
Chapter 8

Stochastic search methods for CSPs

8.1 Introduction

In many situations, a timely response by a CSP solver is crucial. For example, some
CSPs may take days or years to solve with conventional hardware using the com-
plete search methods so far introduced in this book. In applications such as indus-
trial scheduling, the user may like to analyse a large number of hypothetical
situations. This could be due to the fact that many factors are unknown to the user
(who would like to explore many hypothetical situations), or that many constraints
are merely preferences which the user is prepared to relax if no solution which satis-
fies them all can be found. For such applications, the user may need to evaluate the
effect of different combinations of constraints, and therefore speed in a CSP solver
is important.

In other applications, the world might be changing so dynamically that delay in
decisions could be extremely costly. Sometimes, decisions could be useless if they
come too late. For example, in scheduling transportation vehicles, in a container ter-
minal, one may be allowed very little time to schedule a large number of vehicles
and delays could be very costly. In allocating resources to emergency rescue teams,
a decision which comes too late is practically useless.

Although linear speed up may be achievable with parallel architecture (architecture
which use multiprocessors), it is not sufficient to contain the combinatorial explo-
sion problem in CSPs. When no alternative methods are available, the user may be
willing to sacrifice completeness for speed. (In fact, completeness is seldom guaran-
teed by human schedulers in the kind of applications mentioned above.) When this
is the case, stochastic search methods could be useful.

Stochastic search is a class of search methods which includes heuristics and an ele-
ment of nondeterminism in traversing the search space. Unlike the search algo-
rithms introduced so far, a stochastic search algorithm moves from one point to

254 Stochastic search methods for CSPs

another in the search space in a nondeterministic manner, guided by heuristics. The
next move is partly determined by the outcome of the previous move. Stochastic
search algorithms are, in general, incomplete.

In this chapter, we introduce two stochastic search methods, one based on hill-
climbing and the other based on a connectionist approach. Both of them are general
techniques which have been used in problems other than the CSPs. We shall focus
on their application to CSP solving.

8.2 Hill-climbing

Hill-climbing is a general search technique that has been used in many areas; for
example, optimization problems such as the well known Travelling Salesman Prob-
lem. Recently, it has been found that hill-climbing using the min-conflict heuristic
(Section 6.3.2 in Chapter 6) can be used to solve the N-queens problem more

quickly than other search algorithms.1 We shall first define the hill-climbing algo-
rithm, and then explain its application to CSP.

8.2.1 General hill-climbing algorithms

The general hill-climbing algorithm requires two functions: an evaluation function
which maps every point in the search space to a value (which is a number), and an
adjacency function which maps every point in the search space to other points. The
solution is the point in the search space that has the greatest value according to the
evaluation function. (Minimization problems are just maximization problems with
the values negated.)

Hill-climbing algorithms normally start with a random focal point in the search
space. Given the current focal point P, all the points which are adjacent to P accord-
ing to the adjacency function are evaluated using the evaluation function. If there
exist some points which have greater values than P’s, then one of these points (call
them “higher points”) will be picked nondeterministically to become the new focal
point. Heuristics can be used for choosing from among the higher points when more
than one exists. A certain degree of randomness is often found to be useful in the
selection. The algorithm continues until the value of the current focal point is
greater than the values of all the nodes adjacent to it, i.e. the algorithm cannot climb
to a higher point. The current focal point is then either a solution or a local maxi-
mum. The pseudo code for the generic hill-climbing algorithm is shown below:

1. Deterministic algorithms for solving the N-queens problem exist (e.g. see Abramson &
Yung, 1989 and Bernhardsson, 1991)

8.2 Hill-climbing 255

PROCEDURE Generic_Hill_Climbing(e,c)
/* Given a point P in the search space, e(P) maps P to a numerical

value which is to be maximized; c maps any point P to a (possibly
empty) set of points in the search space*/

BEGIN
/* Initialization */
P ← random point in the search space;
SP ← c(P); /* SP is the set of points adjacent to P */

/* Hill-climbing */
WHILE (there exists a point Q in SP such that e(Q) ³ e(P)) DO

BEGIN
Q ← a point in SP such that e(Q) ³ e(P);
/* heuristics may be used here in choosing Q */
P ← Q;
SP ← c(P);

END
END /* of Generic_Hill_Climbing */

There are different ways to tackle a CSP with a hill-climbing approach. The follow-
ing is the outline of one. The search space comprises the set of all possible com-
pound labels. The evaluation function maps every compound label to the negation
of the number of constraints being violated by it. (Therefore, a solution tuple will be
mapped to 0.) Alternatively, the value of a compound label could be made the nega-
tion of the number of labels which are incompatible with some other labels in the
compound label. The next step is to define the adjacency function c in the
Generic_Hill_Climbing procedure. Two compound labels may be considered to be
adjacent to each other if they differ in exactly one label between them. In the fol-
lowing we show the pseudo code of a naive hill-climbing algorithm for tackling
CSPs. There the CSP is treated as a minimization problem in which one would like
to minimize the number of constraints being violated. A solution to the CSP is a set
of assignments which violates zero constraints:

PROCEDURE Naive_CSP_Hill_Climbing(Z, D, C)
BEGIN

/* Initialization */
CL ← { };
FOR each x in Z DO

BEGIN
v ← a random value in Dx;
CL ← CL + {<x,v>};

END

/* Hill-climbing: other termination conditions may be added to pre-

256 Stochastic search methods for CSPs

vent infinite looping */
WHILE (the set of labels in CL violates some constraints) DO

BEGIN
<x,v> ← a randomly picked label from CL which is incom-

patible with some other labels in CL;
v' ← any value in Dx such that CL − {<x,v>} + {<x,v'>} vio-

lates no more constraints than CL;
CL ← CL − {<x,v>} + {<x,v'>};

END
END /* of Naive_CSP_Hill_Climbing */

The Naive_CSP_Hill_Climbing algorithm continues to iterate in the WHILE loop
as long as it can pick a random label that is in conflict with some other labels in the
current compound label CL. For the label picked, it revises the label by picking a
value that violates no more constraints than the original one (this allows the picking
of the current value). This algorithm terminates if and when the current compound
label is a solution (i.e. it violates no constraints).

The problem with hill-climbing algorithms in general is that they do not guarantee
successful termination. They may settle in local optima, where all adjacent points
are worse than the current focal point, though the current focal point does not repre-
sent a solution (this will not happen in Naive_CSP_Hill_Climbing). They may also
loop in plateaus, where a number of mutually-adjacent points all have the same
value (see Figure 8.1). Sometimes, additional termination conditions are added (to
the WHILE loop in the Hill_Climbing algorithm above). For example, one may
want to limit the number of iterations or the program’s run time.

Even when hill-climbing algorithms terminate, they are not guaranteed to be effi-
cient. But when good heuristics are available, which could be the case in some
problems, hill-climbing does give us hope to solve intractable CSPs.

8.2.2 The heuristic repair method

The heuristic repair method is a hill-climbing method based on the min-conflict
heuristic described in Section 6.3.2 of Chapter 6. It improves over the Naive_C-
SP_hill_climbing algorithm in the way in which it chooses the values. When a label
which violates some constraints is picked for revision, the value which violates the
least number of constraints is picked. Ties are resolved randomly. The pseudo code
for the Heuristic Repair Method is shown below:

PROCEDURE Heuristic_Repair(Z, D, C)
/* A hill-climbing algorithm which uses the Min-Conflict heuristic */
BEGIN

8.2 Hill-climbing 257

/* Part 1: Initialization */
CL ← { };
FOR each x ∈ Z DO

BEGIN
V ← the set of values in Dx which violate the minimum

number of constraints with labels in CL;
v ← a random value in V;
CL ← CL + {<x,v>};

END
/* Part 2: Hill-climbing */
WHILE (the set of labels in CL violates some constraints) DO
/* additional termination conditions may be added here */

BEGIN
<x,v> ← a randomly picked label from CL which is incom-

patible with some other labels in CL;
CL ← CL − {<x,v>};
V ← the set of values in Dx which violates the minimum

number of constraints with the other labels in CL;
v' ← random value in V;
CL ← CL + {<x,v'>};

END
END /* of Heuristic_Repair */

plateau

global maximum

local maximumlocal
maximum

Figure 8.1 Possible problems with hill-climbing algorithms: the
algorithms may stay in plateaus or local maxima

258 Stochastic search methods for CSPs

The Heuristic Repair Method has been applied to the N-queens problem. The one-
million-queens problem is reported to have been solved by the Heuristic Repair
Method in less than four minutes (real time) on a SUN Sparc 1 workstation. It
should be reiterated here that results in testing an algorithm on the N-queens prob-
lem may be deceptive, because the N-queens problem is a very special CSP in
which the binary constraints become looser as N grows.

Program 8.1, hc.plg, shows an implementation of the Heuristic Repairs Method.
This program does not guarantee to find solutions in the N-queens problem.

The Heuristic Repair Method has the usual problem of incompleteness in hill-
climbing algorithms. The example in Figure 8.2 shows a problem in which the Heu-
ristic Repair Method would fail to produce a solution in most attempts. This prob-
lem contains five variables, A to E, whose domains are all {1, 2, 3}. There exists
only one solution, which is to have all variables labelled to 2. The Heuristic Repair
Method will normally fail to find this solution because unless three or more varia-
bles are initialized to 2, most variables will end up with values 1 or 3 and the Heu-
ristic Repair Method will wander around in a plateau of local minima. For example,
assume that the initialized compound label is (<A,2><B,1><C,1><D,1><E,2>). Six
constraints, namely CA,B, CA,C, CA,D, CB,E, CC,E and CD,E, are violated. The
number of constraints violated can be reduced if the value of either A or E is
changed to 1 or 3 (in either case, only four constraints will be violated). Even if one
of B, C or D is picked to have its value revised, changing its value to 2 does not
reduce the number of constraints violated, and therefore, there is a 2/3 chance that
the values 1 or 3 will be picked (which does not bring the algorithm closer to the
solution). If the initialized compound label has two or less 2’s assigned to the varia-
ble, and A and E are not both labelled with 2, e.g. (<A,2><B,2><C,1><D,1><E,1>),
then the Heuristic Repair Method will change between states in which the five vari-
ables take values 1 or 3, which always violate one constraint, namely CA,E.

8.2.3 A gradient-based conflict minimization hill-climbing heuristic

The gradient-based conflict minimization (GBCM) heuristic is one that is applicable
to CSPs where all variables have the same domain and the size of this domain is the
same as the number of variables, and where each variable must take a unique value.
It has been found to be effective in the N-queens problem, although its effectiveness
in other problems is unknown. Since the N-queens problem has been used to illus-
trate many algorithms in this book, we shall include this heuristic here for the sake
of completeness.

Like the Naive_CSP_Hill_Climbing algorithm, an algorithm which uses the GBCM
heuristic hill-climbs from a random compound label. If there exist two labels in the
compound label which are in conflict with other labels, the values of them will be
swapped when the compound label after this swap violates fewer constraints. The

8.2 Hill-climbing 259

idea is similar to the 2-opting heuristic in the travelling salesman problem (see, for
example, Aho et al., 1983). The algorithm, called QS1 and designed for solving the
N-queens problem, is shown below:

PROCEDURE QS1(n)
/* n is the number of queens in the N-queens problem */
BEGIN

/* initialization */
FOR i = 1 to n DO

Q[i] ← a random column which is not yet occupied;
/* hill-climbing */

{1, 2, 3}

{1, 2, 3}{1, 2, 3}

{1, 2, 3}

A = 2 or E = 2

(All constraints Cxy, with the exception of
CAE, require that x + y is even; CAE requires
that at least one of A and E takes the value 2)

Figure 8.2 Example of a CSP in which the Heuristic Repair Method
would easily fail to find the only solution where all variables are

assigned the value 2

DC

EB

A

{1, 2, 3}

260 Stochastic search methods for CSPs

WHILE conflict exists DO
BEGIN

find any i, j, such that Q[i], Q[j] are in conflict with some
queens;

IF (swapping values of Q[i], Q[j] reduces the total number of
conflicts)

THEN swap the values of Q[i] and Q[j];
END /* of while loop */

END /* of QS1 */

It is found that the initialization part of the QS1 algorithm can be improved. Firstly,
a constant c is chosen. Then n − c random rows are chosen, and a queen is put into
one column of each row, making sure that no queens attack each other. If no safe
column is found in any of the chosen rows, then this row is replaced by another ran-
dom row. There is no backtracking involved. After initialization, the program pro-
ceeds in the same way as QS1. The resulting program is called QS4:

PROCEDURE QS4(n)
CONSTANT: c; /* c is to be determined by the programmer */

BEGIN
/* initialization — minimize conflicting queens */
FOR i = 1 to n − c DO

place a queen in a random position which does not have con-
flict with any queen which has already been placed; if failed,
exit reporting failure;

FOR i = 1 to c DO
place a queen in a random column which is not yet occupied;

/* hill-climbing */
WHILE (conflict exists) DO

BEGIN
find any i, j, such that Q[i], Q[j] are in conflict with some

queens;
IF (swapping values of Q[i], Q[j] reduces the total number of

conflicts)
THEN swap the values of Q[i] and Q[j];

END /* of while loop */
END /* of QS4 */

It is found that with a properly chosen c, QS4 performs better than the Heuristic
Repair Method. For the one-million-queens problem, QS4 takes an average of 38
CPU seconds on a SUN Sparc 1 workstation, while the Heuristic Repair Method
takes 90-240 seconds. Solutions are found for the three-million-queens problem in
54.7 CPU seconds.

8.3 Connectionist Approach 261

However, it is unclear how effective the GBCM heuristic is in problems other than
the N-queens problem. Apart from the limitation that it is only applicable to prob-
lems in which each variable must take a different value, the choice of c in QS4 is
very important. If c is too small, QS4 shows no improvement over QS1. If c is too
large, the initialization process may fail (since no backtracking is involved). No
mechanism has been proposed for choosing c.

8.3 Connectionist Approach

8.3.1 Overview of problem solving using connectionist approaches

The min-conflict heuristic described above (Sections 6.3.2 and 8.2.2) is derived
from a connectionist approach. A connectionist approach uses networks where the
nodes are very simple processors and the arcs are physical connections, each of
which is associated with a numerical value, called a weight. At any time, each node
is in a state which is normally limited to either positive (on) or negative (off). The
state of a node is determined locally by some simple operations, which take into
account the states of this node’s directly connected nodes and the weights of those
connecting arcs. The network state is the collection of the states of all the individual
nodes. In applying a connectionist approach to problem solving, the problem is rep-
resented by a connectionist network. The task is to find a network state which repre-
sents a solution.

Connectionist approaches to CSPs have attracted great attention because of their
potential for massive parallelism, which gives hope to the solving of problems that
are intractable under conventional methods, or of solving problems with a fraction
of the time required by conventional methods, sometimes at the price of losing com-
pleteness. A connectionist approach for maintaining arc-consistency has been
described in Section 4.7 of Chapter 4. In this section, one connectionist approach to
CSP solving is described.

8.3.2 GENET, a connectionist approach to the CSP

GENET is a connectionist model for CSP solving. It has demonstrated its effective-
ness in binary constraint problems, and is being extended to tackle general CSPs. In
this section, we shall limit our attention to its application to binary CSPs. Given a
binary CSP, each possible label for each variable is represented by a node in the
connectionist network. All the nodes for each variable are collected to form a clus-
ter. Every pair of labels between different clusters which is prohibited by a con-
straint is connected by an inhibitory link. Figure 8.3 shows an example of a CSP (a
simplified version of the problem in Figure 8.1) and its representation in GENET.
For example, A + B must be even, and therefore (<A,1><B,2>) is illegal; hence the

262 Stochastic search methods for CSPs

nodes which represent <A,1> and <B,2> are connected. CA,E requires A = 2, E = 2
or both to be true. Consequently, there are connections between <A,1> and both
<E,1> and <E,3>, and connections between <A,3> and both <E,1> and <E,3>.

The algorithm of GENET is very simple. The network is initialized by assigning -1
to all the weights. One arbitrary node per cluster is switched on, then the network is
allowed to converge under the rule which we shall describe below. The input to
each node is computed by the following rule:

input of x =

where wx,y is the weight of the connection between nodes x and y, and sy is the state
of y, which is 1 if y is on and 0 if y is off. That means that the input to a node x is the
sum of the weights on the connections which connect x to nodes that are on at the
point of calculation. The nodes in each cluster continuously compete to be turned
on. In every cluster, the node that receives the maximum input will be turned on,
and the rest will be turned off. Since there exist only connections with negative
weights, the winner in each cluster represents a label which violates the fewest con-
straints for the subject variable. In tie situations, if one of the nodes in the tie was
already on in the previous cycle, it will be allowed to stay on. If all the nodes in the
tie were off in the previous cycle, then a random choice is made to break the tie.
(Experiments show that breaking ties randomly, as done in the heuristic repair
method, degrades the performance of GENET.)

Figure 8.4 shows a state of the network shown in Figure 8.3. There, the nodes
which are on are highlighted, and the input is indicated next to each node. The clus-
ter of nodes which represent the labels for variable A is unstable because the node
which represents <A,2> has the highest input (0) but is not switched on. Similarly,
the clusters for B and C are unstable because the on nodes in them do not have the
highest input. Cluster D is stable because the node which represents <D,2> has an
input of −1, which is a tie with the other two nodes in cluster D. According to the
rules described above, the node representing <D,E> will remain on. There is no rule
governing which of the clusters A, B or C should change its state next, and this
choice is non-deterministic. Obviously, the change of state in one cluster would
change the input to the nodes in other clusters. For example, if the node for <A,1> is
switched off, and the node for <A,2> is switched on, the input of all the three nodes
in cluster B would be −1, which means cluster B would become stable.

If and when the network settles in a stable state, which is called a converged state,
GENET will check to see if that state represents a solution. In a converged state,
none of the on nodes have lower input than any other nodes in the same cluster.
Figure 8.5 shows a converged state in the network in Figure 8.3. A state in which all
the on nodes have zero input represents a solution. Otherwise, the network state rep-

wx y, sy×
y adjacent x y,()←

∑

DC

EB

{1, 2, 3}

{1, 2, 3}{1, 2, 3}

{1, 2, 3}
{1, 2, 3}

A = 2 or E = 2
A

even(A + B)

even(B + C)

even(C + D)

even(D + E)

1

2

3

A B C D E

values:

Variables:

Figure 8.3 Example of a binary CSP and its representation in GENET

(b) Representation of the CSP in (a) in GENET all connections
have their weights initialized to −1

(a) Example of a binary CSP (variables: A, B, C, D and E)

264 Stochastic search methods for CSPs

resents a local minimum. The converged state in Figure 8.5 represents a local mini-
mum because the inputs to the nodes which represent <D,1> and <E,2> are both −1.

When the network settles in a local minimum, the state updating rule has failed to
use local information to change the state. When this happens, the following heuris-
tic rule is applied to remove local maxima:

New wij = Old wij + si × sj

The local maxima is removed by decreasing the weights of violated connections
(constraints). This simple “learning” rule effectively does two things: it reduces
(continuously if necessary) the value of the current state until it ceases to be a local
minima. Besides, it reduces the possibility of any violated constraint being violated
again. The hope is that after sufficient “learning” cycles, the connection weights in
the network will lead the network states to a solution.

In the example in Figure 8.5, the weight on the connection between the nodes which

A B C D E

-1

0

-1

0

-2

0

-2

0

-2

-1

-1

-1

-2

0

-2

1

2

3

values:

Variables:

Figure 8.4 Example of a network state in the GENET network shown
in Figure 8.3(b) (all connections have weights equal to −1)

= on nodes; input of each node is indicated

8.3 Connectionist Approach 265

represent <D,1> and <E,2> (highlighted in Figure 8.5) will be decreased by 1 to
become −2. This will make the input to both of the nodes for <D,1> and <E,2> −2.
As a consequence, the state of either cluster D or cluster E will be changed.

The GENET algorithm is shown below in pseudo code:

PROCEDURE GENET
BEGIN

One arbitrary node per cluster is switched ON;
REPEAT

 /* network convergence: */
REPEAT

Modified ← False;
FOR each cluster C DO IN PARALLEL

BEGIN
On_node ← node in C which is at present ON;

A B C D E

0

-1

0

0

-2

0

0

-2

0

-1

-1

-1

-1

-1

-1

1

2

3

values:

Variables:

Figure 8.5 Example of a converged state in the GENET network
shown in Figure 8.3(b) (all connections have weights equal to −1)

= on nodes; input of each node is indicated

266 Stochastic search methods for CSPs

Label_Set ← the set of nodes within C which input
are maximum;

IF NOT (On_node in Label_Set) THEN
BEGIN

On_node ← OFF;
Modified ← True;
Switch an arbitrary node in Label_Set to ON;

END
END

UNTIL (NOT Modified); /* the network has converged */

/* learn if necessary: */
IF (sum of input to all ON nodes < 0)

/* network settled in local maximum */
THEN FOR each connection c connecting nodes x & y DO IN

PARALLEL
IF (both x and y are ON)
THEN decrease the weight of c by 1;

UNTIL (input to all ON nodes are 0) OR (any resource exhausted)
END /* of GENET */

The states of all the nodes are revised (and possibly updated) in parallel asynchro-
nously in this model. The inner REPEAT loop terminates when the network has
converged. The outer REPEAT loop terminates when a solution has been found, or
some resource is exhausted. This could mean that the maximum number of cycles
has been reached, or that the time limit of GENET has been exceeded.

8.3.3 Completeness of GENET

There is no guarantee of completeness in GENET, as can be illustrated by the sim-
ple example in Figure 8.6.

The problem in Figure 8.4 comprises two variables, A and B, in which the domains
are both {1, 2}. A constraint between A and B requires them to take values of which
the sum is odd. Therefore, nodes which represent <A,1> and <B,1> are connected,
and nodes which represent <A,2> and <B,2> are connected in GENET.

GENET may not terminate in this example because the following scenario may take
place: the network is initialized to represent (<A,1> <B,1>). Then, since inputs to
both of the nodes which represent <A,1> and <B,1> are −1, and as inputs to both of
the nodes which represent <A,2> and <B,2> are 0, both clusters will change state. If
both clusters happen to change states simultaneously at all times, then the network
will oscillate between the states which represent (<A,1> <B,1>) and (<A,2> <B,2>)
and never converge.

8.3 Connectionist Approach 267

8.3.4 Performance of GENET

A simulator of GENET has been implemented. Within the simulator, the clusters are
revised sequentially in the procedure shown above. The simulator is allowed a lim-
ited number of state changes, and when the limit is exceeded the simulator will
report failure. The result of GENET is compared with a program which performs
complete search by using forward checking (Section 5.3.1) and the fail-first princi-
ple (Section 6.2.3) to check if the simulator has missed any solution and to evaluate
the speed of GENET.

Thousands of tests have been performed on the GENET simulator using designed
and randomly generated problems. Local minima are known to be present in the
designed problems (the problem in Figure 8.2 being one example). Binary CSPs are
randomly generated using the following parameters:

N = number of variables;
d = average domain size;
p1 = the probability of two variables being constrained to each other;
p2 = the probability of two labels being compatible with each other in a

given constraint.

Parameters have been chosen carefully in generating the random problems so as to

1

2

A B

1

2

Constraint:
(A + B) is odd

Variables:

values:values:

Figure 8.6 Example of a network in GENET which may not converge
(the network may oscillate between (<A,1> <B,1>) and (<A,2> <B,2>))

268 Stochastic search methods for CSPs

focus on tight problems (where relatively few solutions exist), as they are usually
those problems which are most difficult to solve by stochastic methods. Although
GENET does not guarantee completeness, the simulator has not missed any solution
within 1000 cycles in all the CSPs tested so far. This gives positive support to the
hypothesis that GENET will only miss solutions in a relatively small proportion of
problems.

The potential of GENET should be evaluated by the number of cycles that it takes
to find solutions. For CSPs with N = 170, d = 6, p1 = 10% and p2 = 85%, GENET
takes just over 100 cycles to find solutions when they exist. As a rough estimation,

an analogue computer would take 10-8 to 10-6 seconds to process one cycle. There-
fore, if GENET is implemented using an analogue architecture, then we are talking

about spending something like 10-6 to 10-4 seconds to solve a CSP with 6170 states
to be searched. To allow readers to evaluate this speed, the complete search program
mentioned above takes an average of 45 CPU minutes to solve problems of this size
(average over 100 runs). This program implements forward checking and the fail
first principle in C, and timing obtained by running it on SUN Sparc1 workstations.

The efficiency of this program has to be improved 107 times if it is to match the
expected performance of the target GENET connectionist hardware.

8.4 Summary

In some applications, the time available to the problem solver is not sufficient to
tackle the problem (which involves either finding solutions for it or concluding that
no solution exists) by using complete search methods. In other applications, delay
in decisions could be costly. Stochastic search methods, which although they do not
normally guarantee completeness, may provide an answer to such applications. In
this chapter, two stochastic search techniques, namely hill-climbing and connec-
tionist approaches, have been discussed. Preliminary analysis of these techniques
gives hope to meeting the requirements of the above applications.

Search strategies that we have described so far normally start with an empty set of
assignments, and add one label to it at a time, until the set contains a compound
label for all the variables which satisfy all the constraints. So their search space is
made up of k-compound labels, with k ranging from 0 to n, where n is the number of
variables in the problem. On the contrary, the hill-climbing and connectionist
approaches search the space of n-compound labels.

The heuristic repair method is a hill-climbing approach for solving CSPs. It uses the
min-conflict heuristic introduced in Chapter 6. Starting with an n-compound label,
the heuristic repair method tries to change the labels in it to reduce the total number
of constraints violated. The gradient-based conflict minimization heuristic is
another heuristic applicable to CSPs where all the n variables share the same

8.5 Bibliographical Remarks 269

domain of size n, and each variable must take a unique value from this domain.
Starting from an n-compound label, the strategy is to swap the values between pairs
of labels so as to reduce the number of constraints being violated. Both of these heu-
ristics have been shown to be successful for the N-queens problem. Like many other
hill-climbing strategies, solutions could be missed by algorithms which adopt these
heuristics.

GENET is a connectionist approach for solving CSPs. A given CSP is represented
by a network, where each label is represented by a node and the constraints are rep-
resented by connections among them. Each state of the network represents an n-
compound label. Associated with each connection is a weight which always take
negative values. The nodes in the network are turned on and off using local infor-
mation — which includes the states of the nodes connected to it and the weights of
the connections. The operations are kept simple to enable massive parallelism.
Though completeness is not guaranteed, preliminary analysis shows that solutions
are rarely missed by GENET for binary CSPs. Hardware implementation of
GENET may allow us to solve CSPs in a fraction of the time required by complete
search algorithms discussed in previous chapters.

8.5 Bibliographical Remarks

Research on applying stochastic search strategies to problem solving is abundant. In
this chapter, we have only introduced a few which have been applied to CSP solv-
ing. The heuristic repair method is reported in Minton et al. [1990, 1992]. It is a
domain independent algorithm which is derived from Adorf & Johnston’s [1990]
neural-network approach. Sosic & Gu [1991] propose QS1 and QS4 for solving the
N-queens problem more efficiently, by exploiting certain properties of the problem.
QS4 is shown to be superior to the heuristic repair method, but the comparison
between QS1 and the heuristic repair method has not been reported. (As mentioned
in Chapter 1, the N-queens problem is a very special CSP. By exploiting more prop-
erties of the N-queens problem, Abramson & Yung [1989] and Bernhardsson [1991]
solve the N-queens problem without needing any search.) Smith [1992] uses a min-
conflict-like reassignment algorithm for loosely constrained problems. Another
generic greedy hill-climbing strategy is proposed by Selman et al. [1992]. Morris
[1992] studies the effectiveness of hill-climbing strategies in CSP solving, and pro-
vides an explanation for the success of the heuristic repair method.

Saletore & Kale [1990] support the view that linear speed up is possible using mul-
tiple processors. However, Kasif [1990] points out that even with a polynomial
number of processors, one is still not able to contain the combinatorial explosion
problem in CSP. Collin et al. [1991] show that even for relatively simple constraint
graphs, there is no general model for parallel processing which guarantees com-
pleteness.

270 Stochastic search methods for CSPs

GENET is ongoing research which uses a connectionist approach to CSP solving.
The basic model and preliminary test results of GENET are reported by Wang &
Tsang [1991]. (The random CSPs are generated using the same parameters as those
in Dechter & Pearl [1988a].) Tsang & Wang [1992] outline a hardware design to
show the technical feasibility of GENET.

Connectionist approaches to arc-consistency maintenance, including work by
Swain & Cooper [1988, 1992] and Guesgen & Hertzberg [1991, 1992], have been
discussed in Chapter 4. Guesgen’s algorithm is not only sound and complete, but is
also guaranteed to terminate. However, when the network converges, what we get is
no more than a reduced problem which is arc-consistent, plus some additional infor-
mation which one could use to find solutions. The task of generating solutions from
the converged network is far from trivial.

Literature on connectionism is abundant; for example, see Feldman & Ballard
[1982], Hopfield [1982], Kohonen [1984], Rumelhart et al. [1986], and Grossberg
[1987]. Partly motivated by the CSP, Pinkas & Dechter [1992] look at acyclic net-
works.

Closely related to hill-climbing and connectionist approaches is simulated anneal-
ing, whose full potential in CSP solving is yet to be explored. For reference to sim-
ulated annealing see, for example, Aarts & Korst [1989], Davis [1987] and Otten &
van Ginneken [1989].

