a simple initial implementation.

With regard to full SAC, improvements to the orig-
inal SAC algorithm proposed in earlier work involve
fairly complicated procedures and elaborate data struc-
tures [1,2,8]. In contrast, the actual procedure – and
hence the code – for the SAC algorithms proposed here
is very simple. Yet these algorithms often improve on
the original SAC-1 algorithm in its present implemen-
tation.

This work also gives abundant evidence that the ex-
tra processing required by the advanced forms of SAC
can impair overall performance, sometimes severely.
In contemplating the algorithms in detail, it is not too
surprising that they are sometimes less efficient. Each
of these algorithms employs elaborate data structures,
which in the case of SAC-2 and SAC-SDS can grow to
an enormous size. Thus, for SAC-2, the SAC-support
lists involve putting a value proven to be singleton-
consistent on the list of every other value in the re-
duced problem; these lists are, therefore, enormous.
SAC-SDS requires separate queues for each copy of
the original and a large queue for the basic SAC tests.
In addition, there is special updating needed to ensure
that each copy has correct domains (procedure “up-
dateSubProblems” in [2]). Although, subsequent pro-
cessing of a copy is rendered very efficient, since con-
sistency testing need only consider these changes, this
is to some degree countered by the updating. SAC-
3 also requires special bookkeeping for updating (de-
scribed in Section 2). Despite what appeared to be ef-
ficient data structures, this was not always enough to
counter the updating requirements.

On the other hand, SAC-3 is clearly able to take ad-
vantage of the redundancy inherent in problems with
clearly defined structure. As a result, it was often (but
not always) the fastest full SAC algorithm (see Ta-
ble 7). Nonetheless, there was evidence that for larger
problems, its advantages could be lessened by the req-
uisite bookkeeping.

These results raise questions regarding the adequacy
of worst-case time complexity analysis when reduc-
tions in what is taken to be the dominant operation
are ‘off-loaded’ onto other operations that may take
as much or more time. This problem has already been
noted in the case of AC-2001 in relation to AC-3 (see
[14]), but it is much more pronounced in the present
case. It seems clear that up until now there has not been
sufficient consideration of the context in which such
analyses are made.

To highlight the problem, consider first the case of
internal comparison sorting algorithms, e.g. quicksort
vs. bubble sort. Suppose moves is taken to be the dom-
inant operation; in this case because of the properties
of random access memory, the larger moves made by
quicksort can be done in the same amount of time as
the small moves made by bubble sort. In this case, an
analysis of worst-case time complexity based on this
operation should be reflected in performance because
both algorithms are based on the same dominant opera-
tion, which can be done in essentially the same fashion.

However, this is typically not the case with con-
sistency algorithms, where a reduction in consistency
checks is obtained only by incorporating other oper-
ations, which are not taken into account in the anal-
ysis of time-complexity. The present empirical tests,
which involved implementations in the same language,
with sharing of code, in particular the basic AC pro-
cedure, among the different algorithms, make it clear
that worst-case analyses of this sort can be very mis-
leading with regard to overall efficiency. One can cavil
about the use of lisp or speculate about lack of tuning in
the implementation (although I believe that the present
implementations are reasonably well tuned). However,
I think that this is evading a serious issue that is im-
portant to address: how does one evaluate complex al-
gorithms in terms of their overall efficiency, when new
operations are added in some cases but not others?

One of the appealing features of the original SAC-1
algorithm is that it is easy to add to existing implemen-
tations (R. Bartak, personal communication), unlike
the more elaborate SAC algorithms. Given the simplic-
ity of the new SAC algorithms (SACQ and SACQ-adj),
they should also have this feature; this enhances their
potential importance for practical solvers.

Still another issue encountered in the experiments
with structured problems is that two of these algo-
rithms (SAC-2 and SAC-SDS) required updating with
each new class of problems tested. For SAC-SDS, the
problem was related to subproblem indexing, which
was based on the variable and value number. Thus for
rlfap problems, since domains are not sequential and
sometimes have large maximum values, a separate data
structure was used to specify the location of a value
in its domain. Analogous problems were encountered
in SAC-2, where various arrays had to be indexed by
domain values. In contrast, with the new SAC (and
NSAC) algorithms, the same code could be used once
the AC functions were updated to handle the specific
kinds of constraints in the new problems. This was also
true for SAC-3, which despite its complexity was quite
‘robust’ in this regard.
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The present work also shows that a simple form of
partial SAC is almost as effective as full SAC while
requiring much less effort. To my knowledge the only
previous examination of partial SAC is the one-pass
SAC procedure called “restricted SAC” [11], which
was also tested here. Although the latter procedure runs
faster than SACQ-adj (as expected), it is usually not as
effective in deleting values. This allows an interesting
tradeoff between time reduction and closeness in effect
to full SAC algorithms.

In contrast to NSAC, where there is a well-defined
form of consistency associated with the procedure,
with SACQ-adj, as well as restricted SAC, this is not
the case. Although this difference may not be of great
practical importance, it does make it more difficult to
characterise the latter procedures. It also makes it diffi-
cult to draw inferences concerning the level of consis-
tency obtained, which might be of considerable impor-
tance for specific classes of problems.

To summarize the results with respect to overall run-
times: SAC-3 is generally best for structured problems,
provided they are not too large. SACQ was the best
SAC algorithm for certain problem classes, including
radio frequency problems and various kinds of ran-
dom problem. Results for the former suggest that it
scales well as problem size increases. For neighbour-
hood SAC algorithms, NSACQ was best overall. All of
these algorithms are much more expensive than sim-
ple arc consistency, but for some problem classes the
payoff can be considerable.

The present work shows that there are a variety
of interesting and potentially significant forms of re-
duced or partial singleton arc consistency. In the fu-
ture, it will be of interest to see whether other selec-
tive SAC algorithms can be devised, perhaps based on
other well-characterised features of constraint satisfac-
tion problems. At the same time, it may be difficult to
find combinations of algorithmic features that are as
felicitous as the combination of SAC and neighbour-
hood consistency, because of the neighbourhood prop-
erties of arc consistency that have been highlighted in
this paper.
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