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Abstract
Symmetry breaking in CSPs has attracted consid-
erable attention in recent years. Various general
schemes have been proposed to eliminate sym-
metries during search. In general, these schemes
may take exponential space or time to eliminate
all symmetries. This paper studies classes of
CSPs for which symmetry breaking is tractable.
It identifies several CSP classes which feature var-
ious forms of value interchangeability and shows
that symmetry breaking can be performed in con-
stant time and space during search using dedicated
search procedures. Experimental results also show
the benefits of symmetry breaking on these CSPs,
which encompass many practical applications.

1 Introduction
Symmetry breaking for constraint satisfaction problems has
attracted considerable attention in recent years (See the last
CP proceedings, the CP’01 and CP’02 workshops on sym-
metries, and [Crawford et al., 1996; Freuder, 1991; Backofen
and Will, 1999; Puget, 1993] for some less recent papers).
Indeed, many applications naturally exhibit symmetries and
symmetry breaking may drastically improve performance
(e.g., [Barnier and Brisset, 2002; Meseguer and Torras, 2001;
Puget, 2002]). An important contribution in this area has been
the development of various general schemes for symmetry
breaking in CSPs (e.g., SBDS [Gent and Smith, 2000] and
SBDD [Fahle et al., 2001; Focacci and Milano, 2001]). Un-
fortunately, these schemes, in general, may require exponen-
tial resources to break all symmetries. Indeed, some schemes
require exponential space to store all the nogoods generated
through symmetries, while others may take exponential time
to discover whether a partial assignment is symmetric to one
of the existing nogoods. As a consequence, practical applica-
tions often place limits on how many nogoods can be stored
and/or which symmetries to break.
This paper approaches symmetry breaking from a differ-

ent, orthogonal, standpoint. Its goal is to identify classes of
CSPs that are practically relevant and for which symmetry
breaking is tractable, i.e., symmetry breaking is polynomial
in time and space. It identifies several such classes, which

encompass many practical applications. These CSPs fea-
ture various forms of value interchangeability and the paper
shows that symmetry breaking can be performed in constant
time and space during search using dedicated search proce-
dures. The paper also reports preliminary experimental re-
sults indicating that symmetry breaking on these CSPs brings
significant computational benefits. Finally, the paper intro-
duces the new notions of existential and abstract nogoods,
which were used to derive the results for the various CSP
classes. We believe that these notions are helpful to derive
many other classes of tractable symmetries. In particular,
they also allowed us to derive classes of tractable variable
symmetries, which we cannot include here for space reasons.
As such, this paper should be viewed only as a first step in
this fascinating area.
It is also useful to contrast our approach with the research

avenue pioneered by [Freuder, 1991] on value interchange-
ability. Freuder also introduced various forms of value inter-
changeability. However, his goal was to discover symmetries
inside CSPs and to reformulate them by preprocessing to re-
move symmetries. Unfortunately, discovering symmetries in
CSPs is not tractable for many interesting classes of CSPs.
Our research, in contrast, assumes that modellers are aware
of the symmetries in their applications. It focuses on how to
exploit this knowledge during search to eliminate symmetries
efficiently. Consider, for instance, the scene-shooting prob-
lem featured in [Van Hentenryck, 2002]. This problem aims
at producing a movie (or a series) at minimal cost by decid-
ing when to shoot scenes. Each scene involves a number of
actors and at most 5 scenes a day can be filmed. All actors of
a scene must be present on the day the scene is shot. The ac-
tors have fees representing the amount to be paid per day they
spend in the studio. The goal of the application is to minimize
the production costs. An optimal solution to this problem can
be modelled as an assignment of scenes to days which min-
imizes the production costs. It should be apparent that the
exact days assigned to the scenes have no importance in this
application and are fully interchangeable. What is important
is how the scenes are clustered together. Our approach does
not aim at discovering this fact; rather it focuses on how to
exploit it to eliminate the symmetries it induces.
The rest of the paper is organized as follows. After some

preliminaries, Sections 3, 4, and 5 study three classes of CSPs
for which symmetry breaking is tractable. For space reasons,
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only the first class is presented in full detail with proofs. Sec-
tion 6 briefly reports some experimental results. Section 7
concludes the paper.

2 Preliminaries
This section defines the main concepts used in this paper.
The definitions, although they capture the informal meaning
of CSPs, are non-standard and simplify the definitions and
proofs considerably. The basic idea is that the set of con-
straints is abstracted by a Boolean function which holds if all
the constraints are satisfied (since we are not interested in the
constraint structure). Solutions are also represented as func-
tions (assignments) from variables to their sets of values.
Definition 2.1. ACSP is a triplet , where denotes
the set of variables, denotes the set of possible values for
these variables, and is a constraint
that specifies which assignments of values to the variables are
solutions. A solution to a CSP is a function

such that . The set of solutions to a
CSP is denoted by .
Algorithms to solve CSPs manipulate partial assignments. It
is often important to reason about which variables are already
assigned (the domain of the partial assignment) and the set of
values they are assigned to (the image of the assignment).
Note that domains represent sets of variables in this paper
(not values as is traditional), since we use functions to model
(partial) assignments.
Definition 2.2. Let be a CSP. A partial as-
signment for is a function . The do-
main of , denoted by , is . The image of , de-
noted by , is the set For
each value , we use to denote the set

.
In this paper, we often denote a partial assignment by a
conjunction of equations

where . For instance, the partial
assignment represents the
function whose domain is and which assigns the
value to . We also denote the empty assignment by .
The next four definitions define nogoods formally and when
a (partial) assignment violates a nogood.
Definition 2.3. Let be a CSP and be a partial assignment
for . A partial assignment is an extension of for if

and
Definition 2.4. Let be a CSP and be a
partial assignment for . A completion of for is an ex-
tension of for . The set of all completions of
for is denoted by .

Definition 2.5. Let be a CSP. A nogood for is a partial
assignment for such that .
Definition 2.6. Let be a CSP, be a nogood for , and
be a partial assignment for . violates nogood for if
is an extension of for .

Proposition 2.7. Let be a CSP. If violates nogood for
, then .

This last proposition shows that nogoods can be lifted from
the children to their parent.
Proposition 2.8. Let be a CSP and

. Let be a partial assignment for with
and let every

be a nogood for . Then is a nogood for .

3 Value-Interchangeable CSPs
There are many applications in resource allocation and
scheduling where the exact values taken by the variables are
not important. What is significant is which variables take the
same values or, in other terms, how the variables are clus-
tered. This notion of symmetry is what [Freuder, 1991] calls
full interchangeability for all variables and all values. The
prototypical example is graph-coloring. Another, more com-
plex, example is the scene allocation application mentioned
in the introduction. This section shows that symmetry break-
ing for these problems is tractable and takes constant time and
space. We first define value-interchangeable CSPs.
Definition 3.1. Let be a CSP. is value-
interchangeable if, for each solution and each
bijection , the function .
In the following, we use ICSP as an abbreviation for value-
interchangeableCSP. The following theorem is a fundamental
characterization of nogoods for ICSPs.
Theorem 3.2. Let be an ICSP, let be a
nogood for , and let be a bijection. Then
is a nogood.
The closure of a nogood for an ICSP captures all the “sym-
metric” nogoods that can be obtained from .
Definition 3.3. Let be an ICSP and
be a nogood for . The closure of for , denoted by

, is the set is a bijection
We now show that the closure of a nogood can be charac-
terized compactly and that membership to the closure of a
nogood can be tested in linear time for ICSPs. We first intro-
duce the concept of existential nogood, which simplifies the
proofs and intuitions.
Definition 3.4. Let be an ICSP and be a
nogood for . Let . The existen-
tial nogood of for , denoted by , is the set
of all functions satisfying

The following lemma indicates that an existential nogood pre-
cisely captures the closure of a nogood.
Lemma 3.5. Let be an ISCP and be a nogood for .
Then .

Proof. Let . By definition of the
image, we have that



We first show that . Let
. This means that there exists a bijection

such that . Thus, satisfies

by definition of a bijection, and hence .
We now show that . Let

. There exist some values
such that

Since are all different, there exists a bijection
satisfying Hence can be rewritten as

and .

It is not obvious that membership to an existential nogood can
be tested efficiently, since it involves an existential quantifica-
tion. However, due to the nature of the underlying constraints,
it is easy to eliminate the existential variables by selecting a
representative for each set . This is precisely the mo-
tivation underlying the concept of abstract nogoods defined
below. Consider the existential formula

The variables , , and can be eliminated to produce

Definition 3.6. Let be an ICSP and be a
nogood for . Let and let

The abstract nogood of wrt , denoted by ,
is the set of functions satisfying

Lemma 3.7. Let be an ICSP and be a nogood for .
Then .
For simplicity, we will often denote the abstract nogood con-
dition in terms of global constraints

where holds if all the are the same
value. It can be seen that there exists a linear time algorithm
to test whether a partial assignment violates a nogood in

. It suffices to test whether satisfies the for-
mula above whenever .
Lemma 3.8. Let be an ICSP, be a nogood for , and
be a partial assignment. There exists a linear-time algorithm
that tests whether violates any nogood in P .

Proof. Direct consequence of lemmas 3.5 and 3.7 and the fact
that the abstract nogood is linear in .

Lemma 3.9. Let be an ICSP,
, and be a partial assignment for with

. Let every
be a nogood for . Then,

1. is a nogood for ;
2. if violates a nogood in P , then

violates a nogood in P .
Lemmas 3.8 and 3.9 indicate that symmetry breaking is
tractable for ICSPs. Lemma 3.9 indicates that abstract no-
goods are needed only for frontier nodes of the search tree
(i.e., closed nodes whose parents are open). Once its children
are explored, the abstract nogood of the parent subsumes the
abstract nogoods of its children. Hence, maintaining the no-
good takes space if is the set of frontier nodes.
We formalize this result using variable decomposition trees.
Definition 3.10. A variable decomposition tree for a CSP

, where , is a search tree
where nodes represent partial assignments for and nodes
are decomposed as follows: given a node representing a par-
tial assignment , where , its chil-
dren represent the partial assignments

for some variable .
Note that variable decomposition trees capture both static and
dynamic variable orderings.
Theorem 3.11. Let be an ICSP and let be the set of
frontier nodes in a variable decomposition search tree for .
Symmetry breaking for requires space for stor-
ing the nogoods. In addition, testing if a partial assignment
violates a nogood takes time in the worst case.
The result above can be strengthened considerably in fact.
We will show that search procedures exploring a variable de-
composition tree can remove all symmetries in constant time
and space. Before presenting the theoretical results, we illus-
trate the intuition using depth-first search. The basic intuition
comes from the structure of the abstract nogoods. Consider
the partial assignment

and assume that depth-first search tries to assign variable
and that the set of possible values is . The failure of

produces an abstract nogood which holds if
allequal( )
allequal( )
alldiff(
Since remain instantiated when the next value is
tried for , the abstract nogood for this part of this next
branch holds if imposing that be assigned a
value different from . The assignments and
produce similar abstract nogoods. Now observe what hap-
pens for an assignment of a value , say 6. The ab-
stract nogood is now defined as
allequal( )
allequal( )
alldiff( )
which can be partially evaluated to alldiff( ). The
disjunction of all these nogoods can be partially evaluated to



bool ILABEL( ) return ILABELA( , );
bool ILABELA( )

if then return ;
select in ;

:= ;
if then

select in ; := ;
forall( )

:= ;
if then

if ILABELA( ) then
return true;

return false;

Figure 1: A Labeling Procedure for ICSPs.

alldiff( )
which cannot be satisfied by any assignment to . It fol-
lows that must only be assigned to the previously assigned
values or to exactly one new value in . In other
words, in a variable decomposition tree, only some of the
children need to be explored: those which assign variable

to a value in and exactly one other child. Note
that this result is independent from the set of constraints. It
is the essence of the labeling procedure for graph-coloring
in [Kubale and Jackowski, 1985] and in the scene allocation
problem in [Van Hentenryck, 2002]. This procedure, which
breaks all symmetries for ICSPs, is formalized in Figure 1.
It uses the function ( ) which
satisfies the property

To our knowledge, this paper provides the first formal proof
that these algorithms break all the symmetries in their respec-
tive problems. To prove the correctness of ILABEL, and
other related search procedures, it is useful to introduce the
concept of compact variable decomposition tree.
Definition 3.12. A compact variable decomposition tree for
an ICSP , where , is
a search tree where nodes represent partial assignments for
and nodes are decomposed as follows: given a node

representing a partial assignment , where
, for some variable ,

there are children representing the partial assignments
for all and exactly one child

representing a partial assignment for
some , if is not empty.
The following lemma, which states that compact variable de-
composition trees are complete, follows directly from the ex-
amination of the nogoods above.
Lemma 3.13. Let be an ICSP and be all
the complete assignments in a variable decomposition tree
for . Then, the closure
is a bijection is equal to .

Our next lemma states that a compact variable decomposition
tree never matches any nogood generated during search.

Lemma 3.14. Let be an ICSP and be a compact vari-
able decomposition tree for . The partial assignment of
a node in never matches any nogood generated during the
exploration of (except the one it possibly generates).

Proof. By Lemma 3.9, it suffices to show that a partial assign-
ment never matches a nogood generated by its siblings or
the siblings of one of its ancestors in the tree. The proof is by
induction on the depth of the tree. At the depth of , the result
follows from the inspections of the nogood as discussed ear-
lier. Consider a depth and a nogood generated by
one of the left or right branches at that depth. We can restrict
attention to the projection of to the variables instantiated at
that depth, i.e., we can restrict attention to
satisfying
We show that . Let be the variable

assigned at depth . Observe that there exists a partial assign-
ment such that and ,
for some and . By definition of a compact
variable decomposition tree, the values and must belong
to , where .
Consider the case where . That means

that there exist and in such that
and . If

, it can be rewritten as for some
bijection . Hence , which is impossible.
Assume now that and . It fol-

lows that for some and that
. If , then for

some bijection. Hence which is impossible.
Assume that and . Then,

and for some .
If , then for some bijection .
Hence, , which is impossible
since for some .

The correctness of Procedure ILABEL follows from the two
lemmas above. Other search strategies, e.g., LDS, also re-
move all symmetries in constant time and space.
Theorem 3.15. Procedure ILABEL breaks all the symme-
tries in constant time and constant space for an ICSP , i.e.,
it never matches any member of the closure of any nogood
generated during search.

4 Piecewise-Interchangeable CSPs
In many applications, e.g., in resource allocation and schedul-
ing, the values are taken from disjoint sets but they are in-
terchangeable in each set. For instance, in the scene alloca-
tion problem, we can easily imagine a version of the problem
where days are divided in morning and afternoon sessions.
Actors probably have strong preferences (and thus different
fees for the morning and afternoon sessions) but the day of the
session may not matter. This paper captures this (more lim-
ited) form of interchangeability by piecewise interchangeable
CSPs. We first define this class of CSPs formally and then de-
rive similar results as for ICSPs. We state the main definitions
and theorems only, since the derivation is similar to the one
for ICSPs. As traditional, we use to denote the dis-
joint union of and . Our definitions and results only



consider two distinct sets of values, for simplicity. It is easy
to generalize them to an arbitrary number of sets.
Definition 4.1. Let and be two disjoint sets. A piece-
wise bijection is a bijection defined
as if where is a bijection

.
Definition 4.2. Let be a CSP. is
piecewise value-interchangeable if, for each solution

and each piecewise bijection
, the function .

In the following, we use PICSP as an abbreviation for piece-
wise value-interchangeable CSP.
Definition 4.3. Let be a PICSP and
be a nogood for . The closure of for , denoted by

, is the set
is a piecewise bijection

We now specify the abstract nogoods for PICSPs. The key
intuition is to separate the values from and .
Definition 4.4. Let be a
PICSP and be a nogood for . Let

, where , and let

The abstract nogood of wrt , denoted by ,
is the set of functions satisfying

Figure 2 depicts a labeling procedure PILABEL for PICSPs,
which breaks all value symmetries in constant time and space.
ProcedurePILABEL generalizesILABEL by considering the
already assigned values in both sets and , as well as one
new value (if any) from both sets.
Theorem 4.5. Procedure PILABEL breaks all the symme-
tries in constant time and constant space for PICSPs.

5 Wreath-Value Interchangeable CSPs
We now consider another, more complex, class of CSPs,
which assigns a pair of values from a set
to each variable . Values in are fully interchangeable
and, for a fixed value in , the values in are fully inter-
changeable as well. These problems are called wreath value-
interchangeable in this paper, because the symmetry group
corresponds to a wreath product of symmetry groups [Camer-
son, 1999]. Such problems arise naturally in a variety of ap-
plications in resource allocation and scheduling. Consider,
for instance, the problem of scheduling a meeting where dif-
ferent groups must meet some day of the week in some room
subject to constraints. The days are fully interchangeable and,
on a given day, the rooms are fully interchangeable. Sym-
metry breaking for a wreath value-interchangeable CSP is
tractable.

bool PILABEL( ) return PILABELA( , );
bool PILABELA( )

if then return ;
select in ;

:= ; := ;
if then

select in ; := ;
if then

select in ; := ;
forall( )

:= ;
if then

if PILABELA( ) then
return true;

return false;

Figure 2: A Labeling Procedure for PICSPs.

Definition 5.1. Let and be two sets. A wreath bijec-
tion is a bijection defined as

where is a bijection and ( ) is a
bijection .
Definition 5.2. Let be a CSP.
is wreath value-interchangeable if, for each solution

and each wreath bijection ,
the function .
In the following, we useWICSP as an abbreviation for wreath
value-interchangeable CSP. We also use the following nota-
tions. If is a pair, and . If
is a set of tuples, denotes the set and

denotes the set If
is an assignment,

denotes the set .
Definition 5.3. Let be a WICSP and
be a nogood for . The closure of for , denoted by

, is the set
is a wreath bijection

We now specify abstract nogoods for WICSPs.
Definition 5.4. Let be a WICSP and
be a nogood for . Let , let

, and let

The abstract nogood of wrt , denoted by ,
is the set of functions satisfying
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bool WILABEL( ) return WILABELA( , );
bool WILABELA( )

if then return ;
select in ;

:= ;
if then

select in ; := ;
forall( )

:= ;
if then

select in ; := ;
forall( )

:= ;
if then

if WILABELA( ) then
return true;

return false;

Figure 3: A Labeling Procedure for WICSPs.

Theorem 5.5. Procedure WILABEL breaks all the symme-
tries in constant time and constant space for a WICSP.

6 Experimental Results
This section gives some preliminary results showing the ben-
efits of symmetry breaking on these classes of problems. Ta-
ble 1 gives results on graph coloring, an ICSP, and on parti-
tioned graph coloring, a PICSP. In partitioned graph coloring,
the colors are divided in 4 groups and are fully interchange-
able in each group. The constraints express the usual graph-
coloring property: no two adjacent vertices are colored with
the same color. Table 1 gives the result of coloring graphs
with 50% edge density with at most colors,
where is the number of nodes. The first column gives the
number of nodes, the second column gives the time to color
the graphs using the default labeling procedure, and the third
and fourth columns report the time to color the graphs and
the partitioned graphs with symmetry breaking. Note that the
default labeling does not exploit symmetries and hence its
time is similar for both graph coloring and partitioned graph
coloring (second column). The last column gives the ratio
of PILABEL and the default labeling procedure (the gains
are too large for coloring to be reported as a ratio). All re-
sults are an average of 5 runs in milliseconds under SICStus-
Prolog. They clearly show that symmetry breaking on these
CSPs brings significant benefits.

7 Conclusion
This paper studied three classes of CSPs for which symme-
try breaking is tractable. These CSP classes feature vari-
ous forms of value interchangeability and allow symmetry
breaking to be performed in constant time and space during
search. Experimental results also show the benefits of sym-
metry breaking on these CSPs, which encompass many prac-
tical applications. There are many directions for future re-
search. Of particular interest is the study of tractable classes
of CSPs exhibiting variable symmetries where the set has a

%PILABEL
70 492 4 154 0.31
72 16418 96 4244 0.26
74 30790 34 18576 0.60
76 10622 24 2616 0.25
78 17786 26 15616 0.87
80 45268 86 9736 0.22
82 22946 46 15502 0.67
83 33206 42 9970 0.30

Table 1: Experimental Results on ICSPs and PICSPs.

complex structure (e.g., a Cartesian product). There are sev-
eral classes of such CSPs for which symmetry breaking is
tractable, although more complex. Finding effective search
procedures for these CSPs is also a challenging problem.
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