
Toward Understanding Variable Ordering Heuristics for
Constraint Satisfaction Problems

J. Christopher Beck
�

and Patrick Prosser
�

and Richard J. Wallace
�

Abstract. Most previous work on understanding variable order-
ing heuristics for constraint satisfaction problems has focused on the
ability to recover from bad decisions. It has been demonstrated how-
ever that this ability cannot be the full explanation of the quality of a
variable ordering heuristic [8]. In this paper, we develop a more com-
plete framework for analyzing heuristics based on optimal policies.
We consider a second policy (in addition to the principle of quick
recovery), which we call promise, which is simply to make choices
that maximize the likelihood of successful search. We then develop a
method for measuring the degree to which a heuristic conforms to the
promise principle. Using this measure, we show that variable order-
ing heuristics vary with respect to their promise, and that for prob-
lems with many solutions the degree of promise correlates highly
with efficiency of search.

1 INTRODUCTION

When presented with a number of choices, intelligence dictates that
we select the best one according to some reasonable criterion. But
how do we go about making a good decision? If we are on the path
to reaching our goal, and we are presented with a number of options,
a good decision will bring us closer to our goal. But if we have made
a bad decision unknowingly and are no longer on a path to our goal,
then we want to make decisions that will show us this as quickly
as possible, so we can discover the bad decision and choose again.
This means that in solving hard problems incrementally, we must
deal with two different situations, where the assessment of decision
quality may depend on different criteria.

Constraint satisfaction problems (CSPs) involve assigning values
to variables in order to satisfy constraints among them. In this case,
choices made during problem solving involve selecting which vari-
able to consider next or which value to assign to this variable. Typ-
ically, some rule or heuristic is used to guide decision making at
each step. For the most part, these rules are applied on a more-or-less
ad hoc basis, and the reasons for the sometimes dramatic improve-
ments in search efficiency are not yet clear. One criterion has been
suggested for assessing heuristics, the well-known fail first principle.
However, it has been demonstrated that adherence to this principle
alone can actually impede search [8].

The main contention of this paper is that to understand heuristic
performance, we must distinguish the two situations described above.
We propose that each situation can be related to a basic principle or
policy that defines what a good decision is, and that heuristics must

�
Cork Constraint Computation Center Computing Science Department, Uni-
versity College Cork, Ireland � c.beck,r.wallace � @4c.ucc.ie�
Department of Computing Science, University of Glasgow, Scotland,
pat@dcs.gla.ac.uk

be evaluated in relation to both principles. We call these principles
promise and fail-firstness. Promise is the ability to make choices that
lead to a solution when one exists, while fail-firstness is the ability to
detect a wrong decision as soon as possible.

This paper focuses on the promise principle and on heuristics for
variable selection. Although some variable ordering heuristics are
known to enhance fail-firstness [6, 8], there is as yet no demonstra-
tion that they also vary with respect to promise. (On the other hand,
it is expected that performance differences for value ordering heuris-
tics will be due solely to differences in promise, although the size
of these differences is unknown.) We first show how promise can
be measured, which allows us to move from an abstract discussion
of principles to concrete assessment of heuristics in these terms. We
demonstrate that different heuristics do exhibit different degrees of
promise and that the level of promise of a heuristic is correlated with
its quality as measured by search cost. By taking performance prin-
ciples like promise into account in evaluating heuristics, we may be
able to clarify their effect on search performance. This may lead to
more intelligent selection of heuristics and even to intelligent heuris-
tic design.

1.1 Constraint satisfaction problems and search

In a constraint satisfaction problem (CSP) there is a set of variables,
each with a domain of values, and a set of constraints acting between
variables to restrict the set of possible value assignments. The prob-
lem is to find an assignment of values to variables that satisfies the
constraints, or to prove that no such instantiation exists [9]. Many
real world problems can be modeled as CSPs: scheduling problems,
problems of design, routing, workforce management, etc. Typically a
CSP is solved using a complete backtracking search. That is, a vari-
able is selected for instantiation (the current variable) and is assigned
a value. The un-assigned (future) variables are then filtered, remov-
ing all values from their domains that can be proved to be inconsis-
tent with the past variable assignments. If all future variables have
non-empty domains, we select from the future a new current vari-
able. Otherwise we re-instantiate the current variable, or backtrack.
The order that we select the current variable can have a profound ef-
fect on search effort [6, 7, 5]. We can use dynamic or static variable
ordering heuristics. In a static variable ordering (SVO) heuristic vari-
ables are ordered before search starts, and are then always selected in
that order. In contrast, dynamic variable ordering (DVO) heuristics
select the current variable using information that is made available
during the search process. Another primary component of search is
the algorithm used to infer inconsistent values in the domains of fu-
ture variables. A common consistency enforcement algorithm called
forward checking [6], checks all values in the domain of the future

variables against the assignment made to the current variable. If a
value is inconsistent, it is removed from the domain.

Haralick & Elliott [6] proposed the fail first principle as a heuristic:
first try the places most likely to fail. This was realized as SDF: the
“smallest domain first” DVO heuristic which selects the variable with
fewest values remaining in its domain. The justification for this was
that it would reduce the average path length in the search tree, and
this in turn would reduce search effort. Nudel [7] suggested another
motivation for a heuristic, namely that it should minimize the number
of nodes within the search tree. He presented an analytical model of
the forward checking search process and showed that SDF will min-
imize the expected size of the search tree. In [8] Smith & Grant took
the fail first principle to an extreme and engineered a heuristic that
aggressively attempts to fail early in the search. While their heuristic
did indeed reduce the average path lengths in the search tree, it did
so with an increase in search cost. Clearly, the fail-first principle is
not a full explanation for the quality of variable ordering heuristics.

2 RULES FOR DECISIONS: POLICIES AND
HEURISTICS

When decisions are made during the course of search, it is helpful
to have rules to guide the selections. Rules of this sort seem to have
two basic forms, that have been called policies and heuristics, and
that can be distinguished by the functions they perform. A policy
identifies goals or end-results that are desirable. A heuristic identifies
features of the situation that serve to distinguish among choices, such
that a selection in these terms increases the likelihood of achieving
the desirable goals.

It is significant that researchers in other disciplines have also seen
fit to make this distinction. The following quotation is from an article
in behavioral ecology (the study of behavior as adaptation) [3]:

A policy model in our terminology is one which prescribes a
general rule for maximizing payoff (the goal), without identi-
fying any specific procedure which would enable the animal to
follow the rule. (A policy for maximizing the goal of offspring
production might, for example, be “Cross roads in a way that
minimizes the chance of being run over”, and the procedure
for doing this might be “Look in both directions and cross if
clear”).

These authors talk about procedures or algorithms rather than heuris-
tics, but the latter clearly form a part of any procedure in which non-
deterministic choices must be made. Other workers in this field have,
in fact, spoken of animals as following certain “rules-of-thumb” that
allow them to approximate optimal policies.

There is an overall policy for search problems, which is to max-
imize the efficiency of the procedure, i.e. to minimize the effort re-
quired to find a solution, according to some relevant measure. An
important measure of this sort is the number of nodes in the search
tree, which is equal to the total number of assignments considered.
Other measures, such as number of constraint checks and run time,
attempt to better measure overall effort.

As indicated in the Introduction, two subordinate policies can be
distinguished in this domain. This is because, for NP-complete and
other hard combinatorial problems, search cannot be expected to
make the best choice in all cases. Search may, therefore, enter a state
where the partial solution cannot be extended to a complete one, i.e.
the subtree below it does not contain any solutions. In this case, in or-
der to succeed as quickly as possible, search should fail as quickly as
possible so that it can get out of this subtree and return to a path that

leads to a solution. This is in direct contrast to the situation where
one is on such a path; in this case success should be followed by
future success, to as great a degree as possible.

Promise has always been accepted implicitly as a policy in con-
straint solving, one that was probably too obvious to be described
as such. On the other hand, the fail first principle is not so obvious,
so its identification was (rightly) perceived as a discovery or a new
proposal, and it has taken its place as a discernible strand in the lore
of the field. Moreover, this proposal was first made in the context
of the all-solutions problem, where for many algorithms the promise
of different heuristics is the same. (Roughly, this is because all cur-
rently viable values in a domain must be tested in order to find all
solutions.) As a result, the promise principle has tended to be dis-
regarded. A further result is that the proper context of fail first has
often been overlooked.

Another reason for the neglect of promise as a ‘complementary’
principle is that it is typically associated with value selection. In fact,
an excellent value ordering heuristic is called the “promise” heuristic
[4]. Value selection in turn is not usually expected to support fail-
firstness. On this basis, one might hypothesize that while value or-
dering heuristics should support promise, variable ordering heuris-
tics should support fail-firstness. In this case, one might question
whether the distinction between policies and heuristics is important
in practice, or even in theory. On the other hand, if variable order-
ing heuristics can also vary with respect to promise, then there can
be no argument about the importance of this distinction, or the po-
tential usefulness of considering heuristics in terms of how well they
conform to basic policies.

3 A MEASURE OF PROMISE

���
���

���
���

���
����

�
�
�
� �

�
�
�
�
��

1

2 3

ab

abc abc

ab,bb,bc aa,ab,bb,bc

aa,bc,ca,cb,cc

Figure 1. Example CSP with three variables, showing domains and the set
of tuples in each constraint.

The promise policy is simply to make selections that have the
greatest likelihood of succeeding. Because in practice we do not
know which selection will maximize promise, we are forced to use
heuristics. “Likelihood of success” can be treated probabilistically.
That is, for a given decision there is some probability over all possi-
ble subsequent decisions that the choice will lead to success. We can
also consider promise with respect to an entire problem, i.e. as an ex-
pected value over all possible sequences of choices. In this sense, we
can speak of the promise of a problem in terms of its relation to a per-
fect selection. This measure of promise also has a natural minimum
and maximum: 0 (for insoluble problems) and 1 (if every � -tuple is
a solution). This gives us a universal measure (across all problems)
that is linked directly to an optimal policy; if we can obtain a value
for this measure given a problem and heuristic, we can tell how well
that heuristic conforms to the ideal policy on that problem. (Whether
“promise” refers to the policy or to the measure based on this policy
should be clear from the context.)

These points can be illustrated with a toy problem, in which
promise can be worked out exactly for different consistency algo-
rithms as well as for the entire problem. The problem consists of
three variables, each with two or three values in its domain (see Fig-
ure 1).

For this problem, the search tree for simple backtracking (no fil-
tering), using lexical variable ordering is:�� � �

a b�� � �
a� b c��� � �
a� b� c�

������� �
a� b c�� � �

a� b� c

�� � �
a� b c

To calculate promise, we consider the probability of choosing each
viable value from a domain, when any value is equally likely to be
chosen: �� � ��� ������

0

����
�� � � ������ � � ��

From this, we can calculate the overall promise for backtracking
on this problem, by summing the path-products. The latter are:�	�
 ���
�
���
�����	
 ��
�
 ��
�� ����	�� �	
 ��
�
 ��
���� 	���
And the resulting sum is:��� ���� � 	��� � ��

So the overall promise for this problem and this consistency algo-
rithm is

� . For backtracking, this is, in fact, the same as the solution
density (cf. Section 5).

Now, we consider forward checking, using the SDF ordering. Here
the search tree looks like:�� � �

a b��
b� �� � �

b c��
c

�� � �
b c

Making the same calculations as before for this tree, we have the
path-products,�	
���
��!�#" �	
 �	
�
 �
$� �% " �	
 �	
�
 �
�� �%
which gives the sum: ��� �% � �% � �	

So the overall promise for this problem, given this variable order-
ing and the forward checking algorithm, is

�� .
In this case, if we use a different variable ordering, say 3-2-1 in-

stead of 1-2-3, we, of course, get a different search tree:

�� � �
a b c�� � �

a� c� b

c

�� � �
b c

b b

Making the same calculations for this tree, we have path-products:��
��&
'�!�(" ��
 �
�
 �
�� �� " ��
 �	
�
 �
�� �� " ��
 �	
�
 �
�� ��
and the sum: ��� �� � �� � �� � 	�
So the overall promise for this problem and this algorithm is

�� .
From this we can draw some important conclusions:) Promise can vary depending on the variable ordering, as well as
the consistency algorithm. (In the above three examples, three dif-
ferent values were obtained for the overall promise.)) Promise is not in general equivalent to solution density; the equiv-
alence holds only if there is no consistency maintenance.) There does not appear to be a particular variable ordering that is
guaranteed to give the best value for promise. (One might have
expected SDF to do better than the alternative, and it may indeed
on average.) Therefore, the degree of promise of different variable
ordering heuristics will probably have to be decided empirically.

3.1 Probing for promise

Although the expected value of success gives an ideal measure of
promise, it is not clear from the above whether such a measure can
be obtained in general. Fortunately, it is possible to assess the overall
promise of a problem under a given variable ordering with the fol-
lowing procedure, which we call probing. The basic idea is to choose,
with appropriate randomization, variables and values until a dead end
is encountered. At this point search stops and re-starts from the be-
ginning with a new random seed. This process is repeated until a
complete solution is found; the number of probes required to do this
gives us a measure of promise, as shown below. Roughly, the greater
the promise the fewer the number of probes required, on average, to
obtain a complete solution.

This procedure avoids contamination by fail-firstness because we
never try to recover from a deadend: the number of probes should be
a reflection of promise alone. If used with a random value ordering
heuristic over many runs, this technique also avoids effects of value
selection on promise. We can use any consistency enforcement algo-
rithm as part of the probing procedure. This allows us to assess this
aspect of search for its effect on promise.

3.2 The probe procedure estimates promise

We can prove that the number of probes is a direct estimate of the
promise for a problem, under a particular variable ordering. This is
because the expected number of probes can be expressed by the fol-
lowing formula *+ ,�-

��.0/
,21

�43
where

3
is the probability that the probe will succeed, and is therefore

equal to the overall promise, and / is the probability that this probe

will fail. Using
��� / instead of

3
, we have.*+ ,�-

� .0/
,21

�
 ��� /
��
*+ ,�-

� .2/
,01

� � .2/
,

This summation can be seen to involve a “telescoped” expression, so
it can be simplified as follows. First, we consider the sum in its finite
form,

� / � � / � � � 	 / � 	 / � � � � � / � � � / � � ����� �
�
 � � �
 / 	

1
� �
 � � �
 / 	

1
� � � �

� / 	
1

� � � / 	 �
where ��
�� . This can be reduced to:

/ � � / � � / � ����� � / 	
1

� � � / 	�
 	+ ,�- � /
,

 � � / 	

By a well-known equivalence, the summation within the parentheses
is equal to ��� / 	�
� /
As ��
�� , the simplified summation therefore goes to

��
1
� , while

the second expression (after the minus sign) goes to zero. The first
statement is obvious. For the second, the following proof will suffice
(and a variant can be used for the first statement as well).
Proof. The ratio of successive terms as � is incremented is:
 � � �
 / 	�� �

� / 	 �
 � � �
�
 /

Since this ratio goes to / as ��
�� , there must be some point at
which it becomes less than 1, say, where � ��� . Therefore, if we
consider successive ratios from this point (all of which are now less
than 1),
�� � �
 / ��� � ���

� / � "
�� � 	
 / ��� � ���
�� � �
 / ��� � ��� "����
the ratio of successive numerators in this sequence to the first de-
nominator becomes progressively closer to 0. But then the original
expression must
 � . �

What this argument shows is that the expected number of probes
is equal to the reciprocal of the overall promise. We can, therefore,
use the probe technique to obtain a direct estimate of promise for any
heuristic on any problem, as well as estimating the average promise
of a heuristic for a class of problems.

For example, for forward checking using SDF on our toy problem,
the summation is *+ ,�-

� .
 �	

,01

� �	 � 	
while for the reverse ordering, it is*+ ,�-

� .
 ���

,01

� 	� � � �
These are, of course, the reciprocals of the values of the overall

promise calculated by hand above.

4 EMPIRICAL INVESTIGATIONS

In the last section, we have shown that on a toy problem different
variable orderings result in different measures of promise and that
probing allows us to estimate promise. In this section, we will use
the probing procedure to investigate two hypotheses:

1. Different variable ordering heuristics from the literature exhibit
different levels of promise.

2. Promise is inversely correlated with search effort. We do not ex-
pect promise to be perfectly correlated with search effort since
fail-firstness surely also has an impact on search effort. However,
we expect that for easier problems, promise will be strongly cor-
related with search cost. As problems become more difficult, we
expect the effect of promise to decrease: fail-firstness should be
more important to search effort.

4.1 Experimental details

We investigate the following set of heuristics and anti-heuristics:) SDF: “smallest domain first”. The variable chosen is the one with
the smallest domain.) max-static-degree: The variable chosen is the one with the maxi-
mum degree in the original constraint graph. This is a static heuris-
tic since degree does not change during search.) max-forward-degree: The variable chosen is the one with the max-
imum degree to non-assigned variables.) brelaz [2]: The variable chosen is the one with the smallest do-
main. Ties are broken by choosing the variable with smallest do-
main and maximum forward degree.) domdeg [1]: The variable chosen is the one that minimizes the
ratio of domain size to forward degree (i.e. the number of adjacent
uninstantiated variables).) random: A random (unassigned) variable is chosen.) LDF: “largest domain first”. The variable with the largest domain
is chosen.) min-static-degree: The variable chosen is the one with smallest
degree in the original constraint graph. This is a static heuristic.) min-forward-degree: The variable chosen is the one with smallest
degree to non-assigned variables.) anti-brelaz: The variable with largest domain is chosen. Ties are
broken by choosing the variable with largest domain which has
minimum forward degree.) anti-domdeg: The variable that maximizes the the ratio of domain
size to forward degree is chosen.

Forward checking (FC) [6] is used with each variable ordering
heuristic.

All test problems are randomly generated with 15 variables and 10
values per variable. The density is fixed at 0.7. Tightness varies from
0.30 to 0.39 in steps of 0.01. There are 100 problems in each subset
corresponding to the different tightness values. The problems are not
filtered and therefore (depending on the mean solubility of the set)
contain a mix of soluble and insoluble problems.

To operationalize our probing technique for our experiments, we
repeat the probing procedure 100 times for each problem and vari-
able ordering heuristic with different seeds for the random number
generator. The median reciprocal of the number of probes over the
100 runs is then considered our estimate of promise for that prob-
lem and variable ordering heuristic. Recall that for problems with
no solutions, we define the promise to be 0. For a set of problems

and a variable ordering heuristic, we calculate the mean estimate of
promise by finding the arithmetic mean of the promise estimate over
each problem in the set for that variable ordering heuristic.

To estimate the search effort for a problem and a variable ordering
heuristic, we follow a similar procedure as for estimating promise.
The difference is that instead of probing for solutions, we simply
use chronological backtracking. Our measure of search effort is the
number of consistency checks required to find a solution. Again, for
a given problem and variable ordering heuristic, we run this process
100 times with differing random seeds and define the search cost to
be the median number of constraint checks over the 100 runs. For a
set of problems the mean search cost is the arithmetic mean of the
search cost for each problem.

4.2 Results

Figure 2 presents the mean promise estimates for each variable order-
ing heuristic. A log-scale is used on the y-axis to make the rankings
of the heuristics easier to see. Figure 3 presents the search cost for
each variable ordering heuristic.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.3 0.32 0.34 0.36 0.38 0.4

M
ea

n
pr

om

Tightness

sdf
max-static-deg

max-forward-deg
brelaz

domdeg
random

ldf
min-static-deg

min-forward-deg
anti-brelaz

anti-domdeg

Figure 2. The mean promise estimates for each set of problems.

Figure 2 clearly shows that different variable ordering heuristics
exhibit different levels of promise. As the tightness increases, there
are fewer soluble problems and the level of promise correspondingly
decreases. Even when we remove the insoluble problems, however,
the promise decreases with increasing tightness as fewer solutions
result in a lower promise for a given variable ordering heuristic.

Comparing Figures 2 and 3, we can see that the most successful
heuristics (i.e., those with lowest search cost: domdeg, brelaz, and
SDF) also exhibit the highest levels of promise. Furthermore, the
rankings seem relatively consistent: with some exceptions, the ���

�

best heuristic exhibits the � �
�

highest level of promise.
Figure 4 presents a measure of the correlation between promise

and search cost. The plot labeled “all” examines 1100 points for each
problem set composed of the search cost and promise values for each
of the 100 test problems and each of the 11 variable ordering heuris-
tics. The plot shows that for low values of tightness, the variation in
promise accounts for 70-80% of the variation in search cost. As the
problems become tighter the �

�
value drops to close to 0. This is

consistent with our expectations.

 1000

 10000

 100000

 1e+06

 1e+07

 0.3 0.32 0.34 0.36 0.38 0.4

M
ea

n
C

on
si

st
en

cy
 C

he
ck

s

Tightness

sdf
max-static-deg

max-forward-deg
brelaz

domdeg
random

ldf
min-static-deg

min-forward-deg
anti-brelaz

anti-domdeg

Figure 3. The mean search cost for each set of problems.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.32 0.34 0.36 0.38 0.4

R
-s

qu
ar

ed

Tightness

all
sdf
ldf

Figure 4. The �
�

values for the correlations between promise and the
reciprocal of search cost for each set of problems and for selected variable

ordering heuristics.

Figure 4 also presents the �
�

values for SDF and its anti-heuristic,
LDF. This plot is similar to that seen with the other heuristic/anti-
heuristic pairs based on domain size (i.e., domdeg and brelaz): at low
values of tightness the �

�
values are somewhat noisy and around

0.4. For the tighter problem sets, the anti-heuristic, LDF, starts to
have a much stronger correlation with search cost while the correla-
tion of the heuristic, SDF, declines. This is somewhat surprising as
we would expect the promise of a heuristic to be quite poorly cor-
related with search cost when the problems are insoluble. However,
a closer look at the data shows that for problems with no solutions,
the anti-heuristics have quite a small variance in search cost. The
anti-heuristics do poorly, of course, but each anti-heuristic appears
to do uniformly poorly across the insoluble problems at a tightness
value. Given that there are very few soluble problems at high tight-
ness values (i.e., one for set 0.39) this leads to a strong correlation
between promise which is, by definition, 0, and search cost. Another
surprising result is that for the problem sets with low tightness, the
�

�
values are much lower than the “all” plot. In other words, the

relationship between promise and search cost is weaker within any
single heuristic, but over all heuristics the trend of higher promise
corresponding to lower search cost for loose problems is clear.

The heuristics and anti-heuristics based only on variable degree
have a similar behaviour as the domain-based heuristics for low val-
ues of tightness. As the tightness increases, however, the �

�
values

of both the heuristics and anti-heuristics drop as expected. Lending
support to our above explanation of the domain-based anti-heuristics,
the degree-based anti-heuristics have a larger variance on insoluble
problems than their domain-based counterparts.

5 DISCUSSION AND OBSERVATIONS

We have shown that promise has a high (inverse) correlation with
search effort for problems with many solutions but a low correlation
when the number of solutions decreases. We have also shown that
the number of probes to find a solution correlates with the effort for
complete search to find a solution. But why should heuristics such as
SDF, domdeg, and brelaz show greater degrees of promise than other
variable orderings? These heuristics give preference to variables with
small domain sizes. If we assume that each value in the domain of
a variable has equal probability of occurring in a solution, when do-
main sizes are small the probability of any value in that domain being
in a solution is relatively high. That is, the values are more promis-
ing. Therefore we should expect that heuristics that prefer variables
with small domains will be promising, and this is just what we have
seen. This explanation may also account for the differences between
heuristics and anti-heuristics that are based on degree alone, although
this has not yet been tested.

These results should not come as a surprise. What we have demon-
strated is that the extent to which a variable ordering affects the like-
lihood of finding a solution has an inverse relationship to the overall
search effort. Qualitatively, this is only to be expected. But heretofore
it has not been clear that differing degrees of promise actually play
a (non-negligible) role in performance differences based on variable
ordering. In fact, prior to this work no means of analysis has been
available to address the issue. It is certainly conceivable that the abil-
ity to escape dead ends is so important that search cost depends en-
tirely on fail-firstness and the promise of a heuristic is irrelevant or, at
best, of marginal importance. Indeed, the focus on the fail-first prin-
ciple in the literature and the fact that promise has, to our knowledge,
never been explicitly investigated, might lead one to this expectation.

In our toy example we demonstrated that when using for-
ward checking, different variable orderings have different levels of
promise. When calculating the promise for the entire tree we are only
interested in paths to solutions (all other paths are zero valued). To in-
crease promise we want to reduce the degree of nodes in that tree, and
we can do this by increasing the level of consistency during search,
i.e. increasing levels of consistency will be increasingly promising. If
our search process does not perform any domain filtering, but checks
backwards (i.e. the algorithm is BT), then all variable orderings will
have the same promise. Consider a variable � . This will correspond
to an interior node in the search tree with out degree equal to the do-
main size of that variable. Each value will then be equally promising.
In any rearrangement of the tree � will have the same out degree,
and each value will have the same promise. Therefore, all heuristics
will be equally promising. This reasoning has been confirmed empir-
ically, with the problems used in the experiments above.

The likelihood that a value in the domain of a variable is in a so-
lution will increase as we increase the level of consistency. At the
extreme, with � -consistency, all domain values are in solutions, and
again all heuristics will be equally promising. However, between the
extremes of BT and � -consistency we should expect that as consis-
tency levels increase the difference in promise between heuristics

will decrease. Therefore, promise should actually be defined on the
triple � / �������
	�� "�
 	���� ��������� " � � ��� ����� 	 ����� �
	���	���� .

6 FUTURE WORK AND CONCLUSION

Symmetrical to promise will be fail-firstness, i.e. the ability of a
heuristic to detect a bad decision. Since heuristics are fallible, when
problems are soluble both promise and fail-firstness will come into
play, and when problems are insoluble promise will be irrelevant.
We conjecture that variable ordering heuristics will exhibit differing
levels of fail-firstness as well as promise. While formalizations of
the fail-first principle have been made [6, 7], no one, to our knowl-
edge, has developed a method for measuring fail-firstness that is in-
dependent of promise. We plan to apply the same methodology used
with promise to fail-firstness and then to evaluate the extent to which
search cost is correlated with the combination of promise and fail-
firstness.

Why did Smith and Grant’s aggressive attempts to fail earlier [8]
result in poor search performance? It could be that as they increased
fail-firstness, they reduced the heuristic’s promise. We plan to empir-
ically test this hypothesis. Furthermore, it would be interesting to see
if we could design stronger heuristics by investigating the trade-off
between promise and fail-firstness and, ideally, developing a heuris-
tic with higher promise and higher fail-firstness.

We have presented what we believe to be an explanation of what
makes DVO heuristics perform well, i.e. promise and fail-firstness.
Promise guides search to a solution when one exists and fail-firstness
delivers short proofs of insolubility. Variable ordering heuristics,
such as SDF, brelaz and domdeg exhibit promise as well as fail-
firstness. Why is this interesting? Up till now we have had conflicting
guidance on what makes a good heuristic, making it difficult to de-
sign new heuristics. The present approach offers a way out of this
impasse by developing a more thorough analysis of heuristics start-
ing from first principles in the form of optimal policies.

ACKNOWLEDGEMENTS

This work was supported by Science Foundation Ireland under Grant
00/PI.1/C075.

REFERENCES
[1] C. Bessiere and J-C. Regin, ‘MAC and combined heuristics: Two reasons

to forsake FC (and CBJ?) on hard problems’, Principles and Practice of
Constraint Programming-CP’96, 61–75, (1996).

[2] D. Brélaz, ‘New methods to color the vertices of a graph’, Communica-
tions of the ACM, 22(4), 251–256, (1979).

[3] J. Cheverton, A. Kacelnik, and J. R. Krebs, ‘Optimal foraging: con-
straints and currencies’, in Experimental Behavioral Ecology and So-
ciobiology, eds., B. Hölldobler and M. Lindauer, 109–126, Sinauer, Sun-
derland, MA, (1985).

[4] P. A. Geelen, ‘Dual viewpoint heuristics for binary constraint satisfaction
problems’, in Proc. 10th European Conf. Artif. Intell., pp. 31–35, (1992).

[5] I.P. Gent, E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh, ‘An empir-
ical study of dynamic variable ordering heuristics for the constraint sat-
isfaction problem’, Principles and Practice of Constraint Programming-
CP’96, 179–193, (1996).

[6] R. M. Haralick and G. L. Elliot, ‘Increasing tree search efficiency for
constraint satisfaction problems’, Artif. Intell., 14, 263–314, (1980).

[7] B. Nudel, ‘Consistent-labeling problems and their algorithms: Expected-
complexities and theory-based heuristics’, Artif. Intell., 21, 263–313,
(1983).

[8] B. M. Smith and S. A. Grant, ‘Trying harder to fail first’, in Proc. 13th
European Conf. Artif. Intell., pp. 249–253, (1998).

[9] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, 1993.

