
Chapter 7

Exploitation of problem-specific features

7.1  Introduction

In Chapter 2, we explained that if there are n variables in a CSP, and the maximum
size of the domains of the variables is a, one would have to deal with a search tree

with O(an) leaves. Therefore, worst case time complexity of CSP solvers is O(an) in
general. In this chapter, we shall look at techniques which exploit the specific fea-
tures of the individual problems and hopefully reduce the time complexity to below

O(an).

Not every variable is constrained by every other variable in every CSP. The topol-
ogy of the constraint hypergraph or primal graph could be exploited in solving some
CSPs. Most of the techniques discussed in this chapter exploit the topology of such
graphs, and some of them use problem reduction techniques to reduce the complex-
ity of the problem.

Section 7.2 discusses the possibility of decomposing problems into independent
subproblems (which allows one to apply the divide and conquer strategy).
Section 7.3 identifies a set of “easy problems”, namely those in which constraint
graphs form trees and k-trees (Definition 3-26), for which efficient algorithms exist.
Section 7.4 discusses techniques to remove redundant constraints (Definitions 3-16,
3-19) to transform CSPs to equivalent but “easy” problems. Section 7.5 introduces
the cycle-cutset method, which is basically a dynamic search method that switches
to a backtrack-free search when the remaining problem is easy. Section 7.6 intro-
duces the tree-clustering method, which groups the variables into clusters to form
subproblems and solves the problem by solving these smaller and easier subprob-
lems separately. Section 7.7 extends the relationship between the width of a con-
straint graph and k-consistency concluded in Theorem 6.1. Section 7.8 introduce
specialized algorithms for handling CSPs with numerical variables and conjunctive
binary constraints.
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7.2  Problem Decomposition

If the variables in a CSP can be separated into independent groups (i.e. no variable
in one group constrains any variable in any other group), then these groups of varia-
bles can be labelled separately. When this is the case, a smaller space needs to be
searched. Figure 7.1 shows the search spaces when the problem can and cannot be
decomposed. If a CSP with n variables can be decomposed into three subproblems
with p, q and r variables, respectively, then the size of the search space is

O(ap + aq + ar) rather than O(ap+q+r), where a is the size of each domain and
p + q + r equals to the total number of variables in the problem n.

Search space when
the problem is not
decomposable:

search

search

search

space: aq

space: ar

space: ap

ap + q + r

Total search space
when the problem
is decomposable:

ap + aq + ar

Figure 7.1 The size of the search space when a problem is decom-
posable. a = size of the domains of the variables and the total number

of variables in the problem = p + q + r
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A problem can be decomposed if its primal graph (Definition 4-1) is not connected
(Definition 1-21). A graph with n nodes can be partitioned in O(n) time, using the
Partition procedure below. Therefore, running a graph partitioning algorithm before
searching for solutions does not increase the overall complexity of the search algo-
rithm.

PROCEDURE Partition(V, E)
/* given a graph, partition the nodes into unconnected clusters */
BEGIN

SS ← { }; /* SS is the set of clusters of variables to be returned */
WHILE (V ≠ { }) DO

BEGIN
z ← any node in V; S ← {z}; V ← V − S; Cluster ← { };
/* S and Cluster are used as working storage */
WHILE (S ≠ { }) DO

BEGIN
x ← any element in S; S ← S − {x};
Cluster ← Cluster + {x};
FOR each y such that (x,y) is in E AND y is in V DO

BEGIN
V ← V − {y};
S ← S + {y};
E ← E − {(x,y)};

END
END /* of inner WHILE loop */

SS ← SS + Cluster; /* one cluster found */
END; /* of outer WHILE loop */

return(SS);
END /* of Partition */

One node is deleted from V in each iteration of the FOR loop, so the FOR loop can
only iterate n times, where n is the number of nodes in the graph. Therefore, the
time complexity of the Partition procedure is O(n). Program 7.1, partition.plg,
shows a Prolog implementation of the Partition algorithm. It assumes the graph to
be stored in the Prolog database in exactly the same format as in the previous pro-
grams.
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7.3  Recognition and Searching in k-trees

7.3.1  “Easy problems”: CSPs which constraint graphs are trees

This section illustrates the fact that when the constraint graph (Definition 4-1) of a

CSP is a tree, one can solve this problem in O(na2), where n is the number of varia-
bles and a is the maximum domain size in the problem. This motivates the recogni-
tion of problems which constraint graphs are trees, or reducing CSPs to problems of
such class.

We mentioned in Chapter 6 that a tree is a graph with a width equal to 1. According
to Theorem 3.1, if the constraint graph of a CSP is a tree, then a search for solutions
in this problem is backtrack-free if node- and arc-consistency (i.e. strong 2-consist-
ency) are maintained in it. We mentioned in Chapter 3 that, in fact, strong 2-consist-
ency is stronger than necessary to guarantee a search to be backtrack-free in a CSP
which constraint graph is a tree. All one needs to achieve is DAC in the CSP.

We shall prove that the Tree_search procedure below can be used to solve CSPs

which constraint graphs are trees in O(na2):

PROCEDURE Tree_search((Z, D, C))
/* The constraint graph of (Z, D, C), G((Z, D, C)), is a tree */
BEGIN

Give the variables an ordering < such that all parents are placed
before their children in G((Z, D, C));

achieve NC and DAC in (Z, D, C, <);
Labelled ← { };
/* backtrack-free search */
WHILE Z ≠ { } DO

BEGIN
x ← the frontmost variable in Z according to <;
Z ← Z − {x};
v ← a value in Dx such that <x,v> is compatible with all the

labels in Labelled;
Labelled ← Labelled + {<x,v>};

END;
return( Labelled );

END /* of Tree_search */

Theorem 7.1 (due to Dechter & Pearl, 1988a)

Given a CSP P, if the constraint graph of P forms a tree, then P can be

solved in O(na2).
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Proof

Given a CSP (Z, D, C), if its constraint graph forms a tree, then we can order
the variables in such a way that all the parents are placed before all their
children (this ordering can be obtained by a preorder search in the tree). Let
this ordering be <. We can show that after maintaining NC and DAC in
(Z, D, C, <), then we can label all the variables without backtracking. If
some domain are reduced to empty sets after problem reduction, then no
search is needed and failure can be reported. Otherwise, the problem is 1-sat-
isfiability by definition. Given that the constraint graph forms a tree, every
variable x is constrained by at most one other variable y such that y < x.
Given the ordering <, y would have already been labelled when x is being
labelled. Since the reduced problem is 1-satisfiable, NC and DAC, we can
always find a value for x which is compatible with y’s label. That means we
can label every variable without needing to revise its parent’s label.

The complexity of a backtrack-free search is O(na), where n is the number
of variables and a is their maximum domain size. This is because in the
worst case, all one needs to do is to go through all the values of each variable
to find a value which is compatible to all the labelled variables.

By using the NC-1 and DAC-1 procedures in Chapter 4, NC and DAC in a

tree-type constraint graph can be achieved in O(na) and O(na2) time, respec-
tively. Therefore, the time complexity of solving a CSP which constraint
graph forms a tree is dominated by complexity of the DAC achievement pro-

cedure, i.e. O(na2).

(Q.E.D.)

The procedure Acyclic recognizes acyclic undirected graphs (i.e. trees) in O(n),
where n is the number of variables in the problem.

PROCEDURE Acyclic(V, E)
/* Return True if the graph (V, E) is acyclic, return False otherwise */
BEGIN

WHILE (V ≠ { }) DO
BEGIN

y ← any node in V;
S ← {y};
WHILE (S ≠ { }) DO

BEGIN
z ← any node in S; S ← S − {z};
V ← V − {z};
FOR each x adjacent to z with regard to E DO

/* (x,z) ∈ E */
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BEGIN
IF (x is in S) THEN return(False);
E ← E − {(x, z)};
/* note that (x, z) is the same object as (z, x) */
S ← S + {x};

END
END

END
return(True);

END /* of Acyclic */

The Acyclic procedure starts from an arbitrary node y in the graph (V, E). S is the set
of all nodes which are adjacent to y. In every iteration of the inner WHILE loop, the
Acyclic procedure removes one node from S, together with all the edges joining it.
Besides, it checks whether this node is adjacent to any other node in S. If it is, then a
cycle is found, and the Acyclic procedure will report failure. The outer WHILE
loop handles one cluster in each iteration in case the graph is not connected. For a
graph with n nodes, there will be exactly n iterations in the inner loop when the
graph is acyclic. When the graph is cyclic, fewer iterations may be needed. There-
fore, the time complexity of Acyclic is O(n). Program 7.2, acyclic.plg, shows a Pro-
log implementation of this algorithm.

7.3.2  Searching in problems which constraint graphs are k-trees

In Chapter 3, we introduced the concept of k-trees (Definition 3-26), which is a gen-
eralization of trees. Let n be number of variables in the problem and a be the maxi-
mum size of the domains. Freuder points out that if the constraint graph of a

problem can be recognized as a k-tree, then it can be solved in O(nak+1) time. This
can be achieved by first finding an ordering which induced-width (Definition 4-5) is
k, and then achieving adaptive-consistency in the problem.

7.3.2.1  Recognition of k-trees

Let us first introduce a procedure W which, given a graph and an integer k, deter-
mines whether the graph is a k-tree, and returns an ordering of the nodes such that
the induced-width of the graph equals k.

PROCEDURE W( (V, E), k );
/* Given a constraint graph G = (V, E) of a constraint satisfaction

problem P and an integer k, return an ordering < of V such that
induced-width(P, <) = k if G is a k-tree; NIL if it is not */

BEGIN
/* initialization */



7.3 Recognition and Searching in k-trees 195

K ← { }; Sum ← 0;
FOR each node x in E DO

BEGIN
Count[x] ← the degree of x;
IF (Count[x] = k) THEN K ← K + {x};
Sum ← Sum + Count[x];

END
IF (Sum ≠ 2nk − k − k2) THEN return(NIL); /* note1 */
/* major computation */
FOR i = n to k + 1 by −1 DO

IF (K = { }) THEN return(NIL);
ELSE BEGIN

v ← any node in K; K ← K − {v};
V' ← neighbourhood(v);
E' ← {(a,b) | (a,b) ∈  E ∧ a, b ∈ V'};
IF ((V', E') is a complete graph) THEN

BEGIN
Ordering[i] ← v; V ← V − {v};
FOR each w such that (v, w) ∈ E DO

BEGIN
E = E − {(v, w)};
Count[w] ← Count[w] − 1;
IF (Count[w] = k) THEN K ← K + {w};

END;
END

ELSE return(NIL);
END /* of ELSE */

/* at this point, all but k nodes have been ordered */
IF (the remaining k nodes form a complete graph)
THEN BEGIN

Ordering[1] to Ordering[k] ← remaining nodes in any order;
return(Ordering);

END
ELSE return(NIL);

END /* of W */

The procedure W is in fact providing a constructive proof to the proposition that the
input graph is a k-tree. According to the definition, a k-tree should have exactly
k(k − 1) / 2 + (n − k)k edges, where n is the number of nodes in the k-tree. This is
because a k-tree must contain a complete graph of k nodes, which has k(k − 1) / 2
edges. Besides the nodes in this complete graph, there should be (n − k) other nodes,

1.  A typographical error in [Freu90,p.6] has been corrected here.
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each of them having exactly k edges (according to the definition), making (n − k)k
edges in total. So the total number or edges in a k-tree is k(k − 1) / 2 + (n − k)k. In
the W procedure, each edge is counted twice (once from each end). That is why
after the degree of each node is counted, the Sum is checked against 2 × (k(k − 1) /

2 + (n − k)k) = 2nk − k − k2.

It should be noted that the ordering of the nodes in the set K is unimportant. This is
because if the graph is indeed a k-tree, then no two nodes in K should be adjacent to
each other (otherwise the removal of one of them would cause the degree of the
other to be reduced below k).

The initialization goes through the nodes once, and therefore takes O(n) time to
compute. The second part of the procedure removes one node in each iteration.
Therefore, if we assume that both counting the number of edges and testing whether
a graph is complete (given the degree of each node) takes a constant time, then the
main FOR loop takes O(n) time to compute. So the whole procedure W takes O(n)
time to compute.

Figure 7.2 shows an example of the W procedure in action. The input graph (taken
from Figure 3.6(d)) is recognized as a 3-tree, and an ordering is found which
induced-width is equal to 3.

Theorem 7.2

A k-tree constraint graph with n nodes can be recognized as a k-tree, and an
ordered constraint graph with induced-width k can be found (or k-1 for triv-
ial k-trees), in O(n) time.

Proof

Procedure W will recognize k-trees and return an ordering in O(n), where n
is the number of nodes in the input graph. If the graph is a trivial k-tree (i.e.
it has k nodes and is complete), then any ordering of the nodes would have
induced-width equal to k − 1. If the constraint graph of a CSP is a nontrivial
k-tree, then the induced-width of this CSP under the ordering returned by W
is k for the following reasons. Procedure W ensures that for every j > k, the j-
th node has exactly k nodes before it. Moreover, these k nodes form a com-
plete graph, and therefore, no edge needs to be added between them when
adaptive-consistency is maintained. Therefore, the induced-width of the
graph under the ordering returned by procedure W is k.

(Q.E.D.)
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7.3.2.2  Solving CSPs which constraint graphs are k-trees

Theorem 7.3

Let G be the primal graph of a CSP P. If G is a trivial k-tree, then the

induced-width of P is k − 1. If G is a non-trivial k-tree, then the induced-

width of P is k. Whenever G is a k-tree, the induced-width of P is equal to
G’s width:

∀  csp(P): trivial_k-tree(G(P) ⇒ induced-width(P) = k − 1

∀  csp(P): k-tree(G(P)) ⇒  induced-width(P) = k

∀  csp(P): induced-width(G(P)) = width(G(P))

Proof

By definition, the induced-width of a CSP P is at least as great as the width

of G(P) under any ordering. If the primal graph of P is a trivial k-tree, then
its induced-width is k − 1 because under any ordering of the nodes, the final

node will be adjacent to k − 1 nodes before it. If the primal graph of P is a
non-trivial k-tree T, then there exists a node which neighbourhood is a com-
plete graph of k nodes. So the width of T, hence the induced-width of T, is no
less than k. On the other hand, the induced-width of the ordering produced
by algorithm W is k, so the width of T cannot be greater than k. Since the
width of T is no less than and no greater than the induced-width of T, the
width must be equal to the induced-width of T.

(Q.E.D.)

Theorem 7.3 implies that achieving adaptive-consistency on a k-tree structured CSP
under the ordering returned by procedure W does not change the width of the con-
straint graph. This can be seen from a different perspective: since every node in the
ordering return by procedure W is adjacent to exactly k preceding nodes which form
a complete graph, achieving adaptive-consistency according to this ordering does
not increase the number of edges in the constraint graph. Consequently, the width of
the reduced problem will not be changed.

The k-tree_search procedure below shows one way of exploiting the fact that the
CSP’s constraint graph is a k-trees:

PROCEDURE k-tree_search(Z, D, C)

/* given a CSP, finds a solution to it in O(nak+1) time if its constraint
graph is a k-tree for some k; otherwise, return NIL */

BEGIN



7.3 Recognition and Searching in k-trees 199

/* check if the constraint graph is a k-tree for any k */
k ← 1;
REPEAT

Ordering ← W((Z, D, C)), k);
k ← k + 1;

UNTIL (Ordering ≠ NIL) OR (k >  Z );
/* one might want to further limit the value of k above */
IF (Ordering = NIL)
THEN return(NIL) /* other methods needed to solve the CSP */
ELSE BEGIN

P ← Adaptive_consistency(Z, D, C, Ordering);
Result ← perform backtrack-free search on P;
return(Result);

END
END /* of k-tree_search */

Basically, the procedure k-tree_search detects whether a k exists such that the CSP’s
primal graph is a k-tree. Then it achieves adaptive-consistency in the input problem
before performing a backtrack-free search.

Theorem 7.4

A CSP which constraint graph is a k-tree can be solved in O(nak +1) time
and O(nak) space, where n is the number of variables in the problem, and a
is the maximum domain size in the problem.

Proof

The k-tree_search procedure would prove the point. Given a CSP, if its con-

straint graph is a k-tree, then it takes O(n2) time to recognize it. This is
because in the worst case, one has to go through all the n values to find k,
and procedure W takes O(n) to compute.

Achieving adaptive-consistency requires O(naW*+1), where W* is the
induced-width of the constraint graph. When the graph is a non-trivial k-tree,

its induced-width is k; so achieving adaptive-consistency requires O(nak+1).

A backtrack-free search takes O(na) time to complete. Combining all three

steps, the time complexity of procedure k-tree_search is O(nak+1).

The space required by Adaptive_consistency is O(nak), which dominates the
space complexity of k-tree_search.

(Q.E.D.)
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According to our definitions in Chapter 3, any graph is a partial k-tree for a suffi-
ciently large k. Besides, a partial k-tree can be transformed into a k-tree by adding to
it a sufficient number of redundant constraints. Therefore, it appears that one can
use the k-tree_search procedure to tackle general CSPs. However, there are no effi-
cient algorithms for recognizing partial k-trees for general k.

7.4  Problem Reduction by Removing Redundant Constraints

In Chapter 3, we introduced the concept of redundant constraints. It is possible to
reduce a CSP to an “easy problem” (as defined in the last section) by removing
redundant constraints. In Chapter 3, we pointed out that identifying redundant con-
straints is hard, in general. However, as in the case of removing redundant labels
and redundant compound labels, some redundant constraints may be easier to iden-
tify than others. For example, a constraint in a binary CSP can be removed if it is
path-redundant (Definition 3-19) — if S is the set of all path-induced (Definition 3-
18) compound labels for x and y, then the constraint Cx,y is redundant if S is a subset
of Cx,y. The procedure Path_redundant below detects the path-redundancy of any
given binary constraint:

PROCEDURE Path_redundant((x ,y), P)
/* P is a CSP and x, y are two variables in it */
BEGIN

(Z, D, C) ← NC-1(P); /* achieve node-consistency in P */
U ← {(<x,a><y,b>) | a ∈  Dx ∧ b  ∈ D y};
FOR each z in Z such that x ≠ z AND y ≠ z DO

BEGIN
DisAllowed_CLs ← U − Cx,y
For each cl ∈ DisAllowed_CLs DO

IF NOT Permitted(cl, z, Dz, Cx,z, Cz,y)
THEN Cx,y ← Cx,y + {cl};

IF Cx,y = U THEN return(True)
END

return(False);
END /* of Path_redundant */

PROCEDURE Permitted((<x,a><y,b>), z, Dz, Cx,z, Cz,y)

BEGIN
FOR each c ∈  Dz DO

IF (satisfies((<x,a><z,c>), Cx,z) AND
satisfies((<z,c><y,b>), Cz,y))
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THEN return(True);
return(False);

END /* of Permitted */

Path_redundant checks whether every compound label which is disallowed by Cx,y

is indeed disallowed by at least one path. Only if this is the case could Cx,y be
deleted without relaxing the constraints in the problem. If a compound label is
found to be not Permitted by any path, then it need not be considered for another
path; hence it is added to Cx,y in the For loop of Path_redundant. If all the com-
pound labels are added into Cx,y, then it is proved that the set of path-induced com-
pound labels is a subset of Cx,y, which means the input Cx,y is redundant (Cx,y is a
local variable in Path_redundant; its change of value within this procedure is not
supposed to affect the calling program).

Let n be the number of variables in the CSP, and a the maximum domain size in the
problem. The time complexity of Permitted is O(a) as it examines all the a values in
Dz. Path_redundant examines all pairs of values for x and y, and in the worst case,
checks every compound label with every variable z. Therefore, the time complexity

of Path_redundant is O(na3).

No one suggests that all the constraints in the problem should be examined. One
should only run the Path_redundant procedure on those constraints which, once
removed, could result in the problem being reduced to an easier problem. As men-
tioned before, one may attempt to remove certain constraints in order to reduce to
the problem to one which is decomposable into independent problems, or to one
which constraint graph is a tree. However, since not every problem can be reduced
to decomposable problems or problems with their constraint graph being trees, one
should judge the likelihood of succeeding in reducing the problem in order to justify
calling procedures such as Path_redundant. Domain knowledge may be useful in
making such judgements.

7.5  Cycle-cutsets, Stable Sets and Pseudo_Tree_Search

7.5.1  The cycle-cutset method

The cycle-cutset method is basically a dynamic search method which can be applied
to binary CSPs. (Although extending this method to general CSPs is possible, one
may not benefit very much from doing so.) The goal is to reduce the time complex-

ity of solving the problem to below O(an), where n is the number of variables and a
is the maximum domain size in the problem. The basic idea is to identify a subset of
variables in the problem where removal will render the constraint graph being acy-
clic. In general, the cycle-cutset method is useful for problems where most variables
are constrained by only a few other variables.
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Definition 7-1:

The cycle-cutset of a graph is a subset of the nodes in the graph which once
removed, renders the graph as acyclic:

∀  graph((V, E)): ∀ S ⊆ V: cycle-cutset(S, (V, E)) ≡ acyclic((V − S, E'))

where E' = {(a, b) | (a, b) ∈ E ∧ a, b ∈ V − S)} ■

The cycle-cutset method partitions the variables into two sets, one of which is a
cycle-cutset of the CSP’s constraint graph. In the case when the constraint graph is
connected, the removal of the cycle-cutset renders the constraint graph to be a tree.
(If the graph is not connected, the problem can be decomposed, as explained in
Section 7.2). In the graph in Figure 7.3(a), two examples of cycle-cutset are {B, G}
and {D, G}. The graphs after the removal of these cutsets are shown in
Figures 7.3(b) and (c).

There is no known efficient algorithm for finding the minimum cycle-cutset. One
heuristic to find such sets is to use the reverse of a minimum width ordering or a
maximum cardinality ordering (Section 6.2.1, Chapter 6). A less laborious way is to
order the variables by their degrees in descending order instead of using the mini-
mum width ordering. The CCS procedure (CCS stands for Cycle Cut-Set) shows
one possible way of using the cycle-cutset concept to solve binary CSPs.

Figure 7.3 Examples of cycle-cutset
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PROCEDURE CCS(Z, D, C)
BEGIN /* Ordering is an array 1.. Z of nodes */

/* preprocessing — identify a cycle-cutset */
Ordering ← elements in Z ordered by descending order of their

degrees in the constraint graph;
Graph ← constraint graph of (Z, D, C);
Cutset ← { }; i ← 1;
WHILE (the graph of (Z, D, C) is cyclic) DO

BEGIN
Cutset ← Cutset + {Ordering[i]};
remove Ordering[i] and edges involving it from Graph;
i ← i + 1;

END

/* labelling */
CL1 ← compound label for variables in Cutset satisfying all con-

straints;
REPEAT

FOR j ← i to  Z DO
remove from DOrdering[j] values which are incompatible with

CL1;
Achieve DAC in the remaining problem;
IF (the remaining problem is 1-satisfiable) THEN

BEGIN
CL2 ← label the remaining variables using a backtrack-

free search;
return(CL1 + CL2);

END
ELSE CL1 ← alternative consistent compound label for the

Cutset, if any;
UNTIL (there is no alternative consistent compound label for the

Cutset);
return(NIL);

END /* of CCS */

The cycle-cutset method does not specify how the problem in the cutset should be
solved — this is reflected in the CCS procedure. Besides, orderings other than the
one used in the CCS procedure can be used.

The acyclicity of a graph with n nodes can be determined in O(n) using the Acyclic
procedure (Section 7.3.1). The WHILE loop in the preprocessing part of CCS will
iterate n times because it removes one node from Z per iteration. In each iteration, it
checks whether the graph is acyclic. Therefore, the preprocessing part of the algo-

rithm takes O(n2) time to complete. In the worst case, the time complexity of find-
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ing a consistent compound label CL1 is O(ac) time, where a is the size of each
domain, and c is the number of variables in the Cutset. CL2 is found using the
Tree_search procedure. Therefore, the time complexity of finding CL2 is O((n −
c)a2), or O(na2) in the worst case. The overall complexity of the procedure CCS is

therefore O(nac+2).

Figure 7.4 shows the procedure for applying the cycle-cutset method to an example
CSP. The cycle-cutset method can be used together with search strategies which use
dynamic ordering. However, using the cycle-cutset method with such search strate-
gies incurs the overhead of checking, after labelling every variable, whether the
constraint graph of the unlabelled variables is acyclic.

The cycle-cutset method can be extended to handle general constraints. This can be
done by generating the primal graph before identifying a cycle-cutset. However,
this would mean that whenever a k-ary constraint C is present, the cutset must con-
tain at least k − 2 of the variables involved in C.

When the cycle-cutset method is used together with chronological backtracking, a
smaller space will normally be searched, due to the use of DAC after the cycle cut-
set is labelled (see Figure 7.5). This may also be true when this method is used
together with other search strategies. However, in some search strategies, for exam-
ple, those which learn and those which look ahead and order the variables dynami-
cally, the search sequence may be affected by the history of the search. It is thus not
guaranteed that the cycle-cutset method will explore a smaller search space when
coupled with these methods.

Besides, in order to minimize the complexity of the CCS procedure, it may be
tempting to use the cutset with the minimum size (if one can find it). However, var-
iables in the minimum cutset tend to be unconnected. That means less constraint
propagation is possible when labelling the variables in the cutset. Furthermore,
there are potentially more consistent compound-labels for the cycle-cutset than for
an average set of variables of the same size in the problem. Therefore, placing this
cycle-cutset at the front of the ordering of the variables, no matter how the variables
in the cutset are ordered, may not always benefit a search more than using the heu-
ristics described in Chapter 6 (such as the minimum width ordering, minimum
bandwidth ordering and the Fail First Principle).

Whether the cycle-cutset method is effective in realistic problems has yet to be

explored.2

2.  The cycle-cutset method has been tested on small randomly generated CSPs (with maxi-
mum 15 variables and 9 values each), and is shown to out-perform BT (Section 5.2.1, Chapter 5)
by 20% in terms of consistency checks [DecPea87]. Such a result does not give much support to
the efficiency of this method in any realistic applications.



E

F

B

G

D

C

A H

D B C G A E F H

Given:

(a) generate
constraint
graph

a binary CSP

(b) order the nodes, say,
by min. width ordering
or by their cardinality

E

F

B

GC

A H

E

FGC

A H

E

A

G

C

F

H

(c) label D

(d) label B

(e) form
a tree;

(f) solve the problem
using Tree-search

Return:
Solution

a cutset is

propagate
constraints

found

Figure 7.4 Procedure of applying the cycle-cutset method to an
example CSP



search

space of the

cycle cutset:

ac; this problem

• • •

c va
ria

b
les

d
 va

ria
b
les

tota
l n

u
m

b
er of va

ria
b
les: n

=
c

+
d

a = max. domain size

can be solved in O(ac)

search space pruned by

space searched

solutions for the cutset

Tree_search

Figure 7.5  Search space of the cycle-cutset method. The overall com-
plexity of the problem is O(dac+2), where a is the maximum domain
size, c is the size of the cycle cutset, and d is the number of variables

not in the cycle cutset

search space of the remaining problem
which constraint graph forms a tree; each

of these problems can be solved in O(da2)



7.5 Cycle-cutsets, Stable Sets and Pseudo_Tree_Search 207

7.5.2  Stable sets

One may also exploit the topology of the primal graph by identifying stable sets.
The principle is to partition the nodes in the primal graph into sets of mutually inde-
pendent variables, so that they can be tackled separately.

Definition 7-2:

A stable set S of a graph G is a set of non-overlapping sets of nodes in G
such that no edge joins any two elements of different sets in S:

∀  graph((V, E)): ∀ S ⊆  {s | s ⊆ V} :
stable_set(S, (V, E)) ≡

(∀ s1, s2 ∈ S: (s1 ∩ s2 = {} ∧ ( ∀  x ∈  s1, y ∈  s2: (x, y) ∉ E))) ■

The motivation for identifying stable sets can be seen from the example given in
Figure 7.6. Given variables x, y and z and their domains as shown in Figure 7.6(a), a
simple backtracking search which assumes the ordering (x, y, z) have a search space
with (3 × 3 × 3 =) 27 tips in the search tree, (as shown in Figure 7.6(b)). But since y
and z are independent of each other, the search space could be seen as an AND/OR
tree, as shown in Figure 7.6(c). On failing to find any label for any of the subtrees
which is compatible with the label <x,1>, x will be backtracked to and an alternative
value will be tried.

The stable set in this example comprises sets of single variables. In general, the sets
in a stable set for a CSP may contain more than one variable. Assume that the varia-
bles are ordered in such a way that after labelling r variables, the rest of the varia-
bles can be partitioned into clusters that form a stable set. After a legal compound
label CL for the r variables is found, the clusters can be treated as separate prob-
lems. If there exists no compound label for the variables in any of these clusters
which is compatible with CL, then CL is discarded and an alternative compound
label is found for the r variables. This process continues until compatible compound
labels are found for the r variables and the individual clusters. A crude procedure
which uses this principle is shown below:

PROCEDURE Stable_Set(Z, D, C)
/* Given a CSP, Stable_Set returns a solution tuple if it is found; NIL

otherwise; how the stable set SS is found is not suggested here */
CONSTANT r;
BEGIN

/* initialization */
Ordering ← an ordering of the variables in Z;
R ← the set of the first r variables in the Ordering;
SS ← stable set containing the rest of the variables partitioned;
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/* labelling starts */
CL ← legal compound label for the variables in R;
REPEAT

FOR each Si in SS DO
Labeli ← compound label for Si which is compatible with

CL;
IF (Labeli for some i is not found)
THEN CL ← alternative legal compound label for the variables

in R, if any ;
ELSE return(SS + Labeli for all i);

UNTIL (there is no alternative legal compound label for the varia-
bles in R);

return(NIL); /* signifying no solution */
END /* of Stable_Set */

For simplicity, we assume that the complexity of ordering the variables and parti-
tioning the graph are relatively trivial compared with the labelling part of the algo-
rithm. The worst case time complexity for finding a legal compound label CL for

the r variables is in the general O(ar), where a is the maximum domain size in the
problem. Let the size of the i-th cluster be si, and s be the maximum value of all si.
The complexity for finding a legal compound label for all clusters is in general

O(as). Therefore, the complexity of the whole problem is O(ar+s). The space
searched under the Stable_Set procedure is shown in Figure 7.7.

Unfortunately, there is no known algorithm for ordering the variables so as to mini-
mize r + s. The algorithm Stable_Set above does not specify how the variables
should be ordered. One may choose different sizes (r) for the set R in the Stable_Set
procedure above. The maximum size of the stable set (s) may vary depending on the
Ordering and the r chosen.

7.5.3  Pseudo-tree search

Another algorithm which uses a similar idea as the stable sets is the pseudo-tree
search algorithm. It uses a similar principle as the graph-based backjumping algo-
rithm described in Chapter 5. When a variable x cannot be given any label which is
compatible with the compound label committed to so far, both pseudo-tree search
and graph-based backjumping will backtrack to the most recent variable y which
constrains x. The major difference between these two algorithms is that when back-
tracking takes place, Graph-based BackJumping will undo all the labels given to the
variables between y and (including) x. Pseudo-Tree Search will only undo those
labels which are constrained by y. The overhead for doing so is the maintenance of
the dependency relationship among the variables. The pseudo code for the pseudo-
tree search algorithm is shown below:
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PROCEDURE Pseudo_Tree_Search(Z, D, C);
/* for simplicity, we assume that there are n variables and all their

domains have size m; after ordering, let Z[i] be the i-th variable,
D[i,j] be the j-th value of variable Z[i], v[i] be an index to a value in
the domain of Z[i] */

BEGIN
 /* initialization */
Order the variables in Z;
Order the values in every domain in D;
FOR i = 1 to n DO v[i] ← 1; /* assign first value to each variable */
i ← 1;
/* searching */
WHILE (i ≤ n) DO

/* invariance: compound label for variables Z[1] to Z[i-1] is
legal, and v[i] is an index to a value in the domain of Z[i]
which is yet to be examined */

BEGIN
IF (legal(<Z[i], D[i,v[i]]>))
THEN i ← i + 1;
ELSE REPEAT

IF (v[i] < m)
THEN v[i] ← v[i] + 1;

/* give Z[i] an alternative value */
ELSE BEGIN /* backtrack */

p ← bt_level(i); /* to be explained in text */
IF (p > 0)
THEN FOR k = p + 1 to i DO

IF (Z[k] is descendent of Z[p])
THEN v[k] ← 1;
/* v[p] is to be changed */

ELSE return(NIL); /* no solution */
i ← p; /* backtrack to variable Z[p] */

END
UNTIL (legal(<Z[i],D[i,v[i]]>) OR (i < 1));

END; /* of WHILE */
IF (i < 1) THEN return(NIL)
ELSE return(values indexed by v);

END /* of Pseudo_Tree_Search */

For all i, v[i] stores an index to the current value assigned to the variable Z[i]. The
function legal(<Z[i], D[i,v[i]]>) returns True if the label <Z[i], D[i,v[i]]> is compat-
ible with all the labels <Z[h], D[h,v[h]]> for all h < i. If all the values of Z[i] are
incompatible with some labels committed so far, then the function bt-level(i) returns
the greatest index j such that Z[j] precedes Z[i] in the Ordering, and Z[j] constrains
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Z[i]; 0 will be returned if no such Z[j] exists. On the other hand, if some value for
Z[i] is compatible with all the labels committed to so far (i.e. Z[i] has been success-
fully labelled but now it is backtracked to), then bt_level(i) returns i − 1. Z[k] is a
descendent of Z[p] if (i) CZ[p], Z[k] ∈ C and p < k; or (ii) Z[k] is a descendent of any
descendent of Z[p]. When Z[p] is backtracked to, a new value will be given to it.
Therefore, all the values for Z[k] have to be considered; hence the first value is
given to Z[k].

The Pseudo_Tree_Search procedure can be seen as a procedure which uses the sta-
ble set idea: when backtracking, variables are divided into two sets: those which
require revision and those which do not.

7.6  The Tree-clustering Method

The tree-clustering method is useful for general CSPs in which every variable is
constrained by only a few other variables. The tree-clustering method involves
decomposing the problem into subproblems, solving the subproblems separately,
and using the results to generate overall solutions. Interestingly, this process
involves both adding and removing redundant constraints. The basic idea, which
comes from database research, is to generate from the given CSP a new binary CSP
whose constraint graph is a tree. Then this generated problem can be solved using
the tree-searching technique introduced in Section 7.2. The solution of this gener-
ated CSP is then used to generate a solution for the original problem.

7.6.1  Generation of dual problems

Definition 7-3:

Given a problem P = (Z, D, C), the dual problem of P, denoted by P d, is a

binary CSP (Zd, Dd, Cd) where each variable x in Zd represents a set (or
called cluster) of variables in Z, the domain of x being the set of all com-
pound labels for the corresponding variables in P. To be precise, for every
constraint c in C, if c is a constraint on a set of variables in Z, then this set of
variables in Z form a variable in P d. There are only binary constraints in P d,
which requires the projection of the values in each cluster to the same varia-
bles in Z to be consistent:

P d((Z, D, C)) ≡ (Zd, Dd, Cd) where:

Zd = {S | CS ∈ C};

∀ S ∈ Zd: Dd
S =

{(<x1,v1> ... <xk,vk>) | x1, ..., xk ∈ S ∧ v1 ∈ ∧  ... ∧ vk ∈ };Dx1
Dxk
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Cd = {  | S1, S2 ∈ Zd ∧ S1 ∩ S2 ≠ {} }, where

 = {(<S1,L1>,<S2,L2>) |

L1 ∈ ∧ L2 ∈ ∧ (∀ x ∈ Z: ∀ v1, v2 ∈ Dx:

(projection(L1, (<x,v1>)) ∧ projection( L2, (<x,v2>))) ⇒
v1 = v2)} ■

The cluster for a k-constraint T thus contains the k variables in T. For example,
Figure 7.8(a) shows the constraint hypergraph of a CSP:

P = (Z, D, C), where:

Z = {A, B, C, D, E}
DA = DB = DC = DD = DE = {1, 2}
C = {CA,B,C, CA,B,D, CC,E, CD,E}

P contains two 3-constraints (CA,B,C and CA,B,D) and two binary constraints (CC,E

and CD,E), the contents of which are unimportant here. The dual problem of P is
therefore:

P d = (Zd, Dd, Cd), where:

Zd = {ABC, ABD, CE, DE}

Dd
ABC = Dd

ABD =
{(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2)}

Dd
CE = Dd

DE = {(1,1), (1,2), (2,1), (2,2)}

Cd = {Cd
ABC,ABD, Cd

ABC,CE, Cd
CE,DE, Cd

ABD,DE}, where

Cd
ABC,ABD ⊆  {((1,1,1),(1,1,1)), ((1,1,1),(1,1,2)), ((1,2,1),(1,2,1)), ...}

Cd
ABC,CE ⊆  ......

.....

In this example, we have used the name ABC to denote the newly created variable in

P d which corresponds to the variables A, B and C in P. The domains in P d are

compound labels in P. In this example, we have used, say, (1,1,1) as shorthand for

(<A,1><B,1><C,1>). The constraint Cd
ABC,ABD requires consistent values to be

assigned to A and B in the original problem. Therefore, ((1,1,1), (1,1,2)) is legal as

far as Cd
ABC,ABD is concerned (because both the labels for ABC and ABD project to

(<A,1><B,1>)), but ((1,1,1), (1,2,2)) is illegal (because the label for ABC projects to

CS1 S2,
d

CS1 S2,
d

DS1

d DS2

d
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(<A,1><B,1>) but the label for ABD projects to (<A,1><B,2>)). Figure 7.8(b) shows

the constraint graph of the dual problem P d. There we label the constraints with the
common variables.

7.6.2  Addition and removal of redundant constraints

Several points are important to the development of the tree-cluster method:

(1) Redundant constraints can be added to the original problem without changing
the set of solutions; but this will change the formalization of the dual prob-

lem. For example, to the problem P shown in Figure 7.8(a), one can add a
constraint CC,D such that CC,D contains all the possible compound labels for

variables C and D. If we call the new problem P', then Figure 7.8(c) shows

the constraint hypergraph of P' and Figure 7.8(d) shows the constraint graph

of the dual problem of P'.
(2) If S1 and S2 are sets of variables, and S1 is a subset of S2, then the constraint

on S1 can be discarded if we create or tighten an existing constraint on S2

appropriately. For example, the constraints CC,D, CC,E and CD,E in P' in

Figure 7.8(c) can be replaced by a new 3-constraint CC,D,E such that all the
compound labels and only those compound labels which satisfy all CC,D,
CC,E and CD,E are put into CC,D,E. If we call the new problem after such

replacement P", then Figure 7.8(e) shows the constraint hypergraph of P"

and Figure 7.8(f) shows the constraint graph of the dual problem of P".

(3) We mentioned that every constraint in the dual problem requires no more
than assigning consistent values to the shared variables (in the original prob-
lem) in the two constrained variables (in the dual problem). We know that
equality is transitive (A = B and B = C implies A = C). Therefore, in the con-
straint graph of a dual problem, an edge (a, b) is redundant, and therefore can
be removed if there exists an alternative path between nodes a and b, such
that a ∩ b appears on every edge in the path (a and b are sets of variables in
the original problem). For example, in the constraint graph in Figure 7.8(d),
the edge (ABC, CE) can be removed because C is the only shared variable on
this edge, and C also appears in both of the edges (ABC, CD) and (CD, CE)
(((ABC, CD), (CD, CE)) is a path from ABC to CE). Alternatively, if the edge
(ABC, CE) is retained, then one of (ABC, CD) or (CD, CE) can be removed
for the same reason. Similarly, one of the edges (ABD, DE), (ABD, CD) or
(CD, DE) is redundant.
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7.6.3  Overview of the tree-clustering method

The general strategy underlying the tree-clustering method can be summarized as in

Figure 7.9. Given a CSP P, one can formulate its dual problem P d, and take each

cluster of variables in P d as a subproblem. A solution for a cluster is a compound

label in P. By combining the compound labels for each cluster in P d, one gets a

solution for P.

Given problem P = (Z, D, C)

dual problem P d = (Zd, Dd, Cd)

Compound labels for all clusters X ∈ Zd

Compound label for Z, i.e. solution for P

Figure 7.9 General strategy underlying the tree-clustering method

Solve the subproblems for each cluster
X ∈ Zd, satisfying C

Add redundant constraints and/or combine
constraints to form new constraints; then for-
mulate the dual problem

Combine the compound labels, satisfying Cd
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Let n and a be the number of variables and the maximum domain size in P, respec-

tively, and s be the size of the greatest cluster in P d. Since s ≤ n, the complexity of

solving the subproblems in P d (which is O(as) in general), is no greater than the

complexity of solving P (which is O(an) in general).

However, there is one serious problem in the compound labels combination step.

That is caused by the cycles in the constraint graph of P d. Consider the constraint
graph in Figure 7.8(f). After finding a compound label cl1 for ABC and a compound
label cl2 for ABD, there may not be any compound label for CDE which is compati-
ble with both cl1 and cl2. In the worst case, one has to backtrack through all the com-
pound labels for ABC and ABD before finding a compatible compound label for
CDE, or realizing that no solution exists.

Let there be k clusters in P d, and the number of variables of each cluster be s1, s2,
..., sk. In the worst case, the number of solutions for these clusters, i.e. the domain

sizes of the variables in P d, are O( ), O( ), ..., O( ). Thus, the complexity of

the combination step could be O( × × ... × ) = O( ),

which could be higher than O(an).

The solution to the combination problem is to make sure that the constraint graph of

P d is a tree. If we succeed in achieving this, then the combination problem can be
solved efficiently using the tree-search algorithm described in Section 7.2. In the
following we shall explain how, by adding and removing redundant constraints, a
general CSP can be transformed into one whose dual problem’s constraint graph
forms a tree.

Let k be the number of clusters and r be the size of the largest cluster in the dual
problem. The largest possible domain size of the variables in the dual problem is

therefore O(ar). The complexity of applying the tree-searching algorithm to the

combination problem is then O(k(ar)2) (or O(ka2r)). In fact, if all the compound
labels are ordered by the variables lexicographically, finding whether a compound

label has a compatible compound label in another variable in P d requires O(log ar)

instead of O(ar). Therefore, the overall complexity of the tree-searching algorithm

could be reduced to O(kar log ar) = O(krar log a). However, when a cluster is con-
strained by more than one other cluster, more than one ordering may be needed for
the compound labels; for example, if the cluster {A, B} has only three labels ordered
as: (<A,1><B,2>), (<A,2><B,1>) and (<A,3><B,3>), this ordering would help
checking the redundancy of compound labels for {A, C} (because A is ordered), but
not for {B, D} (because B is not ordered).

a
s1 a

s2 a
sk

a
s1 a

s2 a
sk a

s1 s2 … sk+ + +
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The question is how to make sure that the constraint graph of the dual problem
forms a tree. The answer to this is provided in the literature on query optimization in

database research.3 The key is to generate acyclic hypergraphs, as explained below.

Definition 7-4:

A clique in a graph is a set of nodes which are all adjacent to each other:

∀  graph((V, E)): ∀ Q ⊆ V:
(clique(Q, (V, E)) ≡ (∀ x, y ∈ Q: x ≠ y ⇒  (x, y) ∈ E)) ■

Definition 7-5:

A maximum clique is a clique which is not a proper subset of any other
clique in the same graph:

∀  graph((V, E)): ∀ clique( Q, (V, E)):
(maximum_clique(Q, (V, E)) ≡ (¬ ∃ Q': (clique(Q', (V, E)) ∧ Q ⊂ Q' )) ■

Definition 7-6:

The primal graph G of a hypergraph G is an undirected graph which has
the same nodes as the hypergraph, and every two nodes which are joined by
any hyperedge in G is joined by an edge in G. For convenience, we denote

the primal graph of G by G(G):

∀  hypergraph((N , E )):

(V, E) = primal_graph((N , E )) ≡
((V = N ) ∧ E = { ( x, y) | x, y ∈ N ∧ (∃ e ∈ E : x, y ∈ e)}) ■

Definition 7-7:

A hypergraph G is conformal if, for every maximum clique in its primal

graph, there exists a hyperedge in G which joins all the nodes in this maxi-
mum clique:

∀  hypergraph((N , E )):

(conformal( (N , E ) ) ≡

G = primal_graph((N , E)) ⇒

3.  Like a CSP, a relational database can be seen as a hypergraph; but this will not be elabo-
rated further here.
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(∀ Q ⊆ N : maximum_clique(Q, G) ⇒ Q ∈ E)) ■

Definition 7-8:

A chord in an undirected graph is an edge which joins two nodes which are
accessible to each other without going through this edge:

∀  graph((V, E)): ∀  ( x, y) ∈ E:
(chord( (x, y), (V, E)) ≡ accessible(x, y, (V, E − {(x, y)}))) ■

Definition 7-9:

A graph is chordal if every cycle with at least four distinct nodes has an
edge joining two nonconsecutive nodes in the cycle (this edge is by defini-
tion a chord):

∀  graph((V, E)):
chordal((V, E)) ≡

∀ x1, x2, x3, ..., xm ∈ V:
(m ³ 4 ∧ (∀ xi, xj: xi ≠ xj) ∧ path(( x1, x2, x3, xm, x1), (V, E))) ⇒

(∃ a, b ∈  {x1, x2, x3, ..., xm}:
((a,b) ∈ E ∧ ¬  (a,b) ∈ {( x1, x2), (x2, x3), ..., (xm, x1)}) )) ■

Definition 7-10:

A hypergraph is reduced if and only if no hyperedge is a proper subset of
another:

∀  hypergraph((N , E)):

(reduced-hypergraph((N , E)) ≡ (∀ e ∈ E: ¬ ( ∃ e' ∈ E: e ⊆ e'))) ■

Combined with Definition 7.7, a hypergraph G is reduced and conformal if and only

if every hyperedge in G joins all the nodes in a maximum clique in its primal graph,

and every maximum clique in the primal graph is joined by a hyperedge in G.

Definition 7-11:

Given a hypergraph (N , E) and any subset of nodes M , the set of all

hyperedges in E with nodes which are not members of M removed (except
the hyperedge which joins an empty set of nodes) is called a node generated
set of partial hyperedges:

∀  hypergraph((N , E)):
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(∀  hypergraph((N , F)):

(node-generated-hyperedges(F, (N , E)) ≡

(∃ M ⊆ N : F = {e ∩ M | e ∈ E } − {{}}))) ■

Definition 7-12:

A path in a hypergraph is a sequence of k hyperedges, with k ³ 1, such that
the intersection of adjacent hyperedges are nonempty:

∀  hypergraph((N , E )):

(∀ e1, e2, ..., ek ∈ E :

(path((e1,e2,...,ek), (N , E )) ≡ (∀ 1 ≤ i < k: ei ∩ ei+1 ≠ {}))) ■

Definition 7-13:

A hypergraph is connected if and only if there exists a path which connects
any two nodes:

∀  hypergraph((N , E)):

(connected((N , E)) ≡

(∀ P, Q ∈ N : (∃ e1, e2, ..., ek ∈ E:

(P ∈ e1 ∧ Q ∈ ek ∧  path((e1,e2,...,ek), (N , E)))))) ■

Definition 7-14:

A set of nodes A is an articulation set of a hypergraph G if it is the intersec-

tion of two hyperedges in G, and the result of removing A from G is a hyper-
graph which is not connected:

∀  reduced-hypergraph((N , E)): connected((N , E)):

(∀ A ⊆ N :

(articulation_set(A, E) ≡

(∃ e1, e2 ∈ E : A = e1 ∩ e2) ∧

¬ connected( N − A, {e − A | e ∈ E } − {{}} ))) ■

We continue to use nodes_of(E) to denote the set of nodes involved in the hyper-

edges E of a hypergraph (Definition 1-17):

nodes_of(E) ≡ {x | ∃ e ∈ E: x ∈ e}
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Definition 7-15:

A block of a reduced-hypergraph is a connected, node-generated set of par-
tial hyperedges with no articulation set:

∀  reduced-hypergraph((N , E)):

∀  hyperedges(F, N ):

block(F, (N , E)) ≡

node-generated-hyperedges(F, (N , E)) ∧
connected((nodes_of(F), F)) ⇒

¬ ( ∃ S ⊆ N : articulation_set(S, F )) ■

Recall in Definition 1-6 that hyperedges(F, N ) means that F is a set of hyperedges

for the nodes N in a hypergraph.

Definition 7-16:

A reduced-hypergraph is acyclic if and only if it does not have blocks of size
greater than 2:

∀  reduced-hypergraph((N , E)):

(acyclic((N , E)) ≡

∀ F: hyperedges(F, N ): block(F, (N , E)) ⇒  F ≤  2) ■

We shall borrow the following theorem from database research. The proof of this
theorem is well documented in the literature (e.g. see Beeri et al., 1983]; Maier,
1983).

Theorem 7.5

A reduced-hypergraph is acyclic if and only if it is conformal and its primal
graph is chordal:

∀  reduced-hypergraph((N , E)):

(acyclic((N , E)) ⇔ conformal((N , E)) ∧ chordal(G(( N , E)))

Proof

(see Beeri et al. [1983])

The main implication of Theorem 7.5 is that by transforming the CSP to an equiva-
lent problem which constraint hypergraph is conformal, and which primal graph is
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chordal, one can ensure that the Tree_search algorithm can be applied in the combi-
nation step. The steps of the tree-clustering method in Figure 7.9 are thus refined in
Figure 7.10.

In the following two sections, we shall explain how to generate a chordal and con-
formal CSP which is equivalent to any given CSP. Then we shall introduce a proce-
dure which employs the tree-clustering method.

7.6.4  Generating chordal primal graphs

This section introduces an algorithm for generating chordal primal graphs. Given a
graph, chordality is maintained by adding extra edges into it whenever necessary.
The basic algorithm is to give the nodes of the graph an ordering, and then process
them one at a time. When a node x is processed, it is joined to any other node which
is (a) before x in the ordering; (b) sharing a common parent with x; and (c) not
already adjacent to x. The Fill_in-1 procedure is a naive implementation of this
algorithm:

PROCEDURE Fill_in-1((V, E))
/* given a graph (V, E), return a chordal graph with possibly added

edges */
BEGIN

/* initialization */
Ordering ← Max_cardinality_ordering(V, E);
N ← number of nodes in V;
/* achieving chordality, by possibly adding extra edges */
FOR i = 1 to N DO

FOR j = 1 to i DO
IF (Ordering[i] and Ordering[j] have common parent)
THEN IF ((Ordering[i], Ordering[j]) is not already in E)

THEN E ← E + {(Ordering[i], Ordering[j])};
return((V, E));

END /* of Fill_in-1 */

The Fill_in-1 procedure will generate a chordal graph no matter what ordering is
being used in the initialization. The maximum cardinality ordering (described in
Chapter 6) is used because it can be shown that when the graph is already chordal,
no addition of edges will be generated by the above algorithm if the maximum car-
dinality ordering is used [TarYan84]. (Nodes may be added even when the graph is
chordal when this algorithm uses some other orderings.)

If the neighbourhood of every node is stored by a bit pattern, then testing whether
two nodes have the same parents in an ordering takes roughly a constant time. In
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this case, the procedure Fill_in-1 takes O(n2) time to complete, because it examines
every combination of two nodes in its two FOR loops.

By using more complex data structures, the Fill_in-1 procedure can be improved to
run in O(m+n) time, where m is the number of arcs and n is the number of nodes in
the graph. For simplicity, without affecting the results of our analysis of the com-
plexity of the tree-clustering method, interested readers are referred to Tarjan &
Yannakakis [1984] for improvement of Fill_in-1.

Figure 7.11 shows an example of a constraint graph, and summarizes the procedure
for maintaining chordality in the graph.

The ordering (G, F, E, D, C, B, A) is one maximum cardinality ordering for the
given graph. The edge (C, D) is added because they are both adjacent to and after
the node E. Similarly, the edge (A, E) is added because they are both adjacent to and
after the node F.

7.6.5  Finding maximum cliques

By adding necessary redundant constraints using the Fill_in-1 procedure, the con-
straint graph is made chordal. In order to make the constraint hypergraph of a CSP
conformal, we need to identify the maximum cliques in the primal graph (so that we
can create a constraint for each maximum clique). In this section, we shall first
present a general algorithm for finding maximum cliques. Then we shall present a
more efficient algorithm which can be applied after running the Fill_in-1 procedure.

7.6.5.1  A general algorithm for finding maximum cliques

In this section, a general algorithm for finding maximum cliques is introduced. It is
based on two observations:

(a) If x is a node in a maximum clique C in a graph, then C must contain x and its
neighbours only. (This is trivially true.)

(b) If S is a set of nodes in a graph, and every node in S is adjacent to some node
x which is not in S, then S does not contain any maximum clique. This is
because if there exists a clique C in S, then C + {x} must be a clique (as
C + {x} forms a complete sub-graph in the given graph). Hence C cannot be a
maximum clique (as it is a proper subset of C + {x}).

Based on these observations, the Max_cliques-1 procedure finds maximum cliques
in a given graph by performing a binary search. In this procedure, one node is con-
sidered at a time. One branch of the search looks for maximum cliques which
include this node, and the other branch looks for maximum cliques which do not
include this node:
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PROCEDURE Max_cliques-1((V, E))
/* given a graph (V, E), returns the set of all maximum cliques */
BEGIN

Maximum_cliques ← MC(V, E, { });
return(Maximum_cliques);

END /* of Max_cliques-1 */

PROCEDURE MC(V, E, N)
/* V is a set of nodes; E is a set of edges which may join nodes other

than those in V; N is a set of nodes which are not in any maximum
clique */

BEGIN
IF No_cliques(V, E, N) THEN return({ })
ELSE IF (is_clique(V, E)) THEN return({V})

/* is_clique is explained in text */
ELSE BEGIN

x ← any node from V;
/* find cliques which contain x */
V' ← {x} + set of nodes in V adjacent to x − N;
MC1 ← MC(V', E, N);
/* find cliques which do not contain x */
MC2 ← MC(V − {x}, E, N + {x});
return(MC1 + MC2); /* return all cliques found */

END
END /* of MC */

PROCEDURE No_cliques(V, E, N)
/* based on observation (b), that if there exists a node outside V

which is adjacent to every node in V, then no maximum clique
exists in V */

BEGIN
FOR each x in N DO

IF (x is adjacent to all nodes in V with regard to E)
THEN return(True);

return(False);
END /* of No_cliques */

The is_clique(V, E) procedure checks to see if every pair of nodes in V are joined by
an edge in E. We assume that by using an appropriate data structure (e.g. recording
the adjacency of the nodes by bit patterns), is_clique can be implemented in O(n),
where n is the number of nodes in the graph. Besides, since one node is considered
at a time, the recursive call of MC is at most n levels deep. So the overall time com-
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plexity of Max_clique is O(2n).

Figure 7.12 shows the steps of finding the maximum cliques in an example graph.
The maximum cliques found are: {A, B, C, D}, {A, C, D, E}, {A, E, F} and {B, G}.
The sets {A, B, C, D} and {A, C, D, E} are accepted as maximum cliques because
they are complete graphs (by definition of maximum cliques). The complete graph
which contains {A, D, E} is rejected because all its nodes are adjacent to B, which is
excluded as an element of any maximum cliques under that branch of the search
tree. The fact that node G is considered after A and B on the right most branch of
Figure 7.12 is just a convenience for presentation. (If other nodes are considered
instead, the search would be deeper, though the result would be the same.)

The efficiency of the construction of MC2 in the Max_clique algorithm can be
improved through the reduction of the size of the remaining graph (call it G). When
looking for maximum cliques which do not contain x, one can do more than remov-
ing x from G: one can also remove any neighbour y of x such that y’s neighbourhood
is a subset of x’s neighbourhood plus x:

({y} + neighbourhood(y, G)) ⊆  ({x} + neighbourhood(x, G))

This is in fact a lookahead step, because if y is in any clique, then this clique must
contain y and nodes in its neighbourhood only. If this clique is a subset of x plus its
neighbourhood, then this clique cannot be a maximum clique.

For example, in Figure 7.12, when node A is excluded from the cliques (i.e. the top
right hand side branch), node D could have been excluded as well, because {D} +
neighbourhood(D, G) is {A, B, C, E}, which is a subset of {A} +
neighbourhood(A, G), which is {A, B, C, D, E, F}. The search indeed confirms that
D does not appear in any maximum clique under that branch of the search tree. By
the same token, nodes C, E and F could have been removed when A is removed.

Program 7.3, max-clique.plg, shows a Prolog implementation of the Max_clique
algorithm.

7.6.5.2  Finding maximum cliques after Fill_in-1

Observe that Fill_in-1 gives the nodes in the input graph a total ordering. If this
ordering is made accessible to other procedures after the exit of Fill_in-1, then it can
help us to find the maximum cliques in the chordal graph efficiently. Fill_in-1
makes sure that for every node x, all the children of x (according to the given order-
ing) are connected to each other. This means that x and all its children together must
be a clique. To find all the maximum cliques in the chordal graph, all one needs to
do is to go through the nodes according to this ordering and check whether the
clique formed by the focal node and its children is maximum. The pseudo code of
this algorithm is shown below:
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Table 7.1 Cliques and maximum cliques in the chordal graph in Figure 7.11

Ordering
Focal
Node

Clique Analysis

1 G {G, B} this is a maximum clique

2 F {F, E, A} this is a maximum clique

3 E {E, D, C, A} this is a maximum clique

4 D {D, C, B, A} this is a maximum clique

5 C {C, B, A} this is not a maximum clique, as
it is a subset of {D, C, B, A}

6 B {B, A} this is not a maximum clique, as
it is a subset of {D, C, B, A}

7 A {A} this is not a maximum clique, as
it is a subset of {D, C, B, A}

PROCEDURE Max_cliques-2((V, E), Ordering)
/* (V, E) is a chordal graph generated by Fill_in-1; Ordering is an

array of nodes V used by Fill_in-1 in generating (V, E) */
BEGIN

C ← { }; /* C stores the set of maximum cliques found so far */
FOR i = 1 to n DO /* n = number of nodes in the input graph */

BEGIN
S ← {Ordering[i]} + neighbourhood( Ordering[i], (V, E) );
IF (S is not a subset of any element in C);
THEN C ← C + {S}; /* S is a maximum clique */
V ← V − Ordering[i];
E ← E −  all edges joining  Ordering[i];

END
return(C);

END /* of Max_cliques-2 */

Let n be the number of nodes in the input graph. The FOR loop in Max_cliques-2
iterates exactly n times. At most one maximum clique is added to C in each itera-
tion. Therefore, the size of C is at most n. If it takes a constant time to check
whether a set is a subset of another, then the IF statement in the FOR loop takes

O(n) time. Therefore, the worst case time complexity of Max_cliques-2 is O(n2). If
every set takes O(n) space to store, then the space complexity of Max_cliques-2 is

also O(n2).
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Table 7.1 shows the cliques and maximum cliques of the chordal graph shown in
Figure 7.11(b). This example illustrates that the procedure Max_cliques-2 finds the
same maximum cliques as Max_cliques-1.

7.6.6  Forming join-trees

Recall that given a CSP P = (Z, D, C), each variable of its dual problem P d is a set
of variables in Z, and its domain being a compound label for the set of variables in

P. Binary constraints and binary constraints only exist in P d. A binary constraint

exists between two variable in P d if they share some common variables in P. Point
(3) in Section 7.6.2 explains that since all constraints concern about equality which
is transitive, redundant constraints can be removed trivially.

Results in the graph theory literature show that given a CSP whose constraint
hypergraph is acyclic, the constraint graph of its dual problem can be reduced (by
removing redundant constraints) to a tree. Such a tree is called a join-tree. In the
preceding sections, we have explained how to transform a CSP to one which con-
straint hypergraph is acyclic. This section explains how join-trees can be con-
structed for dual problems. Again, we shall first present a general algorithm for
finding join-trees, then we present an algorithm which makes use of the ordering
produced by Fill_in-1.

7.6.6.1  General algorithm for finding join-trees

The following is the pseudo code for an algorithm to establish the constraints for a
given set of hyperedges. It is modified from Graham’s Algorithm, which is used to
determine whether a hypergraph is acyclic (see Beeri et al., 1983]).

PROCEDURE Establish_constraints-1(MC)
/* MC is a set of hyperedges in a hypergraph; this hypergraph must

be acyclic; otherwise this procedure will never terminate! */
BEGIN

C ← { }; /* C is to be returned as a set of constraints on MC */
index elements in MC with numbers 1 to k;
S ← MC together with the indices;

/* S[i] = MC[i] = the i-th maximum clique */
/* manipulate the elements in S in order to establish links in MC */
WHILE (S ≠ { }) DO

BEGIN
FOR i = 1 to k DO

FOR each variable x in S[i] DO
IF (x does not appear in any S[j] where j ≠ i)
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THEN S[i] ← S[i] − {x};
FOR i = 1 to k DO

IF (there exists some S[j] in S, where  j ≠ i and S[i] ⊆  S[j])
THEN BEGIN

C ← C + CMC[i],MC[j], where CMC[i],MC[j] is a
constraint which requires consistent
labelling to MC[i] and MC[j];

S ← S − S[i];
END

END; /* MC being acyclic guarantees termination of WHILE*/
return(C);

END /* of Establish_constraints-1 */

The Establish_constraints-1 procedure basically repeats the following steps:

(i) remove any variable which appears in one hyperedge only;
(ii) link hyperedges S[i] and S[j] if S[i] is a subset of S[j]; remove S[i] from

the set of hyperedges.

If the input MC forms the edges of an acyclic hypergraph, then S will always be
reduced to an empty set, and the procedure will terminate (see Beeri et al., 1983).

In the worst case, each of the two out-most FOR loops needs to consider every pairs

of S[i] and S[j]. Therefore, the complexity for both of them are O(k2), where k is the
size of MC (i.e. the number of hyperedges). In the worst case, only one element is
removed from S. When this is the case, the WHILE loop will have to iterate k times
to eliminate all the elements in MC. Therefore, the overall worst case complexity of

the algorithm Establish_constraints-1 is O(k3).

7.6.6.2  Finding join-trees after Fill_in-1 and Max_cliques-2

If the maximum cliques are returned by Max_cliques-2 following Fill_in-1, then
one can build the join-tree more efficiently than Establish_constraints-1. Again, the
total ordering of the nodes in the primal graph which is used in Fill_in-1 must be
made accessible. Let us call this ordering <. A little reflection should convince read-
ers that Max_cliques-2 ensures that a node can only have the highest precedence
according to < in, at most, one of these maximum cliques. Therefore, the maximum
cliques can be ordered according to the ordering of their nodes which have the high-
est precedence according to <. Results in the graph theory literature suggest that,
given such an ordering, one can create the join-tree by simply connecting every
maximum clique mc to a maximum clique which is (a) after mc according to this
ordering, and (b) shares the maximum number of nodes with mc . The pseudo code
of this algorithm is shown below:
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PROCEDURE Establish_constraints-2(MC, Ordering)
/* MC is a set of maximum cliques of  the primal graph or a CSP */
/* MC must be returned by Max_cliques-2 */
/* Ordering is a total ordering of the variables of the CSP returned by

Fill_in-1 */
BEGIN

C ← { }; /* C = set of constraints on MC established so far*/
Order the sets in MC according to the Ordering of their earliest

elements;
FOR i = 1 to  MC −  1 DO

/* join MC[i] to the MC[k] (i < k) which shares the maximum
number of elements with it */

BEGIN
MNSN ← 0; /* MNSN = max. number of shared nodes */
FOR j = i + 1 to MC   DO

IF((MC[i] ∩ MC[j]) > MNSN)
THEN BEGIN

MNSN ←  MC[i] ∩ MC[j]) ; k ← j;
END;

C ← C + CMC[i],MC[k], where CMC[i],MC[k] is a constraint
which requires consistent labelling to MC[i] and MC[k];

END
return(C);

END /* of Establish_constraints-2 */

Let k be the number of maximum cliques in MC. If set intersection takes a constant
time, then it takes O(k) time to find the maximum clique which shares the maximum
number of nodes of a particular maximum clique. The two FOR loops together

dominate the worst case time complexity of Establish_constraints-2, which is O(k2).

Table 7.2 Join-tree for the maximum cliques found in Table 7.1

Ordering
Maximum

clique

Maximum clique of lower
ordering which shares the

maximum elements

Constraint
Created

1 {G, B} {D, C, B, A} CGB,DCBA

2 {F, E, A} {E, D, C, A} CFEA,EDCA

3 {E, D, C, A} {D, C, B, A} CEDCA,DCBA

4 {D, C, B, A} (root)
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Going back to the above example, the maximum cliques, their ordering and the con-
straints generated are shown in Table 7.2. The join-tree thus created is shown in
Figure 7.13.

7.6.7  The tree-clustering procedure

The Tree_clustering procedure, which makes use of the procedures introduced so
far, implements the tree-clustering method:

PROCEDURE Tree_clustering(Z, D, C)
BEGIN

GG ← hypergraph of (Z, D, C);
G ← primal_graph of GG;
G ← Fill_in-1(G); /* generate chordal primal graph */
/* we assume that Ordering is produced by Fill_in-1 as a side

effect */
MC ← Max_cliques-2(G, Ordering); /* identify max. cliques */

Dd ← { };
FOR each mc ∈  MC DO /* solve one sub-problem */

BEGIN
Dmc ← {Dx | x ∈  mc ∧ D x ∈ D}; /* specifify domains */
Tmc ← solution tuples for the CSP (mc, Dmc, CE(mc, (Z, D,

C)));
Dd ← Dd + {Tmc};

END
Cd ← Establish_constraints-2(MC, Ordering);

Sd ← Tree_search(MC, Dd, Cd);

/* Sd is a solution to the dual problem, i.e. a set of compound
labels for the original problem which assigns a unique value to
each variable in Z */

Solution ← (<x1,v1><x2,v2>...<xn,vn>) where {x1, x2, ..., xn} = Z
and for all 1 ≤ i ≤ n, (<xi,vi>) is the projection of some com-

pound labels in Sd;
/* Solution is a compound label to the original problem (Z, D, C) */
return(Solution);

END /* of Tree_clustering */

The Fill_in-1 procedure adds redundant constraints into the graph to make it
chordal. The Max_cliques-2 procedure returns the set of maximum cliques in the
graph. The Establish_constraints-2 procedure generates a join-tree for the dual
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problem. Each of the edges in this join-tree represents a constraint which requires
consistent values to be assigned to the common variables in the joined clusters.

The Tree_clustering procedure adopts the basic ideas explained in Figure 7.10. It
first makes sure that the primal graph of the given problem is chordal. Then the
maximum cliques are identified. Each maximum clique forms a sub-CSP which will
be solved separately. The solution for each maximum clique becomes a constraint
on the variables in this maximum clique, replacing the set of all relevant constraints
in the original problem; hence the transformed CSP becomes conformal. This
ensures that the constraint graph of the dual problem forms a tree. Then the Tree_-
search procedure is applied to solve the dual problem. The solution of the dual prob-
lem can be used to generate a solution for the original problem quite trivially.

The time complexity of the Fill_in-1 and Max_cliques-2 are both O(n2), where n is
the number of variables in the given CSP. Finding solution tuples for the clusters

requires O(ar) time in general, where a is the maximum domain size of the variables
in the given CSP, and r is the size of the largest cluster. Let k be the number of max-
imum cliques in the transformed CSP. The number of variables in the dual problem
is then k. According to the analysis in the last section, the Establish_constraints-2

procedure takes O(k2) time to complete. The domains of the variables in the dual

problem is ar in the worst case, so the worst case time complexity of the Tree_-

search procedure is O(ka2r). It can be reduced to O(kar log (ar))), or O(krar log (a)),
if the procedure for maintaining DAC can be optimized in the way described above
(Section 7.6.3).

The time complexity of Tree-searching, O(ka2r), should dominate the time com-

plexity of the Tree_clustering algorithm, because compared with it, n2, ar and k2

(the complexity of Fill_in-1, Max_cliques-2, solving the decomposed problems and
Establish_constraints-2) are insignificant.

The example in Figure 7.13 summarizes the steps of the tree-clustering method.

7.7 j-width and Backtrack-bounded Search

Theorem 6.1 states the relationship between k-consistency in a CSP and the width
of its graph. In this section, we extend the concept of width to j-width, and show
that it has interesting results related to (i, j)-consistency.

7.7.1  Definition of j-width

In Chapter 2, we defined the concept of backtrack-free search (Definition 2-12).
Here, we define a related concept called b-level backtrack-bounded.
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Definition 7-17:

A backtracking search for solutions in a CSP is called b-level backtrack-
bounded, or b-bounded for simplicity, under an ordering if, after labelling h
variables for any h less than the number of variables in the problem, we can
always find a value for the (h + 1)-th variable without reconsidering more
than the last b − 1 labels:4

∀  csp((Z, D, C)): (∀  <: total_ordering(Z, <): (∀ b <  Z :
b-level-backtrack-bounded((Z, D, C), <) ≡

(∀ x1, x2, ..., xh ∈ Z: (x1 < x2 < ... < xh ⇒
(∀ v1 ∈ , v2 ∈ , ...,vh ∈ :

(satisfies( (<x1,v1>... <xh,vh>), CE({x1, ..., xh}, (Z, D, C))) ⇒
(∀ xh+1 ∈ Z: (xh < xh+1 ⇒

∃ v'h-b+1 ∈ , ...,v'h ∈ , vh+1 ∈ :

satisfies((<x1,v1> ... <xh-b,vh-b><xh-b+1,v'h-b+1> ...
<xh,v'h> <xh+1,vh+1>), CE({x1, ..., xh, xh+1}, (Z, D,
C))) ■

In other words, in a chronological backtracking search where b-bounded is guaran-
teed, if one can successfully label h variables without violating any constraints, then
one can freeze the first (h − b) labels in labelling the rest of the variables. A back-
track-free search is 0-bounded by definition.

Now we shall look at situations under which searches are b-bounded. First, we shall
extend the concepts of width for nodes, orderings and graphs in Chapter 3 (see
Definitions 3-20 to 3-22) to the width of a sequence of variables in a graph.

Definition 7-18:

The width of a group of j consecutive nodes in a graph under an ordering is
the number of nodes preceding this group which are joined to any of the j
nodes in it:

∀  graph((V, E)): (∀ <: total_ordering( V, <):
(∀ x1, x2, ..., xj ∈ V: consecutive((x1, x2, ..., xj)):

(width((x1, x2, ..., xj), (V, E), <) ≡

4.  Note that the b in the definition of b-level-backtrack-bounded, or b-bounded, is actually
treated as an argument of the predicate (like the k in k-consistency in Chapter 3). A more accurate
syntax which conforms to first order logic would be to put b between the brackets, which makes
b-level-backtack-bound(b, Compound_label, Cs). The present syntax is adopted for both simplic-
ity and conformation with the CSP literature. The same arrangement applies to the definition of j-
width later in this chapter.

Dx1
Dx2

Dxh

Dxh b− 1+
Dxh

Dxh 1+
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{ z | z ∈ V ∧ z ∉  {x1, x2, ..., xj} ∧
∃ w: (w ∈ { x1, x2 ,..., xj} ∧ z < w ∧ ( z, w) ∈ E)})))

where

∀  graph((V, E)): (∀ <: total_ordering( V, <): (∀ x1, x2, ..., xj ∈ V:
consecutive((x1, x2, ..., xj)) ≡ x1 < x2, ..., xj-1 < xj ∧

(∀ y ∈ V: (∃  1 ≤ i ≤ j: y < xi) ⇒ y < x1) ∧
(∀ z ∈ V: (∃  1 ≤ i ≤ j: xi < z) ⇒ xj < z))) ■

Definition 7-19:

The j-width of a node x is the minimum of the widths of all the groups of j
or less consecutive nodes which end with x:

∀  graph((V, E)): (∀ <: total_ordering( V, <): (∀ xm ∈  V:
j-width(xm, (V, E) , <) ≡

MIN width((xm-k+1, ..., xm-1, xm), (V, E), <): 1 ≤ k ≤ j)) ■

The concept j-width is a generalization of the concept width. According to this defi-
nition, the definition of the width of a node in Chapter 3 (Definition 3-20) is equiva-
lent to the 1-width of a node.

Definition 7-20:

The j-width of a graph under an ordering is the maximum j-width of all
the nodes in the graph under that ordering:

∀  graph((V, E)): (∀ <: total_ordering( V, <):
j-width(V, E), <) ≡ MAX j-width(x, (V, E), <): x ∈ V ■

Definition 7-21:

The j-width of a graph is the minimum j-width of the graph under all possi-
ble orderings of its nodes:

∀  graph((V, E)): j-width((V, E)) ≡
MIN j-width((V, E), <): total_ordering(V, <) ■

Figure 7.14 gives an example of a graph and the j-width of the nodes for j’s between
1 and 3. For example, the 2-width of node F is 2 because although F is adjacent to
three predecessors (B, D and E), E and F together are adjacent to only 2 predeces-
sors (B and D), and the 2-width of F is the minimum of 3 and 2. The 2-width of the
ordering shown in Figure 7.14 is the maximum of the j-widths for all the nodes,
which is 2.
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7.7.2  Achieving backtrack-bounded search

Under the above definitions and the definition for strong (i, j)-consistency in
Chapter 3, Freuder [1985] proves the following theorem:

Theorem 7.6 (due to Freuder, 1985)

Given a constraint graph for a CSP, there exists a search order that guaran-
tees j-bounded backtrack search if the graph is strong (i, j)-consistent for i
equals to the j-width of the graph.

(a) Example of a graph
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(b) j-width of the nodes for 1 ≤ j ≤ 3, given the ordering A, B, C, D, E,
F, G (the width of each node is shown in italic, the j-width of the order-

ings are indicated in bold)

Figure 7.14 Example of a graph and the j-widths of an ordering
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∀  csp((Z, D, C)): (∀ i, j ≤ Z :
(strong (i, j)-consistent(Z, D, C) ⇒

(∀ <: total_ordering(Z, <):
(i = j-width( G((Z, D, C)), <) ⇒

j-level-backtrack-bounded((Z, D, C), <)))))

Proof

The proof follows from the definitions. Given a CSP, assume that there
exists an ordering whose j-width is i. Assume further that the problem is
strong (i, j)-consistent. When x is the next variable to be labelled, there must
exist a k ≤ j such that the sequence of k variables up to and including x has
width i', where i' ≤ i. In other words, this sequence of variables are joined to
i' variables before this sequence. Given the fact that the problem is strong
(i, j)-consistent, once those i' variables are labelled, there exists a legal com-
pound label for these k variables which is compatible with the compound
label for the i' variables. So to assign a value to x, one needs to revise no
more than the k variables before it. Since k ≤ j, the search is j-bounded.

(Q.E.D.)

In other words, given a problem whose j-width is equal to i, one can determine the
bound for one’s backtrack search if one can maintain strong (i, j)-consistency for
this problem. This implies that by finding an ordering which has the minimum j-
width, one can minimize i in maintaining strong (i, j)-consistency.

Freuder points out that the j-width of an ordered CSP can be determined by a branch
and bound method. Unfortunately, maintaining strong (i, j)-consistency may change
the width of the constraint graph. Besides, there are no efficient algorithms for
determining the j-width of an ordered CSP and maintaining (i, j)-consistency. So,
although Theorem 7.6 is an interesting observation, its practical use in CSPs solving
is yet to be explored.

7.8  CSPs with Binary Numerical Constraints

When all the variables in a CSP are numerical variables, and there exist unary and
binary linear constraints only, specialized linear programming techniques can be
applied. When variables are allowed to take numbers as their values, the problem is
a non-standard CSP (refer to Definition 1-12), because the domains are infinite.
However, since the constraints take special forms, efficient algorithms exist for find-
ing solutions for them.
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7.8.1  Motivation

Research in such problems is partly motivated by point-based temporal reasoning.
In point-based temporal reasoning, time points are taken as primitive objects. Inter-
vals may be represented by pairs of points. One of the tasks in temporal reasoning is
to assign a numerical value to each time point, satisfying constraints on them. Sim-
ple temporal constraints are:

(a) boundary constraints:
The value of a time point may be given a lower bound, which is called the
earliest time, and a upper bound, which is called the latest time. In other
words, given a time point x, there may be constants a and b such that

x > a
and x < b
must hold, where < and > can also be ≤ and ³.

(b) distance constraints:
A distance constraint requires that the distance between two points be
bounded within a range. For example, if x and y are variables representing
two time points, and a and b are constants, a distance constraint may take the
following form:

x − y > a ;
x − y < b ;
a < x − y < b

where < and > can also be ≤ and ³. Examples of distance constraints are
upper bounds and lower bounds on durations. A precedence constraint is a
special kind of distance constraint where the constants are 0. In other words,
precedence constraints take the form:

x < y

Figure 7.15(a) shows an example of a set of intervals and constraints on them. Inter-
vals here are represented by pairs of time points. Intervals A, B, C and D are repre-
sented by (P, S), (Q, S), (P, R) and (Q, R) respectively (for our purpose here, we do
not have to worry about the “open” and “closeness” of intervals. Interested readers
may refer to van Benthem, 1983). Figure 7.15(a) shows that intervals A and C must
start at the same time, C and D must end at the same time, etc. Besides, the dura-
tions are constrained to be within bounds:

10 ≤ S − P ≤ 12
7 ≤ S − Q ≤ 8
7 ≤ R − P ≤ 8
5 ≤ R − Q ≤ 6

The situation in Figure 7.15(a) can be represented by a temporal constraint graph,
a directed graph in which the nodes represent the time points, and the arcs represent
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precedence. Each node is labelled by two numerical values: a lower bound and a
upper bound. If the lower and upper bounds are unknown, then 0 and infinity are
used, respectively. Each arc is labelled by a numerical value which indicates the dis-
tance between the joined time points. If the distance between points x and y is at
least a, then an arc is created from x to y labelled a. If the distance between points x
and y is at most b, then an arc is created from y to x labelled b. If it is known that x
precedes y, but the maximum and minimum distances are unknown, then an arc is
created from x to y labelled 0 and an arc is created from y to x labelled infinity. The
temporal constraint graph for the situation in Figure 7.15(a) is shown in
Figure 7.15(b).

7.8.2  The AnalyseLongestPaths algorithm

Given a temporal constraint graph, the AnalyseLongestPaths algorithm checks if
temporal constraints are satisfiable, and if so, returns the earliest possible times for
each of the time points in the graph:

PROCEDURE AnalyseLongestPaths(V, E, length, lower_bound)
/* (V, E) is a directed graph; length(c) returns the length of an arc c ;

lower_bound(p) returns the earliest starting time of point p in V;
x[i] stores the updated lower bound for point i in V; */

/* AnalyseLongestPaths labels all x[i] */
BEGIN

FOR each i in V DO x[i] ← lower_bound(i);
Converged ← False;
Counter ← 0;
WHILE (NOT Converged) DO

BEGIN
Converged ← True;
FOR j = 1 to  Z  DO

FOR each k such that j→k is in E DO
IF (x[k] < x[j] + length(j→k)) THEN

BEGIN
x[k] ← x[j] + length(j→k);
Converged ← False;

END
Counter ← Counter + 1;
IF Counter >  Z THEN return(NIL); /* over-constrained */

END
/* on exit of the WHILE loop, all the constraints are satisfied */
return(x); /* x is the array of all the variables */

END /* of AnalyseLongestPaths */
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Input to AnalyseLongestPaths is a temporal constraint graph (V, E) plus two func-
tions: length maps every arc to a numerical value which represents its length; low-
er_bound maps every node to a numerical value which represents its lower bound.
If no boundary constraints are specified in the problem, then all the lower bounds
may be assigned the value 0.

An array x is used to store the value assigned to the time points in the graph. The
program initializes each point to the lower bound (i.e. earliest starting time) which
is input to the program. Then it updates these lower bounds by propagating the con-
straints from its preceding nodes. The idea is very similar to the one used in AC-1 in
Chapter 4. If any lower bound is updated, then all the constraints in the graph are re-
examined. This can easily be improved (following the ideas of AC-2, AC-3 and
AC-4) so that constraints are propagated to all successors of the updated nodes only.
(A successor of a node x is a node y such that x→y is an arc in a directed graph).
AnalyseLongestPaths does not insist on the ordering under which the arcs are proc-
essed in the inner for loop.

A constraint should never be propagated more than n times, where n is the number
of nodes in the graph. If this happens, it indicates that the value of a node is updated
because of its own update. In this case, one can conclude that the constraints are not
satisfiable. The Counter helps us to detect such situations. The WHILE loop termi-
nates when no lower bound has been updated.

The AnalyseLongestPaths algorithm finds the longest possible distance from every
node to its successor nodes in the graph (hence its name). The AnalyseLongestPaths
algorithm finds (or updates) the lower bounds of each node in the graph. It can be
modified to the AnalyseShortestPaths algorithm which finds the upper bounds of
the nodes.

PROCEDURE AnalyseShortestPaths(V, E, length, upper_bound)
/* (V, E) is a directed graph; length(c) returns the length of an arc c;

upper_bound(p) returns the latest starting time of point p in V;
y[i] stores the updated upper bound for point i in V; */

/* AnalyseShortestPaths labels all y[i] */
BEGIN

FOR each i in V DO y[i] ← upper_bound(i);
Converged ← False;
Counter ← 0;
WHILE (NOT Converged) DO

BEGIN
Converged ← True;
FOR j = 1 to  Z DO

FOR each k such that k→j is in E DO
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IF (y[k] > y[j] − length(j→k)) THEN
BEGIN

y[k] ← y[j] − length(j→k);
Converged ← False;

END
Counter ← Counter + 1;
IF Counter >  Z THEN return(NIL); /* over-constrained */

END
 /* on exit of the WHILE loop, all constraint have been satisfied*/
return(y); /* y is the array of all the variables */

END /* of AnalyseShortestPaths*/

After running both AnalyseLongestPaths and AnalyseShortestPaths on a temporal
constraint graph, one may obtain both the lower bounds and the upper bounds for all
the time points in the graph. Figure 7.16(a) shows a temporal constraint graph
which is unsatisfiable. It is basically a replica of the graph in Figure 7.15(a), except
that the bounds of the distances for intervals (P, R) and (Q, S) are increased. This
graph is unsatisfiable because from intervals A, B and C, one can see that the over-
lapping part of B and C is at most (7 + 7) − 10 = 4 units of time. However, the min-
imum duration of interval D is 5, which is greater than 4. If the
AnalyseLongestPaths procedure is applied to this graph, it can be found that
(P, S, Q, R, P) forms a loop, as indicated in Figure 7.16(b). At the situation shown in
Figure 7.16(b), the lower bound of P could have been increased to 1 (because the
lower bound for R is 8 at the moment, and the distance from R to P is -7). Figure
7.17 shows the space searched by AnalyseLongestPaths, assuming that the con-
straints are propagated in a depth-first manner. It should not be difficult to see that if
the temporal constraint graph is satisfiable, the search should never go deeper than
the (n + 1)-th level, where n is the number of nodes in the graph.

One nice property of the above two algorithms is that constraints can be added
incrementally. After the upper and lower bounds of the points are computed, new
constraints may be added to the constraint graph. Instead of computing the bounds
from scratch, these algorithms may start with the values computed in the past so as
to save computation.

Programs 7.4, alp.plg, and 7.5, asp.plg, show possible Prolog implementations of
the AnalyseLongestPaths and the AnalyseShortestPaths algorithms.

7.9  Summary

In this chapter, we have looked at techniques which, by exploiting the specific fea-
tures of a CSP, attempt to either reduce the space searched or the complexity in
computation.
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To start with, we have identified some “easy problems” for which efficient algo-
rithms have been developed. If the primal graph of a CSP is not connected, then this
problem can be decomposed into independent subproblems which can be solved
separately. We have introduced the concept of k-trees, and pointed out that if the
constraint primal graph of a CSP forms a k-tree for some small k, then this problem
is also easy to solve. A CSP which constraint graph forms a 1-tree (an ordinary tree)
can be solved by first reducing it to directional arc-consistent (DAC), and then
searching in a backtrack-free manner. If a problem can be recognized as a k-tree for

Figure 7.17 Possible space searched by AnalyseLongestPaths for the
temporal constraint graph in Figure 7.16
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a small k, then by maintaining strong k-consistency in the problem, one needs no
backtracking in searching for solutions. When the constraint graph forms a tree, the

problem can be solved in O(na2), where n is the number of variables in the problem,
and a is the maximum domain size. When constraint graph forms a k-tree, the prob-

lem can be solved in O(nak+1) time and O(nak) space.

Some problems can be reduced to “easy problems” if redundant constraints in them
can be identified and removed. One type of redundant constraint, namely path-
redundant constraints, and an algorithm for identifying them have been introduced.
However, it must be realized that most problems cannot be reduced to “easy prob-
lems” through removing redundant constraints.

We have introduced the cycle-cutset method as a dynamic search strategy which
identifies the minimal cycle-cutset in an ordering, so that after the variables which
form a cutset have been labelled, the Tree_search algorithm can be invoked. The
effectiveness of this method very much depends on the size of the cycle-cutset. The

overall complexity of the cycle-cutset method is O(nac+2), where n is the number of
variables in the problem, a is the maximum domain size, and c is the size of the cut-
set.

The tree-clustering method is a method which attempts to reduce the complexity of
a CSP by transforming it into equivalent problems, decomposing it, and then solv-
ing the decomposed subproblems. The solutions for the decomposed problems are
combined using the Tree_search algorithm. The complexity of the tree-clustering

method is O(ka2r), (possibly optimized to O(krar log (a))), where k is the number of
clusters, a is the maximum domain size, and r is the number of variables in the larg-
est cluster in the problem.

We have also summarized the interesting observation that when (i, j)-consistency is
maintained in a CSP, then if the nodes in the constraint graph of the CSP are ordered
in such a way that it’s j-width equals i, the search for solutions under this ordering is
j-level backtrack-bounded.

Finally, partly motivated by temporal reasoning, CSPs (under the extended defini-
tion which allows infinite domain sizes) with numerical variables and binary linear
constraints are studied. The AnalyseLongestPaths and AnalyseShortestPaths algo-
rithms have been introduced, specialized linear programming techniques for finding
the lower bounds and upper bounds of the time points.

Figure 7.18 summarizes some sets of special CSPs and the specialized techniques
introduced in this chapter for tackling them.
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that the worst case complexity of the cyclic-clustering method is greater than that of
the tree-clustering method.

Freuder [1985] establishes the necessary conditions for b-bounded search. Dechter
et al. [1991] formally define the temporal constraint satisfaction problem (TCSP).
There the class of CSPs that we discuss in Section 7.8 are named simple temporal
problems (STPs). The AnalyseLongestPaths algorithm is introduced by Bell & Tate
[1985] for reasoning with metric time in AI planning. The Floyd-Warshall algo-
rithm in Papadimitriou & Steiglitz [1982] uses basically the same principle, but
assumes no boundary constraints. Hyvönen [1992] and van Beek [1992] both study
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Apart from the topology of the constraint graph and the variable types, other
domain specific characteristics can be exploited. For example, if all the constraints
are monotonic, functional or in general convex, the problem can be solved effi-
ciently (see van Hentenryck et al., 1992; Deville & van Hentenryck, 1991; and van
Beek 1992).
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