
Chapter 9

Solution synthesis

9.1  Introduction

As has been suggested in previous chapters, most research in CSP focuses on heu-
ristic search and problem reduction. In this chapter, we shall look at techniques for
constructively synthesizing solutions for CSPs.

We explained in previous chapters that problem reduction techniques are used to
remove redundant values from variable domains and redundant compound labels
from constraints, thus transforming the given problem to new ones which are hope-
fully easier to solve. Some problem reduction techniques, such as the adaptive con-
sistency achievement algorithm, derive new constraints from the given problem.
Problem reduction, in general, does not insist that all redundant compound labels
are removed. The more effort one is prepared to spend, the more redundant com-
pound labels one can hope to remove.

Solution synthesis techniques constructively generate legal compound labels rather
than eliminating redundant labels or redundant compound labels. One can see solu-
tion synthesis as a special case of problem reduction in which the n-constraint for a
problem with n variables is constructed, and all the n-compound labels which vio-
late some constraints are removed. Alternatively, solution synthesis can be seen as
“searching” multiple partial compound labels in parallel.

In this chapter, we shall introduce three solution synthesis algorithms, namely,
Freuder’s algorithm, Seidel’s invasion algorithm and a class of algorithms called the
Essex Algorithms. We shall identify situations in which these algorithms are appli-
cable.
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9.2  Freuder’s Solution Synthesis Algorithm

The idea of solution synthesis in CSP was first introduced by Freuder. Freuder’s
algorithm is applicable to general CSPs in which one wants to find all the solutions.
The basic idea in Freuder’s algorithm is to incrementally build a lattice which repre-
sents the minimal problem (Definition 2-8). We call this lattice the minimal prob-

lem graph, or MP-graph. We use MP-graph(P) to denote the MP-graph of a CSP

P.

Each node in the MP-graph represents a set of k-compound labels for k variables
(note that this is different from a constraint graph which represents a CSP — there
each node represents a variable). We call a node which contains k-compound labels
a node of order k, and use order_of(Node) to denote the order of Node. One node
is constructed for each subset of variables in the CSP. So for a problem with n vari-

ables, 2n nodes will be constructed. For convenience, we use variables_of(X) to
denote the set of variables contained in the compound labels in the node X in an
MP-graph. Further, we shall use node_for(S) to denote the node which represents
the set of compound labels for the set of variables S. For example, if
variables_of(D) = {X, Y}, then node D contains nothing but compound labels for
the variables X and Y, such as {(<X,1><Y,a>), (<X,2><Y,b>), (<X,2><Y,c>)}. In this
case, D = node_for({X, Y}) and order_of(D) is 2 (because D contains 2-compound
labels).

Definition 9-1:

A node P is a minimal extension of Q if P is of one order higher than node
Q, and all the variables in variables_of(Q) are elements of variables_of(P).
In other words, the variables of P are the variables of Q plus an extra varia-
ble (read minimal_extension(P, Q) as: P is a minimal extension of Q):

∀  csp(P): (V, E) = MP-graph(P):
(∀  P, Q ∈ V:

minimal_extension(P, Q) ≡
(( variables_of(P)  =variables_of( Q) + 1) ∧

(variables_of(Q) ⊂ variables_of( P))) ■

Obviously every node of order k is the minimal extension of k nodes of order k − 1.
The arcs in the MP-graph represent constraints between the nodes. An arc exists
between every node P of order k + 1 and every node Q of order k if and only if P is
a minimal_extension of Q. See Figure 9.2 for the topology of an MP-graph.
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9.2.1  Constraints propagation in Freuder’s algorithm

The contents of each node D of order k in the MP-graph is determined by the fol-
lowing constraints, and the following constraints only:

(1) compound labels in D must satisfy the k-ary constraint on variables_of(D);

(2) upward propagation —
if a compound label cl is in D, then projections of cl must be present in every
node of order k − 1 which is connected to D. For example, if
(<x1,v1><x2,v2><x3,v3>) is in node D, then (<x1,v1><x2,v2>) must be a mem-
ber of the node for {x1, x2}; and

(3) downward propagation —
if a compound label cl is in D, then in every node of order k + 1 which is con-
nected to D there must be a compound label of which cl is a projection. For
example, if (<x1,v1><x2,v2><x3,v3>) is in D, then at least one compound label
(<x1,v1><x2,v2><x3,v3><x4,✻ >) must be a member of the node for variables
{x1, x2, x3, x4}, where ‘✻ ’ denotes a wildcard which represents any value that
x4 may take.

In other words, upward propagation attempts to eliminate compound labels in nodes
of a higher order, and downward propagation attempts to eliminate compound
labels in nodes of a lower order. To be exact, upward propagation and downward
propagation achieve the properties Upward_propagated and Downward_propa-
gated, which are defined below:

Definition 9-2 (Upward_propagated):

∀  csp(P): (V, E) = MP-graph(P):
Upward_propagated((V, E)) ≡

∀ Node1, Node2 ∈ V :
(minimal_extension(Node1, Node2)

⇒  (∀ e1 ∈ Node1: (∃ e2 ∈ Node2: projection(e1, e2)))) ■

Definition 9-3 (Downward_propagated):

∀  csp(P): (V, E) = MP-graph(P):
Downward_propagated((V, E)):

∀ Node1, Node2 ∈ V :
(minimal_extension(Node1, Node2)

⇒  (∀ e2 ∈ Node2: (∃ e1 ∈ Node1: projection(e1, e2)))) ■
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9.2.2  Algorithm Synthesis

The pseudo code for Freuder’s solution synthesis algorithm (which we shall call
Synthesis) is shown below:

PROCEDURE Synthesis(Z, D, C)
BEGIN

 /* Step 1: Initialization */
V ← { }; E ← { }; /* the MP-graph of (Z, D, C) is (V, E) */
FOR each x in Z DO

BEGIN
node_for({x}) ← { (<x,a>) | a ∈  Dx ∧ satisfies(<x,a>, Cx) };
V ← V + {node_for({x})};

END

/* Step 2: Construction of higher-order nodes */
FOR i = 2 to  Z DO

FOR each combination of i variables S in Z DO
BEGIN

IF (CS ∈  C) THEN node_for(S) ← CS;
ELSE node_for(S) ← all possible combinations of labels

for S;
V ← V + {node_for(S)};
FOR each node X of which node_for(S) is a minimal

extension DO
BEGIN

E ← E + {(node_for(S), X)};
FOR each element cl of node_for(S) DO

IF (there exists no cl' in X such that projec-
tion(cl, cl')) holds

THEN node_for(S) ← node_for(S) − {cl};
END

V ← Downward_Propagate(node_for(S), V);
END

END /* of Synthesis */

Each node of order 1 is initialized to the set of all the values which satisfy the unary
constraints of the subject variable. A node N of order k in general is constructed in
the following way: If there exists any constraint on the variables_of(N), then the
node_for(N) is instantiated to this constraint (readers are reminded that both the
nodes and the constraints are treated as sets of compound labels). Otherwise, N is
instantiated to the set of all possible combinations of values for the variables of N.
Then N is connected to all the nodes of which N is the minimal extension.
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After a node N is instantiated and linked to other nodes in the MP-graph, redundant
compound labels in N are removed using the lower-order nodes which are adjacent
to it. For example, the node for the variables {x1, x2, x3, x4} is restricted by the
nodes for the following sets of variables: {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4} and
{x2, x3, x4}. On the other hand, the content of N forms a constraint to all the nodes
of a lower order, and such constraints are propagated using the Downward_Propa-
gation procedure shown below. The Downward_Propagation and Upward_Propaga-
tion procedures call mutual recursively for as many times as necessary:

PROCEDURE Downward_Propagation(N, V)
/* propagate from node N to the set of nodes V in the MP-graph */
BEGIN

FOR each node N' in V such that minimal_extension(N,N') DO
BEGIN

Original_N' ← N';
FOR each element e' of N' DO

IF (there exists no e in N such that projection(e,e'))
THEN N' ← N' − {e'};

IF (N' ≠ Original_N')
THEN BEGIN

V ← Downward_Propagation(N', V);
V ← Upward_Propagation(N', V);

END
END

return(V); /* content of the nodes in V may have been reduced */
END /* of Downward_Propagation */

PROCEDURE Upward_Propagation(N, V)
/* propagate from node N to the set of nodes V in the MP-graph */
BEGIN

FOR each node N' in V such that minimal_extension(N',N) DO
BEGIN

Original_N' ← N';
FOR each element e' of N' DO

IF (there exists no e in N such that projection(e',e))
THEN N' ← N' − {e'};

IF (N' ≠ Original_N')
THEN BEGIN

V ← Upward_Propagation(N', V);
V ← Downward_Propagation(N', V);

END
END

return(V); /* content of the nodes in V may have been reduced */
END /* of Upward_Propagation */
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Downward_Propagation(N, V) removes from every node N' of which N is a mini-
mal_extension the compound labels which have no support from N. A compound
label cl' in N' is supported by N if there exists a compound label cl in N such that cl' is
a projection of cl. If the content of any N' is changed, the constraint must be propa-
gated to all other nodes which are connected to N' through the calls to Downward_-
Propagation and Upward_Propagation.

Upward_Propagation(N, V) removes from every node N' which are minimal_exten-
sions of N all the compound labels which do not have any projection in N. Similarly,
if any N' is changed, the effect will be propagated to all other nodes connected to it.

Let us assume that a is the maximum size of the domains for the variables, and n is
the number of variables in the problem. There are altogether nC1 + nC2 + ... + nCn

combinations of variables; hence there are 2n nodes to be constructed in step 1. In
the worst case, Upward_Propagation and Downward_Propagation remove only one

compound label at a time. Since there are O(an) compound labels, in the worst case,

O(an) calls of Upward_Propagation and Downward_Propagation are needed. In
each call of Upward_Propagation, each element of every minimal_extension is

examined. The number of elements in each minimal_extension is O(an). Since there

are O(n) minimal_extensions, O(nan) projections have to be checked. Therefore, the

worst case time complexity of Freuder’s solution synthesis algorithm is O(2n+

na2n). Since there are O(2n) nodes, and the size of each node is O(an), the worst

case space complexity of Synthesis is O(2nan).

9.2.3  Example of running Freuder’s Algorithm

We shall use the 4-queens problem to illustrate Freuder’s algorithm. The problem is
to place four queens on a 4 × 4 chess board satisfying the constraints that no two
queens can be on the same row, column or diagonal. To formulate it as a CSP, we
use variables x1, x2, x3 and x4 to represent the four queens to be placed on the four
rows of the board. Each of the variables can take a value from {A, B, C, D} repre-
senting the four columns.

For convenience, we use subscripts to indicate the variables that each node repre-
sents: for example, N123 denotes the node for variables {x1, x2, x3}. To start, the fol-
lowing nodes of order 1 will be constructed. Each node represents the set of values
for the subject variable which satisfy the unary constraints:

N1: {(A), (B), (C), (D)}
N2: {(A), (B), (C), (D)}
N3: {(A), (B), (C), (D)}
N4: {(A), (B), (C), (D)}
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The binary constraints in the 4-queens problem determine the contents of the nodes
of order 2 in the MP-graph. The following nodes of order 2 are initialized to the cor-
responding constraints:

N12: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}
N13: {(A,B), (A,D), (B,A), (B,C), (C,B), (C,D), (D,A), (D,C)}
N14: {(A,B), (A,C), (B,A), (B,C), (B,D), (C,A), (C,B), (C,D), (D,B), (D,C)}
N23: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}
N24: {(A,B), (A,D), (B,A), (B,C), (C,B), (C,D), (D,A), (D,C)}
N34: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}

After each node of order 2 is built, constraints are propagated downward to nodes of
order 1. No change is caused by the propagation of these constraints. Next, the
nodes of order 3 are built. For each combination of three variables, a node is con-
structed. Since no 3-constraint exists in the problem, all nodes N123, N124, N134 and
N234 are instantiated to the cartesian product of the three domains: {(A,A,A),
(A,A,B), ..., (D,D,D)}. Each of them is constrained by the relevant nodes of order 2.
For example, N123 is restricted by N12, N13 and N23. Let ‘✽ ’ denote a wildcard.
Since (A,A) is not a member of N12, all the elements (A,A,✽ ) are removed from
N123; since (C,D) is not a member of N23, all the elements (✽ ,C,D) are removed
from N123; and so on. After such local propagation of constraints, the nodes of order
3 are as follows:

1

2

3

4

A B C D

Figure 9.1 The board for the 4-queens problem
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N123: {(A,D,B), (B,D,A), (C,A,D), (D,A,C)}
N124: {(A,C,B), (B,D,A), (B,D,C), (C,A,B), (C,A,D), (D,A,B), (D,B,C)}
N134: {(A,D,B), (B,A,C), (B,A,D), (C,B,D), (C,D,A), (C,D,B), (D,A,C)}
N234: {(A,D,B), (B,D,A), (C,A,D), (D,A,C)}

To complete the construction of each node of order 3, Downward_Propagated is
called by the Synthesis procedure. Since no (A,C,✽ ) and (D,B,✽ ) exist in any ele-
ment of N123, (A,C) and (D,B) are deleted from N12. Similarly, since no (A,D,✽ )
exists in any of the compound labels of N124, (A,D) must be deleted from N12 as
well. As a result, N12 is reduced to:

N12 (updated): {(B,D), (C,A), (D,A)}

Similarly, other nodes of order 2 can be updated. After N12 is updated, constraints
are propagated both downward and upward. Propagating downward, node N1 is
updated to {(B), (C), (D)}, because the value A does not appear in the first position
(the position for x1) of any element in node N12. Similarly, node N2 is updated to
{(A), (D)}. Propagating upward from N12, node N123 is updated to:

N123 (updated): {(B,D,A), (C,A,D), (D,A,C)}

Element (A,D,B) is discarded from N123 because (A,D) is no longer an element of
N12. Apart from N123, all other nodes of order 3 in which are minimal_extensions of
N12 have to be re-examined. For example, N124 will be updated to {(B,D,A),
(B,D,C), (C,A,B), (C,A,D), (D,A,B)} (the element (A,C,B) is deleted from N124

because (A,C) in no longer a member of N12).

The result of N123 being restricted can again be propagated downward to all the
nodes of order 2 which are nodes for subsets of {x1, x2, x3}. For example, N13 will
be restricted to:

N13 (updated): {(B,A), (C,D), (D,C)}

because only these elements are accepted by elements of the updated N123. The
propagation process will stop when and only when no more nodes are updated.
Finally, the following node of order 4 will be constructed using all the nodes of
order 3:

N1234: {(B,D,A,C), (C,A,D,B)}

Node N1234 contains the only two possible solutions for this problem. Figure 9.2
shows the final MP-graph for the 4-queens problem built by Freuder’s algorithm.
Every compound label in every node appears in at least one solution tuple.
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9.2.4  Implementation of Freuder’s synthesis algorithm

Program 9.1, synthesis.plg, shows a Prolog implementation of the above Synthesis
procedure for tackling the N-queens problem. In this program, the nodes of the MP-

graph and their contents are asserted into the Prolog database. Since 2n nodes must
be built for a problem of n variables, and constraints are propagated through the net-
work extensively, carrying the nodes as parameters would be too expensive and
clumsy.

(B, D)
(C, A)

N1234

(B, D, A, C)
(C, A, D, B)

(B, D, A)
(C, A, D)

(B, D, C)
(C, A, B)

(B, A, C)
(C, D, B)

(D, A, C)
(A, D, B)

(B) (A) (A) (B)

(B, A)
(C, D)

(B, C)
(C, B)

(D, A)
(A, D)

(D, C)
(A, B)

(A, C)
(D, B)

(C) (D) (D) (C)

Figure 9.2 The MP-graph constructed by Freuder’s algorithm in solv-
ing the 4-queens problem (after propagation of all the constraints)
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280 Solution synthesis

For each node N that has been built, node(N) is asserted in synthesis.plg. N is sim-
ply a list of numbers which represent the rows. Node(N) is checked before con-
straint is propagated to or from it. If node(N) has not been built yet, then no
constraint is propagated to and from it. If node(N) is already built, but no compound
label is stored in it, then we know that there exists no solution to the problem.

Each compound label cl which is considered to be legal is asserted in a predicate
content(cl). Clauses in the form of content/1 could be retracted in constraint propa-
gation. For clarity, Program 9.1 reports the progress of the constraint propagation.

9.3  Seidel’s Invasion Algorithm

The invasion algorithm is used to find all solutions for binary CSPs. Although it is
possible to extend it to handle general CSPs, using it for solving CSPs which have
k-ary constraints for large k would be inefficient. The invasion algorithm exploits
the topology of the constraint graph, and is especially useful for problems in which
every variable is involved in only a few constraints. Basically, it orders the variables
and constructs a directed graph where each node represents a legal compound label
and each arc represents a legal extension of a compound label. The variables are
processed one at a time. When each variable is processed, the invasion algorithm
generates nodes that represent the compound labels (or partial solutions) which
involve this variable. After all the variables have been processed, each complete
path from the last node to the first node in the graph represents a legal solution
tuple.

9.3.1  Definitions and Data Structure

Definition 9-4:

Given a graph G of n nodes and a total ordering < on its nodes, an invasion
is a sequence of partial graphs (Definition 3-27) G1, G2, ..., Gn with the first
1, 2, ..., n nodes under the ordering <:

∀  graph((V, E)): (∀ <: total_ordering( V, <): V   = n:
(invasion((G1, G2, ..., Gn), (V, E), <) ≡

(∀ i: 1 ≤ i < n:
((Gi = (Vi, Ei) ∧ Gi+1 = (Vi+1, Ei+1)) ⇒

(partial_graph(Gi, Gi+1) ∧
∃ y ∈V i+1: (Vi+1 = Vi + {y} ∧ ∀ x ∈ V i: x < y)))))) ■

In other words, the partial graph Gi in an invasion consists of the first i nodes of V

according to the ordering of the invasion. Figure 9.3 shows a constraint graph and a
possible invasion.
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The invasion algorithm is very similar to the Find_Minimal_Bandwidth algorithm
described in Chapter 6, and therefore we shall refer to the definitions there. By
Definition 6-4, the nodes in the partial graph Gi in an invasion and its ordering is a
partial layout (V, <). Here, we shall use the terms conquered nodes and active nodes
as they were defined in Chapter 6 (Definitions 6-6 and 6-7).

Definition 9-5:

The front of an invasion graph is the set of active nodes under the ordering
of the invasion:

∀  graph((V, E)): ∀ <: total_ordering( Z, <):
∀  (V1, E1), ..., (Vn, En): invasion(((V1, E1), ..., (Vn, En)), (V, E), <):

(∀ i: 1 ≤ i ≤ V : (front((Vi, Ei)) ≡
{v | active_node(v, (Vi, <), (V, E))}))) ■

Given a CSP P, the invasion algorithm maintains a directed graph, which we shall
call the solution graph, which records the set of all partial solutions. Let S be a
solution graph and S = (VS, ES). Each node in VS represents a compound label for
the variables in front(Gi) for some i. There are two special nodes: a start node and
an end node. The start node represents the 0-compound label and the end node rep-

resents the compound labels for the variables in front(G(P)) (which is also empty

because G(P) has no active nodes). Each arc in ES goes from a compound label for
front(Gi+1) to a compound label for front(Gi). The arcs are marked by a possible
value: the arc between front(Gi) and front(Gi+1) is marked by a value in the domain
of the i-th variable in the ordering. When the algorithm terminates, each path from
the end node to the start node represents a solution. See Figure 9.4 later for the
topology of a solution graph.

9.3.2  The invasion algorithm

The basic idea of the invasion algorithm is to look at the partial graphs of the inva-
sion according to the given ordering, and augment the solution graph in the follow-
ing way: for each compound label cl for the variables of front(Gi), and for each
value v in the domain of the (i + 1)-th variable, check whether cl is compatible with
v. If so, then create a node N for the variables of front(Gi+1) if such node does not
already exist. Then create an arc from N to the node which represents cl.

PROCEDURE Invasion(Z, D, C, <)
BEGIN

/* Si is the set of nodes for the i-th partial graph in the invasion */
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/* create the start node which represents the 0-compound label */
S0 ← {( )};
FOR i = 1 to  Z DO

BEGIN
Gi ← i-th partial graph in the invasion of the graph G(Z, D,

C) according to <;
Si ← { };
FOR each CL in Si-1 DO

FOR each value v in domain xi DO
IF (CL + <xi,v> satisfies CE(variables_of(CL) + {xi}))
THEN BEGIN

CL' ← CL + <xi,v> − labels for conquered
nodes in Gi;

Si ← Si + {CL'};
create arc from CL' to CL and mark it with

<xi,v>;
END

IF (Si = { }) THEN report no solution;
END

END /* of Invasion */

The nodes in the solution graph are logically grouped into sets: Si is the set of nodes
for the i-th partial graph in the invasion. Readers are reminded that CE(S) is the con-
straint expression of a set of variables S (Definition 2-9). CL' represents the com-
pound label of the variables in front(Gi). If n is the number of variables in the CSP,
then Gn contains just one node, which we call the end node (this is because the front
of Gi is by definition an empty set). The Invasion algorithm constructs S0, S1, ..., Sn

in that order. After termination of Invasion, the solution graph comprises the sets of
nodes in S0 + S1 + ... + Sn. Each path from the end to the start node represents a
solution to the CSP. If any set Si is found to be empty after the i-th partial graph has
been processed, then no solution exists for the input CSP.

9.3.3  Complexity of invasion and minimal bandwidth ordering

Let n be the number of variables, a the maximum domain size, and e the number of
constraints in a binary CSP. Further let f be the maximum size of front(Gi) for all
1 ≤ i ≤ n. In the following we show that the time and space complexity of the inva-

sion algorithm are O(eaf+1) and O(naf+1), respectively.

Since f is the maximum size of front(Gi) for all i, there are at most af f-compound
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labels CL in Si-1. Therefore, when a value v in xi is being processed in the inner

FOR loop, <xi,v> is checked against at most af labels in CL. At most af+1 compati-

bility checks are required to process each CL, hence at most faf+1 checks are
required to process each Si-1. If each compatibility check between every pair of

labels takes a constant time, then the time complexity of the algorithm is O(nfaf+1).
But since there are no more than e constraints, n × f is bounded by e. So the time

complexity of the algorithm is O(eaf+1).

Since there are at most af f-compound labels at the front of a partial graph, there are

at most af nodes in Si for all i. So there are at most naf nodes in the solution graph S.
Each f-compound label in the nodes of Si-1 is compatible with at most all a values in

xi. Therefore, no more than af+1 arcs go from Si-1 to Si. If each node is stored in a
constant space, then the space complexity of the invasion algorithm is dominated by

O(naf+1).

The above analysis shows that the value f, i.e. the maximum front size, significantly
affects the complexity of the invasion algorithm. The natural question then is how
to find an invasion which f is minimal. In Chapter 6, we introduced the concept of
bandwidth and an algorithm for finding the minimal bandwidth. Since the front is
defined as the set of active nodes, an ordering which has the minimal bandwidth has
the smallest maximum front size f. Therefore, the time and space complexity of the

invasion algorithm are O(eab+1) and O(nab+1), where b is the (minimal) bandwidth
of the graph.

In the discussion of bandwidth in Chapter 6, we said that the time complexity of

finding the bandwidth of a graph is O(nb), and any CSP whose constraint graph’s

bandwidth is no larger than b can be solved in time O(nb+ab+1) and space

O(nb+ab). In the case when ab+1 dominates the time complexity, this result is con-
sistent with our analysis of the complexity of the invasion algorithm.

Seidel claims that it is possible to extend the invasion algorithm to non-binary
CSPs. This can be done by modifying the definition of connectivity appropriately.
However, one must note that when non-binary constraints are considered, the time
complexity of the algorithm is changed. When the compatibility between CL and
<xi,v> is checked, more than f checks could be needed if the constraints are not lim-

ited to binary. In the worst case, there could be 2f tests. When this is the case, the

time complexity of the algorithm would become O(e ) instead of O(eaf+1).a2f 1+
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9.3.4  Example illustrating the invasion algorithm

The following example from Seidel [1981] illustrates the invasion algorithm. Sup-
pose there are four integer variables, x1, x2, x3, and x4, and the domains for all of
them are the same: {1, 2, 3}. Let the following be the only constraints in the prob-
lem:

x1 < x2
x1 < x3
x2 ≤ x4
x3 ≤ x4

The problem is to find all combinations of assignments to the four variables, satisfy-
ing all the constraints. The constraint graph of this problem is shown in
Figure 9.4(a). Suppose the (arbitrary) ordering of the invasion is (x1, x2, x3, x4).

Figure 9.4(b) shows the solution graph generated by the invasion algorithm. G1

contains x1 only, which is connected to uninvaded nodes. So the front of G1 is {x1}.
Since all the possible labels of x1 are compatible with the 0-compound label (),
nodes for all (<x1,1>), (<x1,2>) and (<x1,3>) are created and put into S1. G2 con-
tains x1 and x2. Since both of them are connected to some uninvaded nodes, both are
in the front of G2. Since both <x2,2> and <x2,3> are compatible with <x1,1>, nodes
for both (<x1,1><x2,2>) and (<x1,1><x2,3>) are created. Node (<x1,2><x2,3>) is
created because <x1,2> is compatible with <x2,3>. G3 contains x1, x2 and x3, among
which x1 is conquered. So the front of G3 is {x2, x3} and nodes for S3 are 2-com-
pound labels for x2 and x3.

The solutions can be found following the paths from the end node to the start node.
An example of two solutions shown in the solution graph are:

(<x1,1><x2,2><x3,2><x4,2>)

and (<x1,1><x2,2><x3,3><x4,3>).

9.3.5  Implementation of the invasion algorithm

Program 9.2, invasion.plg, shows an implementation of the invasion algorithm. It is
applicable to binary constraint problems only, though it is quite easy to modify it to
handle general problems (one needs to modify satisfy_constraints/2 and find_new_-
front/3 in update_sg_aux/6). It assumes a particular form of the input data, and
therefore has to be modified if the input is in a different format. The example given
at the beginning of the program (under the heading Notes) is the same example as
that in the preceding section, with variable names changed from x1, x2, x3 and x4 to
w, x, y and z.
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Figure 9.4 Example showing the output of the invasion algorithm
(one solution is (<x1,1><x2,2><x3,2><x4,2>))

(b) The solution graph generated by the invasion algorithm, assuming
that the ordering for invasion is (x1, x2, x3, x4); each path from the end

node to the start node represents a solution
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9.4  The Essex Solution Synthesis Algorithms

In this section, we shall introduce a class of solution synthesis algorithms that were
developed with the intention of exploiting advanced hardware. These algorithms are
inspired by and modifications of Freuder’s algorithm in Section 9.2. They are appli-
cable to general problems, though particularly useful for binary constraint prob-
lems. The possible exploitation of hardware by these algorithms will be discussed in
Section 9.5.

9.4.1  The AB algorithm

The basic Essex solution synthesis algorithm is called AB (which stands for Algo-
rithm Basic). As Freuder’s algorithm, AB synthesizes solution tuples by building a
graph in which each node represents a set of compound labels for a particular set of
variables. We shall call the graphs generated by AB AB-Graphs. As before, we

shall use variables_of(N) to denote the set of variables for the node N in the AB-

graph, and order_of(N) to denote its order. Unlike in Freuder’s algorithm, nodes in
an AB-Graph are partially ordered, and only adjacent nodes are used to construct
nodes of higher order. The ordering and adjacency of the nodes are defined as fol-
lows.

Definition 9-6 (ordering of nodes in AB):

Given any total ordering of the variables in a CSP, the nodes of order 1 in the
AB-graph are ordered according to the ordering of the variables that they
represent. The ordering of nodes of higher order is defined recursively. For
all nodes P and Q of the same order, P is before node Q if there exists a var-
iable in variables_of(P) which is before all the variables in variables_of(Q):

∀  csp(P): (V, E) = AB-graph(P):
(∀  <: total_ordering({N | N ∈ V ∧  order_of(N) = 1}, <):

(∀ P, Q ∈ V: order_of(P) = order_of(Q)) ∧  order_of(P) > 1:
(P < Q ≡ ∃ x ∈  variables_of(P): ∀ y ∈  variables_of(Q): x < y))) ■

Definition 9-7 (adjacency of nodes in AB):

Two nodes of the same order are adjacent to each other if and only if one of
them is before the other, and there exists no node of the same order which is
between them in the ordering:

∀  csp(P): (V, E) = AB-graph(P):
(∀  <: total_ordering({N | N ∈ V ∧  order_of(N) = 1}, <):

(∀ P, Q ∈ V: order_of(P) = order_of(Q):
(adjacent_ordered_node(P, Q, <) ≡
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((P < Q ∧ ¬ ∃  node R:
(order_of(R) = order_of(Q) ∧ P < R ∧ R < Q)) ∨

(Q < P ∧ ¬ ∃  node R:
(order_of(R) = order_of(Q) ∧ Q < R ∧ R < P)))))) ■

Since only adjacent nodes are used to construct new nodes, the AB-graph that AB
generates is actually a tangled binary tree. This tree will be constructed from the tips
to the root, with n, n − 1, n − 2, ..., 3, 2, 1 nodes being constructed for each order,
where n is the number of variables in the problem. The root of this tree is the node
for solution tuples (see Figure 9.6 for the topology of the AB-graph). The pseudo
code for the algorithm AB is shown below.

PROCEDURE AB(Z, D, C)
/* Z: a set of variables, D: index to domains, C: a set of constraints */
BEGIN

/* initialization */
give the variables an arbitrary ordering <;
S ← { } /* S = set of nodes in the AB-Graph to be constructed */
FOR each variable x in Z DO

S ← S ∪ { (<x,v>) | v ∈  Dx ∧ <x,v> ∈  Cx };
k = 1;
/* synthesis of solutions */
WHILE (k ≤  Z) DO

BEGIN
FOR each pair of adjacent nodes P, Q in S such that P < Q

DO S ← S ∪ {Compose(P,Q)};
k = k + 1;

END
return node of order  | Z | in S which represents the set of all solu-

tion tuples;
END /* of AB */

The node of order  Z contains all the solution tuples for the problem (this node
could be an empty set). AB ensures that in Compose(P, Q), P and Q are nodes of the
same order, adjacent to each other and P < Q. This implies that the sets variable-
s_of(P) and variables_or(Q) differ in exactly one element, and P’s unique element
is before all of Q’s elements. In the procedure Compose, we assume that:

variables_of(P) = {x} + W
variables_of(Q) = W + {y}

where W is a set of variables and x < y. Following we show the Compose procedure
for binary CSPs:
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PROCEDURE Compose(P, Q)
BEGIN

R ← { }; /* node to be returned */
FOR each element (<x,a><x1,v1>...<xm,vm>) in P

FOR each element (<x1,v1>...<xm,vm><y,b>) in Q
IF satisfies((<x,a><y,b>), Cx,y)
/* only binary constraints are checked here; in dealing with

general CSPs, check if satisfies((<x,a><x1,v1> ...
<xm,vm><y,b>), CE({x,x1,...,xm,y}) holds */

THEN R ← R + {(<x,a><x1,v1>...<xm,vm><y,b>)};
return(R);

END /* of Compose */

The procedure Compose(P ,Q) picks from the two given nodes P and Q a pair of
elements which have the same projection to the common variables, and checks to
see if the unique labels for the differing variables are compatible. If they are, a com-
pound label containing the union of all the labels is included in the node to be
returned.

For general CSPs, Compose has to check whether the differing variables are
involved in any general constraints which might involve the common variables. If
such constraint exists, Compose has to check whether the combined compound
label satisfies all such constraints before it is put into the constructed node. Figure
9.5 summarizes the constraints being checked in Compose for both binary con-
straint problems and general problems.

There are (n − k + 1) nodes of order k in the AB-graph. When each of these nodes is
constructed, two nodes of order k − 1 will be passed as parameters to Compose. The
time complexity of Compose is determined by the size of these input nodes. The

size of a node of order k − 1 is O(ak-1) in the worst case. Compose has to consider
each combination of two elements from the two input nodes. Therefore, the time

complexity of Compose is O(a2k-2). So the time complexity of AB is

, which is dominated by the term where k = n, i.e.

O(a2n-2). The largest possible node created by AB has the size an. Therefore, the

worst case space complexity of AB is O(an). The memory requirement of AB will
be studied in greater detail in Section 9.5.1.

9.4.2  Implementation of AB

Program 9.3, ab.plg, is a Prolog implementation of the AB algorithm for solving the
N-queens problem. A node is represented by:

n k− 1+( ) a2k 2−
k 1=
n∑



(a) Compose for binary constraints problems

(b) Compose for general CSPs
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Figure 9.5 Constraints being checked in the Compose procedure
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[X1, X2, ...]-[V1, V2, ...]

in the program, where [X1, X2, ...] is the list of variables for the subject node, and
each of Vi’s is a value to be assigned to the variable Xi. Syn/2 is given the list of all
nodes of order 1. In each of its recursive calls, it will generate the set of nodes of
one order higher (through calling syn_nodes_of_current_order/2), until either the
solutions are generated, or it is provable that no solution exists.

9.4.3  Variations of AB

The efficiency of AB can be improved in the initialization. AB can also be modified
should constraint propagation be worthwhile (as in Freuder’s algorithm). These var-
iations of AB are described briefly in the following sections.

9.4.3.1  Initializing AB using the MBO

The nodes are ordered arbitrarily in AB, but the efficiency of AB could be improved
by giving the nodes certain ordering. The observation is that the smaller the nodes,
the less computation is required for composing the higher order nodes. Although the
size of the nodes of order 1 are determined by the problem specification, the sizes of
the higher order nodes are determined by how much the variables of those nodes
constrain each other. When the tightness of individual constraints are easily com-
putable, one may benefit from putting the tightly constrained variables closer
together in the ordering of the nodes of order 1 in AB. One heuristic is to give the
variables a minimal bandwidth ordering (MBO) during initialization. For algo-
rithms for finding the minimal bandwidth ordering and their implementations, read-
ers are referred to Section 6.2.2 in Chapter 6.

9.4.3.2  The AP algorithm

Constraints are not propagated upward or downward in AB as they are in Freuder’s
algorithm. This is because AB is designed to exploit parallelism. All the nodes of
order k are assumed to be constructed simultaneously. Propagating constraints will
reduce the nodes’ sizes and reduce the number of compatibility checks, but hamper
parallelism. This is because, as Kasif [1990] has pointed out, consistency achieve-
ment is sequential by nature.

Constraints could be fully or partially propagated in AB if desired. The AP algo-
rithm (P for Propagation) is a modification of AB in that constraints are partially
propagated. In AP, if nodes P and Q are used to construct R, and P < Q, then con-
straints are propagated from R to Q (which will be used to construct the next node
of one order higher than P and Q). Constraints are not propagated from R to P, or
from Q to nodes of a lower order.
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It is possible to extend AP further to maintain Upward_propagated (Definition 9-2)
and Downward_propagated (Definition 9-3). Doing so could reduce the size of the
nodes, at the cost of more computation. Whether it is justifiable to do so depends on
the application. The decision on how much propagation to perform in AP is akin to
the decision on what level of consistency to achieve in problem reduction. Program
9.4, ap.plg, is a Prolog implementation of the AP algorithm for solving the N-
queens problem.

9.4.4 Example of running AB

We shall use the 4-queens problem to illustrate the AB procedure. As before, we
shall use one variable to represent the queen in one row, and call the four variables
x1, x2, x3 and x4. We shall continue to use subscripts to indicate the variables that
each node represents: for example, N123 denotes the node for variables {x1, x2, x3}.

Since all the variables x1, x2, x3 and x4 can take values A, B, C and D, all nodes of
order 1 are identical:

N1: {(A), (B), (C), (D)}
N2: {(A), (B), (C), (D)}
N3: {(A), (B), (C), (D)}
N4: {(A), (B), (C), (D)}

From the nodes of order 1, nodes of order 2 are constructed:

N12: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}
N23: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}
N34: {(A,C), (A,D), (B,D), (C,A), (D,A), (D,B)}

As described in the algorithm, only adjacent nodes of order 1 are used to construct
nodes of order 2. So nodes such as N13 and N24 will not be constructed. Node N12

suggests that compound labels (<x1,A><x2,C>), (<x1,A><x2,D>), (<x1,B><x2,D>),

etc. are all legal compound labels, as far as the constraint  is concerned.

With these nodes of order 2, the following nodes of order 3 will be generated:

N123: {(A,D,B), (B,D,A), (C,A,D), (D,A,C)}
N234: {(A,D,B), (B,D,A), (C,A,D), (D,A,C)}

Finally, the following node of order 4 will be generated, which contains all the solu-
tion for the problem:

N1234: {(B,D,A,C), (C,A,D,B)}

Node N1234 contains two compound labels:

Cx1 x2,
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(<x1,B><x2,D><x3,A><x4,C>)
and (<x1,C><x2,A><x3,D><x4,B>)

are the only two solutions for this problem. At this stage, the AB-graph (which is a
tangled binary tree) in Figure 9.6 is constructed.
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Figure 9.6  The tangled binary tree (AB-graph) constructed by the AB
algorithm in solving the 4-queens problem
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9.4.5  Example of running AP

For the simple example shown in the last section, different nodes will be generated
by AP. Before constraints are propagated, the nodes of order 1 and order 2 in run-
ning AP are exactly the same as those in AB. After the following node N123 is con-
structed:

N123: {(A,D,B), (B,D,A), (C,A,D), (D,A,C)},

N123 will form a constraint to node N23 (but not N12 because it will not be used to
construct any more nodes). (B,D) will be removed from N23 because there is no
(✽ ,B,D) in N123 (where ‘✽ ’ represents a wildcard). Similarly (C,A) will be removed
from N23 because there is no (✽ ,C,A) in N123. So the node N23 is updated to:

N23 (updated): {(A,C), (A,D), (D,A), (D,B)}

The updated N23 will be used to build N234:

N234: {(A,D,B), (D,A,C)}

Finally, the node of order 4 where solutions are stored is constructed:

N1234 (solution): {(B,D,A,C), (C,A,D,B)}

9.5  When to Synthesize Solutions

In this section, we shall firstly identify the types of problems which are suitable for
solution synthesis. Then we shall argue that advanced hardware could make solu-
tion synthesis more attractive than in the past.

9.5.1  Expected memory requirement of AB

Since solution synthesis methods are memory demanding by nature, we shall exam-
ine the memory requirements for AB in this section. Given any CSP, one can show
that the size of the nodes in AB grows at a decreasing rate as the order of the node
grows.

In a problem with n variables, n nodes of order 1 will be created. Among the n
nodes of order 1, there are n − 1 pairs of adjacent nodes. Therefore, n − 1 nodes of
order 2 will be constructed. There would be n − 2 nodes of order 3, n − 3 nodes of
order 4, ..., and 1 node of order n. The total number of nodes in the binary tree is

n(n + 1) / 2. Therefore, the number of nodes is O(n2). The complexity of composing
a new node is O(s1 × s2), where s1 and s2 are the sizes of the two nodes used to con-
struct the new node.
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The size of the nodes is determined by the tightness of the problem: the tighter the
constraints, the smaller the sizes of the nodes. For simplicity, we shall limit our
analysis to binary constraint problems here. Let r be the proportion of binary-com-
pound labels which are allowed in each binary constraint. Assume for simplicity
that the domain size of every variable in the CSP is a. The expected size of a node
of order 2 is a × a × r. Given two labels <x1, v1> and <x2, v2> the chance of a label

<x3, v3> being compatible with them simultaneously is r2. The chance of a label

<x4, v4> being compatible with all <x1, v1>, <x1, v2> and <x1, v3> is r3.

In general, the size of a node of order k, S(k), is:

S(k) = r × r2 × r3 × ... × rk-1 × rk × ak = rk(k-1)/2 × ak

Since 0 ≤ r ≤ 1, rk(k-1)/2 should decrease at a faster rate than ak increases. We can
find k which has the maximum number of elements in its nodes by finding the deriv-

ative of S(k) and making it equal to zero. Let t = :

  =

=

If  = 0, then we have: (2k − 1) × ln(t) + ln(a) = 0. Therefore, k =

, or k = , which is the order in which the

nodes potentially have the most elements. This analysis helps in estimating the
actual memory requirement in an application.

9.5.2  Problems suitable for solution synthesis

All solution synthesis techniques described in this chapter construct the set of all
solutions. Therefore, their usefulness is normally limited to CSPs in which all the
solutions are required.

The amount of computation involved in solution synthesis is mainly determined by
the sizes of the nodes. In general, the looser a CSP is, the more compound labels are
legal, and consequently more computation is required. The tighter a problem is, the
fewer compound labels there are in each node, and consequently less computation is
required. This suggests that solution synthesis methods are more useful for tightly
constrained problems.

In Chapter 2, we classified CSP solving techniques into problem reduction, search-
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ing and solution synthesis. Now we have looked at all three classes of techniques,
we shall study their applicability in the classes of problems whown in Table 2.1 of
Chapter 2.

If a single solution is required, then a loosely constrained CSP can easily be solved
by any brute force search: relatively many solutions exist in the search space, and
therefore few backtracking can be expected. However, when the problem is tightly
constrained, naive search methods such as Chronological Backtracking may require
a large number of backtracks. In such problems, problem reduction methods could
be useful. Besides, since the problem is tightly constrained, efforts spent in propa-
gating the constraints are likely to result in successfully reducing the domains and
constraint sizes.

With search methods, finding all solutions basically requires one to explore all parts
of the search space in which one cannot prove the non-existence of solutions. As in
CSPs which require single solutions, the tighter the problem, the more effective
problem reduction methods are in pruning off the search space. Besides, as
explained above, the tighter the CSP, the fewer elements one could expect to be
included in the nodes constructed by both Freuder’s and Essex solution synthesis
algorithms, and therefore the more efficient these algorithms could be expected.

When the search space is large and the problem is loosely constrained, finding all
solutions is hard. Both problem reduction and solution synthesis methods cannot be
expected to perform much better than brute force search in this class of CSPs.
Table 9.1 summarizes our analysis in this section.

Table 9.1 Mapping of tools to problems

Solutions
required

Tightness of the problem

Loosely constrained Tightly constrained

Single
solution
required

Problem is easy by nature;
brute force search (e.g. simple
backtracking) would be suffi-
cient

Problem reduction helps to
prune off search space, hence
could be used to improve
search efficiency

All solutions
required

When the search space is
large, the problem is hard by
nature

Problem reduction helps to
prune off search space; solu-
tion synthesis has greater
potential in these problems
than in loosely constrained
problems
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9.5.3  Exploitation of advanced hardware

Part of the motivation for developing AB is to exploit the advances in hardware
development. Although solution synthesis is memory demanding by nature, this
problem has been alleviated by the fact that computer memory has been made much
cheaper and more abundant in recent years. Besides, the wider availability of
cheaper content-addressable memory and parallel architectures make solution syn-
thesis a more probable tool for CSP solving than, say, ten years ago. In this section,
we shall explain how AB can be helped by these advanced hardware developments.
Although the use of advanced hardware does not change the complexity of AB, it
does affect the real computation time.

In AB, each node of order k where k > 1 is constructed by two nodes of order k − 1.
As soon as these two nodes have been constructed, the node of order k can be con-
structed. Therefore, there is plenty of scope for parallelism in the construction of
nodes.

The efficiency of the Compose procedure could be improved with the help of con-
tent-addressable memory. Let us assume that P and Q are nodes for the variables {x,
x1, ..., xm} and {x1, ..., xm, y}, respectively. When P and Q are used to construct the
node R (which is a node for the variables {x, x1, ..., xm, y}), the following operation
is involved: given any tuple (<x,a><x1,v1>...<xm,vm>) in P, one needs to retrieve all
tuples of the form (<x1,v1>...<xm,vm><y,b>) from Q before one can check whether
<x,a> and <y,b> are compatible. This retrieval involves going through all the tuples
in Q and performing pattern matching on each of them. With content-addressable
memory, one needs no indexing, and therefore can retrieve the tuples directly.

One system which partially meets the requirements of the Essex Algorithms is the
Intelligent File Store (IFS). It provides content-addressable memory and parallel
search engines, and therefore is capable of returning all the tuples which match the
required pattern in roughly constant time. Unfortunately, it does not facilitate paral-
lel construction of the nodes.

9.6  Concluding Remarks

Solution synthesis involves constructively building up compound labels for larger
and larger groups of variables. Solution synthesis in general is more useful for
tightly constrained problems in which all solutions are required.

In this chapter, three solution synthesis algorithms have been explained: Freuder’s
algorithm, the invasion algorithm, and the Essex Algorithms (AB and its variants).
Freuder’s solution synthesis algorithm is applicable to CSPs with general con-
straints. The basic idea is to incrementally construct a lattice, which we call the
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minimal problem graph, or MP-graph, in which every node contains the set of all
legal tuples for a unique subset of variables. The node for a set of k variables S is
constructed using the k-constraint on S (if any) and all the nodes for the subsets of
k − 1 elements of S.

The invasion algorithm is applicable to binary constraint CSPs, though it can be
extended to handle general constraints with additional complexity. It exploits the
topology of the constraint graph, and is especially useful for problems in which
each variable is involved in only a few constraints. Starting with the 0-compound
label, the basic principle is to extend each compound label of the last iteration by
adding to it a label for a new variable. In the process of doing so, a solution graph is
created to store all the solutions. We have pointed out the close relationship between
the invasion algorithm and the minimal bandwidth ordering (MBO).

The Essex Algorithms are also more suitable for binary constraint CSPs, but can be
extended to handling general constraints. The idea is to reduce both the number of
nodes and the complexity of nodes construction in Freuder’s algorithm. This is done
by ordering the variables, and constructing nodes only out of adjacent nodes. It is
argued that the efficiency of the Essex Algorithms can be significantly improved by
employing a parallel machine architecture with content-addressable memory.
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