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Abstract
Local consistency enforcing is at the core of CSP
(Constraint Satisfaction Problem) solving. Although
arc consistency is still the most widely used level of
local consistency, researchers are going on investigat-
ing more powerful levels, such as path consistency,
k-consistency, (i,j)-consistency. Recently, more atten-
tion has been turned to inverse local consistency levels,
such as path inverse consistency, k-inverse consistency,
neighborhood inverse consistency, which do not suf-
fer from the drawbacks of the other local consistency
levels (changes in the constraint definitions and in the
constraint graph, prohibitive memory requirements).
In this paper, we propose a generic framework for in-
verse local consistency, which includes most of the pre-
viously defined levels and allows a rich set of new levels
to be defined. The first benefit of such a generic frame-
work is to allow a user to define and test many differ-
ent inverse local consistency levels, in accordance with
the problem or even the instance he/she has to solve.
The second benefit is to allow a generic algorithm to be
defined. This algorithm, which is parameterized by the
chosen inverse local consistency level, generalizes the
AC7 algorithm used for arc consistency, and produces
from any instance its locally consistent closure at the
chosen level.

Motivations
Local consistency enforcing techniques are at the core of the
CSP (Constraint Satisfaction Problem (Mackworth 1992))
solving techniques and are probably the main ingredients of
their success. Thanks to local reasoning, they allow any in-
stance to be simplified, by eliminating values or combina-
tions of values that cannot be involved in any solution of .
More precisely, from any instance , they produce a new
instance , with the following properties:
(1) when compared with , is simplified: some values
have been removed from the variable domains of , some
tuples of values have been removed from the constraint
relations of ;

(2) and are equivalent: they have the same set of solu-
tions;
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(3) is locally consistent at the specified level.

is often referred to as the locally consistent closure of
at the specified level of consistency. Always thanks to local
reasoning, local consistency enforcing may allow global in-
consistency to be detected, when a variable domain or a con-
straint relation becomes empty.
Used in a preprocessing step, they allow either a search

for a solution to be started with a simplified instance, or
sometimes any search to be avoided in case of inconsistency
detection. Used at each node of a search tree, they allow
branches that do not lead to any solution to be cut earlier.
Lastly, used in the framework of an interactive solving, they
allow consequences of the user’s choices (variable assign-
ment, variable domain reduction, constraint adding) to be
explicited.
After this picture, it may seem strange that the most

widely used local consistency level is one of the simplest:
arc consistency whose enforcing removes from the domain
of a variable the values that cannot be consistently exten-
ded to another variable . Although various extensions of
arc consistency have been proposed (path consistency, k-
consistency, (i,j)-consistency (Freuder 1978; 1985)), it re-
mains that they are not often used. There are three reasons
for that:
(a) a worst case time complexity of the associated al-
gorithms, which grows quickly (for example, exponen-
tially as a function of with k-consistency (Cooper
1989));

(b) a worst case space complexity, which grows the same
way (for example, also exponentially as a function of
with k-consistency);

(c) the recording of forbidden tuples, which implies either
to create new extensionally defined constraints (changes
in the constraint network), or to add an extensional defin-
ition to existing possibly intensionally defined constraints
(changes in the constraint definitions).
Starting from these observations, more attention has been

recently turned to inverse local consistency levels, such
as path inverse consistency, k-inverse consistency, neigh-
borhood inverse consistency, restricted path consistency,
max restricted path consistency or singleton arc consistency
(Freuder & Elfe 1996; Debruyne & Bessière 1997a), which
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do not suffer from all the drawbacks of the previous local
consistency levels.
Informally speaking, for all these levels but the last three,

inverse local consistency enforcing removes from the do-
main of a variable the values that cannot be consistently
extended to some additional variables. Arc consistency,
whose enforcing removes values that cannot be consistently
extended to any other variable, is the simplest level of in-
verse local consistency. Path inverse consistency enforcing
removes values that cannot be consistently extended to any
set of two other variables. k-inverse consistency enforcing
removes values that cannot be consistently extended to any
set of k-1 other variables. Neighborhood inverse consistency
enforcing removes values that cannot be consistently exten-
ded to the set of variables directly linked to .
Since inverse local consistency enforcing never removes

combinations of values, and then does not create new con-
straints and does not modify existing constraint definitions,
it does not suffer from the drawbacks (b) and (c) listed
above :
(b’) the memory that is necessary for recording the removed
values is , if is the number of variables and the
maximum size of the variable domains;

(c’) there is no change, neither in the constraint graph, nor
in the constraint definitions.
It can be observed that most of the defined inverse local

consistency levels consider the ability to extend the assign-
ment of a variable with a value to some sub-instances,
involving and some additional variables, and that they dif-
fer from each other only in the definition of the considered
sub-instances. This observation paves the way for a gen-
eric definition of inverse local consistency. In this paper, we
propose such a definition. Its advantages are multiple:
it allows most of the inverse local consistency levels, sep-
arately and differently presented in the literature, to be
brought together;
doing that, it makes their theoretical comparison easier,
for example, in terms of filtering power and worst case
complexity of the associated algorithms;
it paves the way for the definition of many new levels,
either generic, or specifically defined for an instance or a
kind of instance;
it allows a generic algorithm for inverse local consist-
ency enforcing, parameterized by the chosen level, to be
defined; in this paper, we propose an algorithm that gen-
eralizes the AC7 algorithm used for arc consistency;
doing that, it saves a lot of time that otherwise would be
wasted, for each new level, in algorithm definition, imple-
mentation and debugging tasks;
it allows a user to define and test easily many levels of
inverse local consistency and to build the level that is the

Note that the drawback (a) does not disappear: as we will see
in the next section, the worst case time complexity of the associ-
ated algorithms grows exponentially as a function of the number of
additional variables.

most suited to the instance or kind of instance he/she has
to solve.

A generic framework for inverse local
consistency

A generic definition of inverse local consistency
The generic definition of inverse local consistency we pro-
pose is naturally based on the notion of viability of a value
in a sub-instance:

Definition 1 Let be an instance, defined by a
set of variables (a finite domain being associated
with each variable ) and a set of constraints. A sub-
instance of is an instance , where
and is the set of the variables in that are linked by the
constraints in .

Definition 2 Let be an instance and
be a sub-instance of . Let and .

The value is said to be viable in iff the sub-
instance restricted by the assignment is con-
sistent, i.e. has at least one solution.

If a value is not viable in a sub-instance , then
it is not involved in any solution of , and thus not involved
in any solution of . It can be removed from the domain of
without losing any solution.
We can easily extend this notion of viability to variables

and (sub-instance, set of variables) pairs:

Definition 3 Let be an instance and
be a sub-instance of . Let . The vari-

able is said to be viable in iff all the values in are
viable in . Let . The pair is said to
be viable iff is consistent and all the variables in are
viable in .

In the latter definition, the condition enforcing the con-
sistency of may seem useless. It has been added to take
into account pairs where .
The idea is to define an inverse local consistency level

by a function , which associates with any instance a
set of (sub-instance, set of variables) pairs whose
viability has to hold. Then, we can define the inverse local
consistency of an instance at the level (denoted as ilc-
consistency) as follows:

Definition 4 Let be an instance. Let be a
local consistency level and be the associated func-
tion. is said to be -consistent iff all the pairs of (sub-
instance, set of variables) in are viable.

According to this definition, specifying a function
is sufficient to specify an inverse local consistency level .
In the next subsection, we define the function associated
with some well known inverse local consistency levels. In
the subsection after, we point out how this definition can be
used to specify new inverse local consistency levels, either
generic or specific.



Already known inverse local consistency levels
In the general framework of binary or non-binary CSPs,
the functions associated with arc consistency, neigh-
borhood inverse consistency and global consistency can be
defined as follows:
For each constraint , arc consistency ( ) (Mack-
worth 1977) considers the sub-instance involving the
set of variables linked by and the constraint itself;
it requires that each variable in be viable in ; then,

;
For each variable , neighborhood inverse con-
sistency ( ) (Freuder & Elfe 1996) considers the sub-
instance involving the set of variables directly
linked to and the set of constraints linking
these variables ; it requires that be viable in ; then,

;
Global consistency ( ) (Freuder 1991; Dechter 1992) is
the highest inverse local consistency level; it requires that
each variable in be viable in , then,

.
Other known inverse local consistency levels like, for

example, path inverse consistency or k-inverse consistency
(Freuder & Elfe 1996) can be easily expressed in this frame-
work.

New inverse local consistency levels
In addition to these levels, the framework we defined paves
the way for the definition of multiple new inverse local con-
sistency levels, as limitless as the number of functions
we can imagine. Here are some examples:

-length neighborhood inverse consistency ( - ) is a
generalization of , which considers, for each variable
, the sub-instance involving all the variables that are
linked to using a path whose length is less than or equal
to ; for example, is equivalent to - ;
-neighborhood inverse consistency ( - ) is a restric-
tion of , which considers only sub-instances involving
a number of variables less than or equal to ; there are sev-
eral ways to enforce this limitation; we can consider only
the variables whose number of linked variables is less than
or equal to ; we can also consider all the variables, but,
for each variable, consider only linked variables (or sev-
eral sets of linked variables), chosen according to any
criterion: domain size, arity and tightness of the involved
constraints, etc
all the previously defined inverse local consistency levels
(in this subsection and in the previous one) can be restric-
ted by considering only the constraints whose tightness is
greater than or equal to a given threshold or whose arity

Two variables are said to be directly linked iff they are involved
in the same constraint. Given a set of variables, a constraint is
said to link these variables iff .

(Freuder 1991) speaks of completable values and (Dechter
1992) of globally consistent variables. If is the number of vari-
ables, one refers also to global consistency as (1,n-1)-consistency
or n-inverse consistency.

is smaller than or equal to another threshold; as in the ex-
ample of - , they can also be restricted by considering
only sub-instances whose size (number of variables and
domain sizes) is less than or equal to a given threshold.
Using prior knowledge on the structure of the instance

or of the kind of instance he/she has to solve, the user can
define and test suited inverse local consistency levels. To
do that, he/she only needs to define the associated func-
tions . Note that specifying functions such that

allows him/her to define
local consistency levels that enforce only sub-instance con-
sistency, without any value removal.

A generic algorithm for inverse local
consistency enforcing

General description
The generic algorithm we propose is an extension of the
AC7 algorithm (Bessière, Freuder, & Régin 1999), which is
currently considered as one of the most efficient algorithms
for arc consistency enforcing. It is widely drawn from
(Bessière & Régin 1997) and (Bessière & Régin 1998). As
in (Bessière, Freuder, & Régin 1999), it is based on the no-
tion of supporting assignment:
Definition 5 Let be an instance and

be a sub-instance of . Let and .
The assignment of the variables in is a supporting
assignment for the value in the sub-instance iff

and is solution of .
According to Definitions 2 and 5, a value is viable in a

sub-instance iff it has a supporting assignment in this sub-
instance. If not, it is not viable and can be removed, without
losing any solution.
As a result, for each triple it has to check, the

algorithm searches for a supporting assignment of in
. If such an assignment is found, is recorded

as supported by and for all the values ,
is recorded as supported by in . If such an

assignment is not found, the value is removed from the
domain of and all the values supported by an assignment
that is itself supported by in any sub-instance ,
have to search for a new supporting assignment in .

Data structure
The data structure we use has six main components:
(CL) a list (for Checking List) of (sub-instance, set
of variables) pairs whose viability has to be
checked; this list is initialized by a call to the function

associated with the considered inverse local con-
sistency level;

(SIL) for each variable , a static list (for Sub In-
stance List) of sub-instances that have to
be checked again when a value is removed from the
domain of ;

denotes the value of the variable in the assignment
.
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(SSL) a list (for Seeking Support List) of (variable,
value, sub-instance) triples , associated with
the values that are searching for a supporting as-
signment in the sub-instance ;

(SVL) for each supporting assignment , a list
(for Supported Value List) of values that are supported by
;

(SAL) for each triple , a list
(for Supported Assignment List) of supporting assign-
ments that are themselves supported by in ;

(MSA) for each triple , an
assignment (for Minimum-Supporting
Assignment), such that no supporting assignment exists
before for in , according
to the lexicographic ordering of the assignments of
defined by the static orderings chosen for variables and
values;
Figure 1 gives a graphical representation of the supporting

links between values and assignments and between assign-
ments and values (data structures and ).

(v’,val’)

SA

(v, val)

SA∈SAL(v,val,P’)
SA∈SAL(v’,val’,P’)
(v, val) ∈SVL(SA)

: supports

P’

Figure 1: Graphical representation of the supporting links.

Algorithm
The high level pseudo-code of the generic algorithm is
shown in Figures 2 to 7.
The principal novelty with respect to lies in the use

of the function search called by the function seek-next-
support. This function searches for a new supporting as-
signment of a value in a sub-instance . The
method used for searching for such an assignment depends
on the size of the sub-instance:
if contains only one constraint, as with , the search
is a simple enumeration;
if it contains more than one constraint, as with , - ,
- , or any other inverse local consistency level, a
tree search is performed.
Any of the techniques that have been developed for CSP

solving can be selected for this search. The struc-
ture avoids searching if a supporting assignment can be dir-
ectly inferred: if a value supports an assignment, this value
is also supported by this assignment. The structure
avoids exploring parts of the search space that have been
previously explored, but imposes static variable and value

function local-consistency-enforcing(P, ilc)
CL init-cl(P, ilc);
while CL

(P’, V”) pick-and-remove(CL);
if V” =
then if not consistent(P’)

then return false;
else SSL init-ssl(P’, V”);

if not seek-supports(SSL, ilc)
then return false;

return true;

Figure 2: Inverse local consistency enforcing of an instance
at the level .

function seek-supports(SSL, ilc)
while SSL

(v, val, P’) pick-and-remove(SSL);
if not removed(val, domain(v))
then if not seek-inferred-support(v, val, P’)

then if not seek-next-support
(v, val, P’, MSA(v, val, P’))

then remove(val, domain(v));
if domain(v) =
then return false;
SSL add-ssl(SSL, v, val);

return true;

Figure 3: Searching for supporting assignments for a list
of (variable, value, sub-instance) triples.

function seek-inferred-support(v, val, P’)
if SAL(v, val, P’)
then SA pick-not-remove(SAL(v, val, P’));

add((v, val), SVL(SA));
return true;

return false;

Figure 4: Searching for an inferred supporting assignment
for a value in a sub-instance .

function seek-next-support(v, val, P’, MSA)
SA search(v, val, P’, MSA);
if SA
then forall (v’, val’) SA

add(SA, SAL(v’, val’, P’));
SVL(SA) (v, val) ;
MSA(v, val, P’) SA;
return true;

return false;

Figure 5: Searching for a supporting assignment for a value
in a sub-instance , starting from .



function init-cl(P, ilc)
init-sil(P)
CL (P);
init-sil-sal (CL);
return CL;

function init-sil(P)
forall v variables(P)

SIL(v) ;

function init-sil-sal(CL)
forall (P’,V”) CL

forall v variables(P’)
add(P’, SIL(v));
forall val d(v)

SAL(v, val, P’) ;

function init-ssl(P’,V”)
SSL ;
forall v V”

forall val d(v)
SSL add((v, val, P’), SSL);
MSA(v, val, P’) ;

return SSL;

Figure 6: Initialization of the data structures.

orderings. If one wants to use dynamic orderings or, more
generally, if one wants to derive more benefit from the pre-
vious searches for a supporting assignment of any value in
the same sub-instance, any of the techniques of solution
or reasoning reuse that have been developed for dynamic
CSPs (Verfaillie & Schiex 1994b; Schiex & Verfaillie 1994;
Verfaillie & Schiex 1994a), can be considered. Moreover,
any level of inverse local consistency can be maintained
during this search: forward checking, arc consistency, etc.
Our current implementation (Martinez 1998) uses forward
checking and static variable and value orderings.
It is easy to show informally that such an algorithm turns

any instance into an instance , which is simplified, equi-
valent and locally consistent at the specified level:

(1) is simplified because some values involved in have
been removed;

(2) it is equivalent because all the instances successively
generated during algorithm execution are equivalent to :
let be the current instance resulting from the removal
of some values; initially, ; let us assume that, at
a given step of the execution, is equivalent to ; if a
value is removed, it is not viable in a sub-instance of
, and thus not involved in any solution of ; the res-

ulting new current instance is consequently equivalent to
the previous one, and thus equivalent to ;

(3) it is locally consistent at the specified level, because, at

function add-ssl(SSL, v, val)
forall P’ SIL(v)

forall SA SAL(v, val,P’)
forall (v’, val’) SA

remove(SA, SAL(v’, val’, P’));
forall (v”,val”) SVL(SA)

add((v”,val”,P’), SSL);
remove(SA);

Figure 7: Update of the data structure .

the end of the algorithm, all the remaining values are vi-
able in all the associated sub-instances.

Its time and space complexity can be easily obtained by
generalizing the reasoning used for AC7. Let be the
number of (sub-instance, set of variables) pairs

to consider, be the maximum number of
variables in , be the maximum number of variables
in , and be the maximum domain size. Time and
space complexities are respectively and

.

Extending definitions and algorithms
As explained in the previous section, as soon as the num-
ber of constraints involved in the sub-instance to consider is
greater than 1, a tree search is performed in order to prove
the viability or the non-viability of a value. But other less
expensive methods could be considered.
First of all, any limited local search can be used to es-

tablish viability; if it succeeds, viability is proven. If not, a
systematic tree search is needed.
Second, inverse local consistency enforcing can be used to

prove non-viability. This implies an extension of the notions
of viability and inverse local consistency previously intro-
duced. Definitions 2 and 4 can be replaced by the following
recursive definitions:

Definition 6 Let be an instance and
be a sub-instance of . Let be an inverse local

consistency level. Let and . The value
is said to be -viable in iff the sub-instance

restricted by the assignment is -consistent.

Definition 7 Let be an instance. Let and
be two inverse local consistency levels and be

the function associated with . is said to be - -
consistent iff all the pairs in are -viable.

Note that recursivity stops when equals consistency.
This extension allows other levels, previously known or not,
to be included. For example:

singleton arc consistency (Debruyne & Bessière 1997b)
could be defined as - ( , );
singleton neighborhood inverse consistency could be
defined as - ; more generally, singleton ilc could be
defined as - ;



- would be an interesting trade-off between neigh-
borhood inverse consistency and arc consistency: for each
variable , one considers the sub-instance involving all
the variables that are directed linked to and all the con-
straints that link these variables; but for each value of
, only arc consistency of restricted by the assignment

is required.

Conclusion and perspectives
As a conclusion, we have defined a generic customizable
framework for inverse local consistency, which includes
most of the previously defined levels and allows as many
new levels as we can imagine to be built, according to the in-
stance or kind of instance we have to solve. Let us point out
that this framework does not include specific inverse local
consistency levels, such as restricted path consistency and
max restricted path consistency: their inclusion would have
implied important changes in the proposed framework and a
loss in terms of simplicity and clarity.
Associated with this framework, we have defined a gen-

eric algorithm, parameterized by the chosen level. This al-
gorithm has been implemented in the frame of an interact-
ive tool for CSP solving. No comparison in terms of effi-
ciency has been carried out between this generic algorithm
and other algorithms dedicated to a given level. Genericity
may induce a loss of efficiency. But one can argue that a
generic carefully implemented algorithm is often more effi-
cient than a specific rapidly implemented algorithm.
Always associated with this framework, it would be worth

developing a small language, allowing the user to express
easily any level he/she wants. Finally, two remarks:
the current constraint programming tools do not specify
the levels of local consistency they use; ”opening the box”
and offering at least an advanced user the means of de-
fining this level may allow him/her, on the one hand, to
understand better how local consistency enforcing works
and, on the other hand, to tune it according to the instance
or kind of instance he/she has to solve;
the generic framework we defined reverses the ”land-
scape” of CSP solving: whereas local consistency enfor-
cing is most of the time presented as a subroutine for tree
search, tree search is presented here as a subroutine for
local consistency enforcing; but nothing prevents us from
defining a tree search, which calls local consistency en-
forcing, which in turn calls another tree search, etc.
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Bessière, C., and Régin, J. 1998. Local Consistency
on Conjunctions of Constraints. In Proc. of the ECAI-98
Workshop on “Non-Binary Constraints”, 53–59.
Bessière, C.; Freuder, E.; and Régin, J. 1999. Using Infer-
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