
Chapter 4

Problem reduction

4.1 Introduction

We explained in Chapter 2 that problem reduction is the process of removing values
from domains, and tightening constraints in a CSP, without ruling out solution
tuples from a CSP. The basic idea is that if we can deduce that a value or a com-
pound label is redundant, then it can be removed, as doing so will not result in rul-
ing out any solution tuples in a CSP. We shall continue to see a constraint on a set of
variables S as the set of all legal compound labels for S. By removing redundant val-
ues and compound labels, we reduce a CSP to an equivalent problem — a problem
which has the same solution tuples as the original problem (Definitions 2-3 and 2-4)
— which is hopefully easier to solve.

Although problem reduction alone rarely generates solutions, it can help to solve
CSPs in various ways. It can be used in preprocessing, which means reducing the
problem before any other techniques are applied to find solutions. It can also be
used during searches — by pruning off search spaces after each label has been com-
mitted to. Sometimes, a significant amount of search space can be pruned off by
problem reduction. Problem reduction can help one to make searches backtrack-
free. (For example, as pointed out in Chapter 3, that when the constraint graph of a
CSP forms a tree, achieving node- and directional arc-consistency enable back-
track-free searches.) Problem reduction can also help us in solutions synthesis,
which we shall discuss in Chapter 9.

To recapitulate, the following are possible gains from problem reduction when com-
bined with searching:

(1) Reducing the search space
Since the size of the search space is measured by the grand product of all the
domain sizes in the problem, problem reduction can help to reduce the search
space by reducing the domain sizes.

80 Problem reduction

(2) Avoiding repeatedly searching futile subtrees
Redundant values and compound labels represent branches and paths which
lead to subtrees that contain no solutions. If redundant values and redundant
compound labels can be removed through problem reduction, then one can
avoid repeatedly searching those futile subtrees.

(3) Detecting insoluble problems
If a (sound) problem reduction algorithm returns a CSP that has at least one
domain being reduced to an empty set, then one can conclude that the prob-
lem is unsatisfiable. In that case, no further effort needs to be spent on finding
solutions.

In the literature, problem reduction is often referred to as achieving consistency or
problem relaxation. By achieving certain consistency properties of a given CSP,
we mean reducing the problem by removing redundant values from the domains
and redundant compound labels in the constraints, so that the consistency property
holds in the reduced problem. For example, a procedure that “achieves arc-consist-

ency” of CSPs is a procedure which takes a CSP P and returns a CSP P' such that P
and P' are equivalent and AC(P') is true. The consistency properties are defined in

a way which guarantees that the resulting CSPs are equivalent to the original ones
(i.e. it has the same solution tuples as the original problem).

In the rest of this chapter, we shall describe a number of consistency achievement
algorithms and study their complexity. As we shall see, some algorithms are applied
to remove redundant values from domains, and some to remove redundant com-
pound labels from constraints.

4.2 Node and Arc-consistency Achieving Algorithms

Consistency achievement algorithms were first introduced for binary constraint
problems. As mentioned in Chapter 1, binary CSPs are associated with graphs,
where the nodes represent variables and the edges binary constraints. In Chapter 3,
we introduced concepts related to binary constraint problems, namely node-, arc-
and path-consistency. In this section, we shall look at algorithms which achieve
node- and arc-consistency.

4.2.1 Achieving NC

Achieving node-consistency (NC, see Definition 3-7) is trivial. All one needs to do
is go through each element in each domain and check whether that value satisfies
the unary-constraint of the variable concerned. All values which fail to satisfy the
unary-constraints are deleted from the domains. Procedure NC-1 presents the
pseudo code for node-consistency achievement:

4.2 Node and Arc-consistency Achieving Algorithms 81

PROCEDURE NC-1(Z, D, C)
BEGIN

FOR each x in Z
FOR each v in Dx

IF NOT satisfies((<x,v>), Cx)
THEN Dx ← Dx − {v};

return(Z, D, C); /* certain Dx may be updated */
END /* of NC-1 */

When NC-1 terminates, the original problem is reduced to one which satisfies node-
consistency. This is obtained by removing from each domain values which do not
satisfy the unary constraint of the variable represented by that node. (If the domains
are represented by functions, then the role of NC-1 is to modify those functions.)
Let a be the maximum size of the domains and n be the number of variables in the
problem. Since every value is examined once, the time complexity of NC-1 is
O(an).

4.2.2 A naive algorithm for achieving AC

By achieving arc-consistency (AC, see Definition 3-9) one can potentially remove
more redundant values from the domains than in applying NC-1. The Waltz filtering
algorithm is basically an algorithm which achieves AC, and it has been demon-
strated to be effective in many applications. A naive AC achievement algorithm,
called AC-1 in the literature, is shown below:

PROCEDURE AC-1(Z, D, C)
BEGIN

NC-1(Z, D, C); /* D is possibly updated */
Q ← {x→y | Cx,y ∈ C}

/* x→y is an arc; Cy,x is the same object as Cx,y */
REPEAT

Changed ← False;
FOR each x→y ∈ Q DO

Changed ← (Revise_Domain(x→y, (Z, D, C)) OR
Changed);

/* side effect of Revise_Domain: Dx may be reduced */
UNTIL NOT Changed;
return(Z, D, C);

END /* of AC-1 */

Q is the list of binary-constraints to be examined, where the variables in the binary

82 Problem reduction

constraint are ordered. In other words, if Cx,y is a constraint in the problem, then
both x→y and y→x are put into Q. AC-1 examines every x→y in Q, and deletes
from Dx all those values which do not satisfy Cx,y. If any value is removed, all the
constraints will be examined again. AC-1 calls the procedure Revise_Domain,
which is shown below:

PROCEDURE Revise_Domain(x→y, (Z, D, C)):
/* side effect: Dx in the calling procedure may be reduced*/
BEGIN

Deleted ← False;
FOR each a ∈ Dx DO

IF there exists no b ∈ D y such that satisfies((<x,a><y,b>), Cx,y)
THEN
BEGIN

Dx ← Dx − {a};
Deleted ← True;

END
return(Deleted)

END /* of Revise_Domain */

Revise_Domain(x→y, (Z, D, C)) deletes all the values from the domain of x which
do not have compatible values in the domain of y. The domain of y will not be
changed by Revise_Domain(x→y, (Z, D, C)). The boolean value Deleted which is
returned by Revise_Domain indicates whether or not a value has been deleted.

The post-condition of the procedure AC-1 is more than AC. In fact, it achieves NC
and AC (i.e. AC-1 achieves strong 2-consistency).

When there are e edges in the constraint graph, the queue Q in AC-1 will have 2e
elements. The REPEAT loop in AC-1 will terminate only when no value is deleted
from any domain. In the worst case one element is deleted in each iteration of the
REPEAT loop. If a is the maximum number of elements in the domains and n is the
number of variables, then there are at most na elements to be deleted, and conse-
quently the REPEAT loop will terminate in no more than na iterations. Each itera-
tion requires in the worst case 2e calls to Revise_Domain. Each Revise_Domain

call examines a2 pairs of labels. Therefore, the worst case time complexity of AC-1

is O(a3ne). To represent a CSP, we need O(na) space to store the possible labels and
O(e) space to store the constraints. So the space complexity of AC-1 is O(e + na). If
constraints are represented by sets of compound labels, then in the worst case one

needs O(n2a2) space to store the constraints.

4.2 Node and Arc-consistency Achieving Algorithms 83

4.2.3 Improved AC achievement algorithms

AC-1 could be very inefficient because the removal of any value from any domain
would cause all the elements of Q to be re-examined. This algorithm is improved to
AC-2, and AC-3 in the literature. The idea behind these algorithms is to examine
only those binary-constraints which could be affected by the removal of values. We
shall skip AC-2 (as it uses a similar principle but is inferior to AC-3 in time com-
plexity), and look at AC-3 below:

PROCEDURE AC-3((Z, D, C))
BEGIN

NC-1(Z, D, C);
Q ← {x→y | Cx,y ∈ C};

 /* x→y is an arc; Cy,x is the same object as Cx,y */
WHILE (Q ≠ { }) DO

BEGIN
delete any element x→y from Q;
IF Revise_Domain(x→y, (Z, D, C)) THEN

Q ← Q ∪ {z→x | Cz,x ∈ C ∧ z ≠ x ∧ z ≠ y};
/* side effect of Revise_Domain: Dx may be reduced */

END
return(Z, D, C);

END /* of AC-3 */

If Revise_Domain((x,y)) removes any value from the domain of x, then the domain
of any third variable z which is constrained by x must be examined. This is because
the removed value may be the only one which is compatible with some values c in
the domain of z (in which case, c has to be removed). That is why z→x (except
when z = y) is added to the queue Q if Revise_Domain(x→y, (Z, D, C)) returns True.
y→x is not added to Q as Dx was reduced because of y. This will not, in turn, cause
Dy to be reduced.

As mentioned above, the length of Q is 2e (where e is the number of edges in the

constraint graph), and in each call of Revise_Domain, a2 pairs of labels are exam-

ined. So the lower bound of the time complexity of AC-3 is Ω(a2e).

In the worst case, each call of Revise_Domain deletes one value from a domain.
Each arc x→y will be processed only when the domain of y is reduced. Since we
assume that the constraint graph has 2e arcs, and the maximum size of the domain
of the variables is a, a maximum of 2ea arcs will be added to Q. With each call of

Revise_Domain examining a2 pairs of labels, the upper bound of the time complex-

84 Problem reduction

ity of AC-3 is O(a3e). AC-3 does not require more data structure to be used, so like
AC-1 its space complexity is O(e + na). If constraints are represented by sets of

compound labels, then in the worst case one needs O(n2a2) space to store the con-
straints.

4.2.4 AC-4, an optimal algorithm for achieving AC

The AC-3 algorithm can be further improved. The idea behind AC-3 is based on the
notion of support; a value is supported if there exists a compatible value in the
domain of every other variable. When a value v is removed from the domain of the
variable x, it is not always necessary to examine all the binary constraints Cy,x. Pre-
cisely, we can ignore those values in Dy which do not rely on v for support (in other
words, cases where every value in Dy is compatible with some value in Dx other
than v). One can change the way in which Q is updated within the WHILE loop in
AC-3. The AC-4 algorithm is built upon this idea.

In order to identify the relevant labels that need to be re-examined, AC-4 keeps
three additional pieces of information. Firstly, for each value of every variable, AC-
4 keeps a set which contains all the variable-value pairs that it supports. We shall
refer to such sets as support sets (S). The second piece of information is a table of
Counters (C), which counts the number of supports that each label receives from
each binary-constraint involving the subject variable. When a support is reduced to
0, the corresponding value must be deleted from its domain. The third piece of addi-
tional information is a boolean matrix M (which can be referred to as the Marker)
which marks the labels that have been rejected. An entry M[x,v] is set to 1 if the
label <x,v> has already been rejected, and 0 otherwise. As an example, consider the
partial problem in Figure 4.1.

We shall focus on the variable x0 in this partial problem. The domain of x0 has two
values, 0 and 1. We assume that there is only one type of constraint in this part of
the problem, which is that the sum of the values of the constrained nodes must be
even. For x0, one has to construct two support sets, one for the value 0 and one for
the value 1:

 = {(1,2), (2,4), (2,6), (3,8)}

 = {(1,3), (2,5), (3,7)}

The support set records the fact that the label <x0,0> supports <x1,2> in

variable x1, <x2,4> and <x2,6> in variable x2, and <x3,8> in variable x3. This set
helps to identify those labels which need to be examined should the value 0 be
removed from the domain of x0.

S x0 0,〈 〉

S x0 1,〈 〉

S x0 0,〈 〉

4.2 Node and Arc-consistency Achieving Algorithms 85

A counter is maintained for each constraint and value of each variable. For <x0,0>,

the constraint provides one support from x1 — namely <x1,2>. Therefore,

Counter[(0, 1), 0] = 1.

This counter stores the support to the label <x0,0> from the constraint . In

general, given variables x and y such that Cx,y is a constraint in the CSP, the Coun-

x0

x1

x2

x3

Other nodes of the graph

{0, 1}

{2, 3}

{4, 5, 6}

{7, 8}

Figure 4.1 Example of a partial constraint graph. Constraints: sum
of the values for the constrained variables must be even

Cx0 x1,

Cx0 x1,

86 Problem reduction

ter[(x,y),a] records the number of values b (in the domain of y) which are compati-
ble with <x,a>. So, we have:

Counter[(0, 1), 1] = 1

because <x1,3> is the only support that x1 gives to <x0,1>. Similarly, if x0 takes the
value 0, there are two values that x2 can take (which are 4 and 6). Therefore:

Counter[(0, 2), 0] = 2

According to this principle, other counters for variable x0 will be initialized to the
following values:

Counter[(0, 2), 1] = 1
Counter[(0, 3), 0] = 1
Counter[(0, 3), 1] = 1.

M is initialized in the following way: to start, every label <x,a> is examined using
every binary constraint Cx,y (for all y) in the problem. If there is no label <y,b> such
that (<x,a><y,b>) is legal, then a will be deleted from the domain of x, and M[x,a]
will be set to 1 (indicating that <x,a> has been deleted). All rejected labels are put
into a data structure called LIST to await further processing.

After initialization, all the labels <x,a> in LIST will be processed. Indexed by S, all
the labels which are supported by <x,a> will be examined. If, according to the
Counters, <x,a> is the only support for any label <y,b>, then b will be removed
from the domain of y. Any label which is rejected will be added to the LIST. A label
which has been processed will be deleted from LIST. This process terminates when
no more labels remain in LIST.

Back to the previous example: if the label <x0,1> is rejected for any reason, then
M[0, 1] will be set to 1 and the label <x0,1> will be added to the LIST. When this

label is processed, the support set will be looked at. Since (1, 3) is in

, the Counter[(1, 0), 3], (not the Counter[(0, 1), 1]), which records the

support for the label <x1,3> through the constraint , will be reduced by 1. If

a counter is reduced to 0, then the value which is no longer supported will be
removed from its domain, and it is added to LIST for further processing. In this
example, if <x0,1> is rejected, then Counter[(1, 0), 3] will be reduced (from 1) to 0.
Therefore, 3 will be removed from the domain of x1, M[1, 3] will be set to 1, and
<x1,3> will be put into LIST to await further processing.

The pseudo code for AC-4 in shown below:

S x0 1,〈 〉

S x0 1,〈 〉

Cx1 x0,

4.2 Node and Arc-consistency Achieving Algorithms 87

PROCEDURE AC-4(Z, D, C)
BEGIN

/* step 1: construction of M, S, Counter and LIST */
M ← 0; S ← { };
FOR each Ci,j in C DO /* Note: Ci,j and Cj,i are the same object */

FOR each b in Di DO /* examine <i,b> using variable j */
BEGIN

Total ← 0;
FOR each c in Dj DO

IF satisfies((<i,b><j,c>), CE({i,j})) THEN
BEGIN

Total ← Total + 1;
S<j,c> ← S<j,c> + {<i,b>};

/* <i,b> gives support to <j,c> */
END;

IF (Total = 0) THEN /* reject <i,b> */
BEGIN

M[i,b] ← 1;
Di ← Di − {b};

END
ELSE Counter[(i, j), b] ← Total;

/* support <i,b> receives from j */
END

 LIST ← {<i,b> | M[i,b] = 1} ;
/* LIST = set of rejected labels awaiting processing */

/* step 2: remove unsupported labels */
 WHILE LIST ≠ { } DO

BEGIN
 pick any label <j,c> from LIST; LIST ← LIST − {<j,c>};
 FOR each <i,b> in S<j,c> DO

BEGIN
Counter[(i, j), b] ← Counter[(i, j), b] − 1;
IF ((Counter[(i, j), b] = 0) AND (M[i, b] = 0)) THEN

BEGIN
LIST ← LIST + {<i,b>};
M[i,b] ← 1;
Di ← Di − {b};

END;
END

END
return(Z, D, C);

END /* of AC-4 */

88 Problem reduction

Step 1 of AC-4 initializes M (the labels that have been deleted), S (list of supporting
labels for each label), Counter (number of supports for each label under each con-
straint) and LIST (the list of rejected labels awaiting processing). It does so by going
through each constraint and looking at each pair of labels between the two subject
variables. If there is a maximum of a values in the domains, then there are a maxi-

mum a2 pairs of labels to consider per constraint. If there are a total of e constraints

in the problem, then there are no more than ea2 2-compound labels to look at. So the

time complexity of step 1 is O(ea2).

step 2 achieves AC by deleting labels which have no support. One rejected label
<j,c> in LIST is processed at a time. Indexed by S<j,c>, which records the list of
labels that <j,c> supports, all the Counters of the labels which are supported by
<j,c> are reduced by 1. If any counter is reduced to 0, the label which correspond to
that counter will be rejected.

The time complexity of step 2 can be measured by the number of reductions in the
counters. Since a counter always takes positive values, and it is reduced by 1 in each
iteration, the number of iterations in the WHILE loop in step 2 will not exceed the
summation of the values in the counters. In a CSP with a maximum of a values per
domain and e constraints, there are a total of ea counters. Each value in the domain
of each variable is supported by no more than a values in another variable. There-
fore, the value of each counter is bounded by a. Hence, the time complexity of

step 2 is ea2. Combining the analysis for steps 1 and 2, the time complexity of AC-

4 is therefore O(ea2), which is lower than that for both AC-1 and AC-3.

However, a large amount of space is required to record the support lists. If M is
implemented by an array of bits, then there are na bit patterns (since there are na
labels) to store M. The space complexity of AC-4 is dominated by S, the support
lists. One support list is built for each label. If ci represents the number of variables
that xi is adjacent to in the constraint graph, then there is a maximum of cia elements

in the support list of xi. There would be a maximum of = 2a2e

elements in all the support lists. So the asymptotic space complexity of AC-4 is

O(a2e).

4.2.5 Achieving DAC

In Chapter 3, we introduced the concept of DAC (directional arc-consistency,
Definition 3-12), which is a weaker property than AC. We mentioned that by
achieving NC and DAC, a backtrack-free search can be obtained for binary con-
straint problems if the constraint graphs are trees. The following is an algorithm for
achieving DAC:

a cia()
i 1=
n∑×

4.2 Node and Arc-consistency Achieving Algorithms 89

PROCEDURE DAC-1(Z, D, C, <)
BEGIN

FOR i =  Z to 1 by −1 DO
FOR each variable xj where j < i AND Ci,j ∈ C DO

Revise_Domain(xj→xi, (Z, D, C));
return(Z, D, C);

END /* of DAC-1 */

DAC is defined under a total ordering (<) of the variables. The DAC-1 procedure
simply examines every arc xi→xj such that i < j, and remove any value from

(the domain of variable xi) which does not have a compatible value in (the

domain of variable xj). The variables are processed in reverse order of < so that the

reduction of would not require any to be examined repeatedly (because

i < j).

In DAC-1, each arc is examined exactly once. Let a be the maximum number of

values for the domains. Since each call of Revise_Domain examines a2 pairs of

labels, the time complexity of DAC-1 is O(a2e), where e is the number of arcs in the
constraint graph. When the constraint graph is a tree of n nodes, the number of
edges is n − 1, and therefore, the time complexity of DAC-1 can also be expressed

as O(a2n).

The DAC-1 procedure potentially removes fewer redundant values than the algo-
rithms already mentioned above which achieve AC. However, DAC-1 requires less
computation than procedures AC-1 to AC-3, and less space than procedure AC-4.
The choice of achieving AC or DAC is domain dependent. In principle, more
redundant values and compound labels can be removed through constraint propaga-
tion in more tightly constrained problems. Thus, AC tends to be worth achieving in
more tightly constrained problems.

A CSP P is AC if, for any given ordering of the variables <, P is DAC under both
< and its reverse. Therefore, it is tempting to believe (wrongly) that AC could be

achieved by running DAC-1 in both directions for any given <.1 The simple exam-
ple in Figure 4.2 should show that this belief is a fallacy.

The variables involved in the problem in Figure 4.2 are A, B and C. Their domains
are {1, 2}, {1, 2} and {1, 4} respectively. The constraints are:

1. For example, Dechter and Pearl [1985, 1988a] state that “if we apply DAC w.r.t. order d
and then DAC w.r.t. the reverse order we get a full arc consistency for trees”.

Dxi

Dxj

Dxi
Dxj

90 Problem reduction

(1) The value of A must be less than the value of C; and
(2) the sum of B and C must be even.

The constraint graph of this problem forms a tree. If we take the ordering (A, B, C),
then achieving DAC does not reduce any of the three domains (for all values in the
domain of B, there exists at least one value in the domain of C which is compatible
with it; similarly, for all values in the domain of A, there exists at least one value in
the domains of B and C which is compatible with it). Achieving DAC in the reverse
order (C, B, A), though, will remove 1 from the domain of C, since no value in the
domain of A which is less than 1 (constraint (1)). So only <C,1> is removed after
achieving DAC in the specified direction and its reverse. However, the reduced
problem is still not AC, because C has no compatible value with <B,1> — the only
value left for C is 4, but 1 + 4 is not even (hence constraint (2) is violated). To
achieve AC, <B,1> must be removed.

4.3 Path-consistency Achievement Algorithms

Algorithms which achieve path-consistency (PC) remove not only redundant values
from the domains, but also redundant compound labels from the constraints (con-
straints are represented as sets of compatible 2-compound labels in these algo-
rithms). Before we describe algorithms for achieving PC, we shall first introduce a
relations composition mechanism which removes local inconsistency. This mecha-
nism will be used by algorithms which achieve PC.

C

A B {1, 2}

{1, 4}

{1, 2}

A < C even(B + C)

Figure 4.2 An example showing that running DAC on both directions
for an arbitrary ordering does not achieve AC (After achieving DAC for
both orderings (A, B, C) and (C, B, A), only <C,1> will be removed, but
C has no compatible values with <B,1>, which means <B,1> should

have been removed should AC be achieved.)

4.3 Path-consistency Achievement Algorithms 91

4.3.1 Relations composition

We mentioned in Chapter 1 that constraints can be represented by matrices of
boolean entries. If we give the values in each domain a fixed order, then each entry
in the matrix records the constraint on a 2-compound label. For example, let A and
B be variables in a map-colouring problem and the domain of both of them be r (for
red) and g (for green) in that order. The constraint CA,B, which specifies that A ≠ B,

can be represented by the matrix: , where A takes the rows and B takes the col-

umns, and 1 represents “legal” and 0 represents “illegal”. Given the ordering (r, g),
the upper right entry (row 1, column 2) represents the fact that <A,r> and <B,g> are
compatible with each other.

For uniformity, both the domain and the unary constraint of a variable X are repre-
sented in the form of a binary constraint CX,X. The domain is then represented by a
matrix with 1’s on no entries other than the upper left to lower right diagonal. For
example, if the domain of X is {r, g, b}, and the values are ordered as (r, g, b), then

the matrix which represents the domain of X is . If the unary constraint on X

disallows X to take the value b, then CX,X would be reduced to . The rela-

tions composition mechanism ensures that a compound label (<A,a><C,c>) is
allowed only if for all variables B there exists a value b such that satisfies(<B,b>,
CB), satisfies((<A,a><B,b>), CA,B) and satisfies((<B,b><C,c>), CB,C) all hold.

We shall use CX,Y,r,s to denote the r-th row, s-th column of CX,Y. We use “*” to
denote a composition operation. The composition mechanism is defined as follows:

if CX,Z = CX,Y * CY,Z,
then CX,Z,r,s = (CX,Y,r,1 ∧ CY,Z,1,s) ∨ (C X,Y,r,2 ∧ CY,Z,2,s) ∨ ... ∨

(CX,Y,r,t ∧ CY,Z,t,s)

where t is the cardinality of DY, and “∧” and “ ∨” are logical AND and logical OR.

For example, if CX,Y = and CY,Z = , then CY,Z,1,1 = (1 ∧ 0) ∨ (0 ∧ 1)

∨ (0 ∧ 1) = 0. The matrix CX,Z as composed by CX,Y and CY,Z is . The opera-

0 1
1 0

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 0

1 0 1
0 1 0
1 0 1

0 1 0
1 1 1
0 1 0

0 1 0
1 1 1
0 1 0

92 Problem reduction

tion is just like ordinary matrix multiplication except that number multiplication is
replaced by logical AND and addition is replaced by logical OR.

The value that A and C can take simultaneously is constrained by the constraint
CA,C, plus the conjunction of all CA,X * CX,X * CX,C for all X ∈ Z, i.e.:

CA,C = CA,C ∧ * * ∧

* * ∧ ... ∧ * *

where n is the number of variables in the problem. We call a matrix M composed by
CA,B, CB,B and CB,C if M = CA,B * CB,B * CB,C.

4.3.2 PC-1, a naive PC Algorithm

Path-consistency (PC, see Definition 3-11(R)) achievement involves removing
redundant values from domains and redundant 2-compound labels from the binary-
constraints (using the relation combination mechanism). We continue from the last
section to use CA,A to represent DA after NC is achieved. Deleting the i-th values
from the domain of A is effected by making CA,A,i,i 0. A naive PC-achieving algo-
rithm called PC-1 is shown below:

PROCEDURE PC-1(Z, D, C)
/* (Z, D, C) is a binary CSP */
BEGIN

n ←  Z ; Yn ← C;
REPEAT

Y0 ← Yn;
FOR k ← 1 TO n DO

FOR i ← 1 TO n DO
FOR j ← 1 TO n DO

Yi,j
k ← Yi,j

k-1 ∧ Yi,k
k-1 * Yk,k

k-1 * Yk,j
k-1;

UNTIL Yn = Y0;
C ← Yn;
return(Z, D, C);

END /* of PC-1 */

Input to PC-1 is a binary CSP (Z, D, C). The indices of the variables (1 to Z) are
used to name the variables — i.e. any integer k (1 ≤ k ≤  Z) refers to the k-th vari-

able. All the variables Yk for all k are working variables, which are sets of con-

straints. Yk is only used to build Yk+1. Yi,j
k represents the constraint Ci,j in the set Yk.

CA X1, CX1 X1, CX1 C,

CA X2, CX2 X2, CX2 C, CA Xn, CXn Xn, CXn C,

4.3 Path-consistency Achievement Algorithms 93

The basic idea is as follows: for every variable k, pick every constraint Ci,j from the

current set of constraints Yk and attempt to reduce it by means of relations composi-
tion using Ci,k, Ck,k and Ck,j. After this is done for all the variables, the set of con-
straints is examined to see if any constraint in it has been changed. The whole
process is repeated as long as some constraints have been changed.

The time complexity of PC-1 can be measured in terms of the number of binary
operations required. The REPEAT loop terminates only when no constraint can be
reduced. In the worst case, only one element in one constraint is deleted in one iter-

ation. If there are n variables in the problem, there is a maximum of n2 binary con-
straints. Let there be a maximum of a values in each domain. Then there will be at

most a2 elements in each constraint. So as a maximum there could be a2n2 iterations
in the REPEAT loop of PC-1. Each iteration considers all combinations of three var-
iables (allowing repetition of variables in the combinations). So relations composi-

tion is called n3 times in each iteration. In each relations composition call, all

combinations of 3-tuples for the three variables are considered. So a3 binary opera-
tions are required in each relations composition call. The time complexity of PC-1

is therefore O(a5n5). Apart from requiring n2a2 space to store the constraints, PC-1

needs space for the Yk’s. There are all together n3 Yi,j
k’s. If each of them requires

O(a2) space to store, the overall complexity of PC-1 is then O(n3a2).

4.3.3 PC-2, an improvement over PC-1

Like AC-1, PC-1 is very inefficient because even the change of just one single ele-
ment in one single constraint will cause the whole set of constraints to be re-exam-

ined. It is also very memory intensive as many working variables Yk are required.
PC-2 is an improved algorithm in which only relevant constraints are re-examined.
PC-2 assumes an ordering (<) among the variables:

PROCEDURE PC-2(Z, D, C, <)
BEGIN

Q ← {(i, k, j) | i, j, k ∈ Z ∧ i ≤ j ∧ (i ≠ k ≠ j)};
WHILE (Q ≠ { }) DO

BEGIN
pick and delete a path (i, k, j) from Q;
IF Revise_Constraint((i, k, j), (Z, D, C))
THEN Q ← Q ∪ RELATED_PATHS((i, k, j),  Z , <);
/* side effect of Revise_Constraint: Ci,j may be reduced */

END
return(Z, D, C);

END /* of PC-2 */

94 Problem reduction

As in PC-1, the indices to the variables are also used as their names (so n = Z is
both the cardinality of the set of variables and the n-th variables). Here Q is a queue
of paths awaiting processing, and Revise_Constraint((i, k, j), (Z, D, C)) restricts Ci,j

using Ci,k and Ck,j:

PROCEDURE Revise_Constraint((i, k, j), (Z, D, C))
/* attempt to reduce Ci,j */
BEGIN

Temp = Ci,j ∧ Ci,k * Ck,k * Ck,j;
IF (Temp = Ci,j) THEN return (False)
ELSE BEGIN

Ci,j ← Temp; return (True) ;
END

END /* of Revise_Constraint */

RELATED_PATHS((i, k, j), n, <) in PC-2 returns the set of paths which need to be
re-examined when Ci,j is reduced. If i < j, then all the paths which contain (i, j) or
(j, i) are relevant, with the exception of (i, j, j) and (i, i, j) because Ci,j will not be
further restricted by these paths as a result of itself being reduced. If i = j, the path
restricted by Revise_Constraint was (i,k,i), then all the paths with i in it need to be
re-examined, with the exception of (i, i, i) and (k, i, k). This is because Ci,i will not
be further restricted. Ck,k will not be further restricted because it was the variable k

which has caused Ci,i to be reduced (for exactly the same reasons as those explained
in AC-3):

PROCEDURE RELATED_PATHS((i, k, j), n, <)
BEGIN

IF (i < j) THEN
S ← {(i, j, m) | (i ≤ m ≤ n) ∧ (m ≠ j)} ∪

{(m, i, j) | (1 ≤ m ≤ j) ∧ (m ≠ i)} ∪
{(j, i, m) | j < m ≤ n} ∪
{(m, j, i) | 1 ≤ m < i};

ELSE /* it is the case that i = j */
S ← {(p, i, m) | (1 ≤ p ≤ m) ∧ (1 ≤ m ≤ n)} − {(i, i, i), (k, i, k)};

return (S);
END /* of Related_Paths */

If the CSP is already PC, then PC-2 needs to go through every path of length 2 to

4.3 Path-consistency Achievement Algorithms 95

confirm that. For a problem with n variables and a values per variable, there are

a3n3 paths of length 2 to examine. So the lower bound of the time complexity of

PC-2 is Ω(a3n3).

The upper bound of the time complexity of PC-2 is determined by the number of
iterations in the WHILE loop and the complexity of Revise_Constraint. The number
of iterations required is limited by the number of paths that can go into Q. Paths are
added into Q only when Revise_Constraint deletes at least one element from Ci,j.

When i = j, at most n(n + 1) − 2 paths are added to Q. Since there are at most na

1’s in each of the Ci,j’s, at most na(n(n + 1) − 2) paths can be added to Q. When i

< j, 2n−2 paths are added to Q. Since there are nC2 = n(n − 1) combinations of i

and j, at most n(n − 1) a2 paths can be added to Q as a result of deleting an entry

from Ci,j. Thus, the number of new entries to Q is bounded by:

na(n(n + 1 − 2) + n(n − 1)a2(2n − 2)

= (a2 + a)n3 + (a − 2a2)n2 + (a2 − 2a)n

which is O(a2n3). Since each call of Revise_Constraint goes through each path of

length 2, its worst case time complexity is O(a3). So the overall worst case time

complexity of PC-2 is O(a5n3).

The queue Q contains paths of length 2, and therefore Q’s size never exceeds n3.

There are no more than n2 binary constraints, each of which has exactly a2 ele-

ments. Therefore, the space complexity of PC-2 is O(n3+n2a2).

4.3.4 Further improvement of PC achievement algorithms

The efficiency of the PC-2 algorithm can be improved in the same way as AC-3 is
improved to AC-4. The improved algorithm is called PC-4. As is the case in AC-4,
counters are used to identify the relevant paths that need to be re-examined.

Similar to AC-4, PC-4 maintains four data structures:

(1) Sets of supports, S — one for each 2-compound label;
(2) Counters — one for each variable for each 2-compound label in which it is

involved;
(3) Markers, M — one for each 2-compound label; and
(4) LIST — the set of 2-compound labels to be processed

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

96 Problem reduction

As before, unary constraints are represented by Ci,i for uniformity.

A support set S<i,b><j,c> is maintained for every 2-compound label (<i,b><j,c>).
Elements of S<i,b><j,c> are labels <k,d> (for some variable k) which is supported by
the compound label (<i,b><j,c>). Whenever (<i,b><j,c>) is removed from con-
straint Ci,j, the compound label (<i,b><k,d>) loses its support from <j,c>, and the
compound label (<j,c><k,d>) loses its support from <i,b>. If any compound label
loses all its supports from a variable, then it has to be rejected.

Counter[(i,a,j,b), k] is a counter for the 2-compound label (<i,a><j,b>) with regard
to variable k. It counts the number of labels that variable k may take in order to sup-
port (<i,a><j,b>) (i.e. possible labels <k,d> which satisfies Cik and Ckj).

A table of Markers M is maintained to mark those 2-compound labels which have
been rejected but not yet processed. M[i,b,j,c] is set to 1 if (<i,b><j,c>) has been
rejected but such a constraint has not been propagated to other compound labels; it
is set to 0 otherwise.

Finally, LIST is the set of 2-compound labels which have been rejected but not yet
processed.

The algorithm PC-4 is shown below:

PROCEDURE PC-4(Z, D, C)
BEGIN

/* step 1: initialization */
M ← 0; Counter ← 0; n = Z ;
FOR all S DO S ← { };
FOR each Ci,j ∈ C

FOR k = 1 TO n DO
FOR each b ∈ Di DO

FOR each c ∈ Dj such that satisfies((<i,b><j,c>), Ci,j)
holds DO
BEGIN

Total ← 0;
FOR each d ∈ Dk DO

IF (satisfies((<i,b><k,d>), Ci,k) & satis-
fies((<k,d><j,c>), Ck,j))
THEN BEGIN

Total ← Total + 1;
S<i,b><k,d> ← S<i,b><k,d> + {<j,c>};
S<j,c><k,d> ← S<j,c><k,d> + {<i,b>};

4.3 Path-consistency Achievement Algorithms 97

END
IF Total = 0 THEN

BEGIN
M[i,b,j,c] ← 1; M[j,c,i,b] ← 1;
Ci,j ← Ci,j − (<i,b><j,c>);

END;
ELSE BEGIN

Counter[(i,b,j,c),k] ← Total;
Counter[(j,c,i,b),k] ← Total;

END;
END

Give the variables an arbitrary order <;
LIST ← {(<i,b><j,c>) | (M[i,b,j,c] = M[j,c,i,b] = 1) ∧ (i < j)}
/* LIST = the set of 2-compound labels to be processed */

/* step 2: propagation */
WHILE LIST ≠ { } DO

BEGIN
pick and delete an element (<k,d><l,e>) from LIST;
FOR each <j,c> in S<k,d><l,e> DO

PC-4-Update((<k,d><l,e>), <j,c>));
FOR each <j,c> in S<l,e><k,d> DO

PC-4-Update((<l,e><k,d>), <j,c>));
END /* of WHILE */

return(Z, D, C);
END /* of PC-4 */

PROCEDURE PC-4-Update((<i,b><j,c>), <k,d>)
/* This procedure updates Counter, S, M, LIST, which are all assumed

to be global variables, with respect to the rejection of the com-
pound label (<i,b><j,c>). It focuses on the edge Cik. */

BEGIN
Counter[(i,b,k,d), j] ← Counter[(i,b,k,d), j] − 1;
Counter[(k,d,i,b), j] ← Counter[(k,d,i,b), j] − 1;
S<i,b><j,c> ← S<i,b><j,c> − {<k,d>};
S<k,d><j,c> ← S<k,d><j,c> − {<i,b>};
IF (Counter[(i,b,k,d), j] = 0) AND (M[i,b,k,d] = 0) THEN

BEGIN
M[i,b,k,d] ← 1; M[k,d,i,b] ← 1;
LIST ← LIST + {(<i,b><k,d>)};
Ci,k ← Ci,k − {(<i,b><k,d>)};

END
END /* of PC-4-Update */

98 Problem reduction

Step 1 is the initialization stage. Initially, all the entries of M are set to 0 (meaning
that no 2-compound label has been rejected). All support lists S<i,a><j,b> are initial-
ized to empty lists. Then, in step 2, the procedure goes through each 2-compound
label which has been marked as illegal (2-compound labels where marker M has
been set to 1). PC-4-Update is called twice, which adds <j,c> to every support list
S<i,b><k,d> if <k,d> is compatible with both <i,b> and <j,c>. Similarly, <i,b> is
added to every support list S<j,c><k,d> if <k,d> is compatible with both <i,b> and
<j,c>. For each such <k,d>, the Counters indexed by both [(i,b,j,c),k] and [(j,c,i,b),k]
are increased by 1. If no such <k,d> exists, the 2-compound label (<i,b><j,c>) is
deleted from Ci,j. LIST is initialized to all the 2-compound labels which have been
deleted.

The time complexity of step 1 is O(n3a3), where n is the number of variables, and a

is the largest domain size for the variables. This is because there are n3 combina-

tions of variables i, j and k, and a3 combinations of values b, c and d.

step 2 achieves PC by deleting 2-compound labels which have no support. One
rejected 2-compound labels (<k,d><l,e>) in LIST is processed at a time. The support
lists S<k,d><l,e> and S<l,e><k,d> record the labels which are supported by
(<k,d><l,e>). Therefore, if <j,c> is in S<k,d><l,e> then <l,e> is no longer supported
by S<j,c><k,d>, and <k,d> is no longer supported by S<j,c><l,e>. The Counters
[(j,c,k,d),l], [(k,d,j,c),l], [(j,c,l,e),k] and [(l,e,j,c),k] are reduced accordingly. Any 2-
compound label which has at least one of its counters reduced to 0 will be rejected,
and it is added to LIST. This process terminates when no more 2-compound label is
left in LIST.

Since there are O(n3a2) counters, with each of which having a maximum of a val-

ues, the maximum number of times that the counters can be reduced is O(n3a3).
This would be the worst case time complexity of step 2. There is another way to

look at the time complexity of step 2. Since there are n2a2 2-compound labels that

one can delete, the WHILE loop in step 2 can only iterate O(n2a2) times. The
number of iterations in each of the FOR loops inside the WHILE loop are bounded
by the sizes of S<k,d><l,e> and S<l,e><k,d> (which are the same), which are bounded

by na. So the worst case time complexity of step 2 is O(n3a3). Combining the
results of the time complexity of step 1 discussed above and step 2 here, the worst

case time complexity of the whole algorithm is O(n3a3).

The space complexity of PC-4 is dominated by the number of support sets:

na ×

which is ≤ n3a3. So the space complexity of PC-4 is O(n3a3).

Di Dj×
i j,() N N×∈

∑

4.3 Path-consistency Achievement Algorithms 99

4.3.5 GAC4: problem reduction for general CSPs

All the PC algorithms introduced so far are used to reduce unary and binary con-
straints only. Mohr & Masini [1988] propose an algorithm called GAC4, which is a
modification of AC-4, for removing redundant compound labels from general con-
straints. The algorithm basically works as follows. When a label or 2-compound
label CL is removed, GAC4 removes from all the constraints those tuples which
have CL as their projections. For example, if (<x,a><y,b>) is removed from Cx,y,
then for all variables z and values c (<x,a><y,b><z,c>) is removed from Cx,y,z when-
ever it exists. Besides, GAC4 removes all the labels and 2-compound labels which
are not subsumed by any element of the higher order constraints in which the sub-
ject variables are involved. For example, if (<x,a><y,b><z,c>) is removed from the
constraint Cx,y,z, and there exists no value d such that (<x,d><y,b><z,c>) is in Cx,y,z,

then (<y,b><z,c>) is removed from Cb,c.
2 Mohr & Masini [1988] also suggest that

GAC4 can be used to achieve PC. However, as they admit, GAC4 is unusable for
large networks because of its high complexity.

4.3.6 Achieving DPC

Directional Path-consistency (DPC, Definition 3-13) is weaker than PC, just as
DAC is weaker than AC. Achieving NC and DPC can help achieving backtrack-free
search in certain problems (Theorem 3-1). Here we shall look at a procedure, which
we shall call DPC-1, for achieving Directional Path-Consistency. The pseudo code
of DPC-1 is shown below:

PROCEDURE DPC-1(Z, D, C, <)
/* for simplicity, assuming that for all i, j, i < j ⇔ zi < zj */
BEGIN

E ← {x→y | Cx,y ∈ C ∧ x < y };
FOR k =  Z to 1 by −1 DO

BEGIN

/* Step (a): remove redundant values from domains */
FOR i = 1 to k DO

IF ((zi→zk) ∈ E) THEN Ci,i ← Ci,i ∧ Ci,k * Ck,k * Ck,i;

/* Step (b): remove redundant 2-compound labels from con-
straints */

FOR i = 1 to k DO
FOR j = i to k DO

2. That strategy first appeared in Freuder [1978] in solution synthesis. Freuder’s algorithm
will be described in Chapter 9.

100 Problem reduction

IF ((zi→zk) ∈ E AND (zj→zk) ∈ E) THEN
BEGIN

Ci,j ← Ci,j ∧ Ci,k * Ck,k * Ck,j;
E ← E + {zi→zj};

END
END /* of outer for loop */

return(Z, D, C);
END /* of DPC-1 */

The DPC-1 procedure basically performs the same operations as the PC algorithms
described above, except that only selected relations are examined and updated. The
algorithm goes through the variables in descending order (according to the ordering

<). When variable zk is focused on, step (a) removes values from which have

no compatible values in , but only for those zi’s which are before zk (according

to <) and constrained by zk. In other words, it achieves DAC. step (b) removes 2-

compound labels from the constraints which have no compatible values in

, but only those zi and zj which are constrained by zk, and that zi < zk and zj < zk.

If there are n variables, then the outer FOR loop of DPC-1 iterates n times. The

FOR loop in step (b) will go through O(n2) combinations of i and j. Each relations
composition in step (b) will examine each of the 3-compound labels. So if there is a

maximum of a values in the domains, there will be O(a3) 3-compound labels to
examine. Since step (a) goes through n variables only, and it does no more relations
composition than step (b), the complexity of the outer FOR loop is dominated by

step (b), which means the time complexity of DPC-1 is O(n3a3).

The length of the list E is bounded by n2. Therefore, the space complexity of DPC-1

is dominated by the binary constraints, which is O(n2a2), the space required to rep-
resent all the constraints in CSP in the worst case.

The DPC-1 procedure has a lower time and space complexity than PC-1 and PC-2,
and same time but lower space complexity than PC-4. But DPC-1 is unable to
remove as many redundant values and redundant 2-compound labels as PC achieve-
ment algorithms. The choice of achieving PC or DPC is domain dependent. In gen-
eral, more redundant values and compound labels can be removed through
constraint propagation in more tightly constrained problems. So in general, the
tighter a problem, the more worthwhile it is to achieve PC.

Dzi

Dzk

Czizj

Dzk

4.4 Post-conditions of PC Algorithms 101

4.4 Post-conditions of PC Algorithms

The post-condition of the PC-1, PC-2 and PC-4 procedures are in fact stronger than

PC. The post-condition of DPC-1 is also stronger than DPC. Given any problem P1
= (Z, D, C), the above PC achievement procedures return an equivalent problem P2
= (Z, D', C') which is NC, AC and PC (i.e. strong 3-consistent if P1 is a binary
CSP). We shall not formally prove the properties of these procedures, just sketch the
justification of this claim based on the PC-1 procedure:

(1) P2 is AC
Recall that Cx,x represents the domain of the variable x. Assume that Cx,x,i,i

(the entry on the i-th row, i-th column of Cx,x) is 1. We can refute the hypoth-

esis that in P2 there exists a variable y such that no value in D'y is compatible
with the label represented by C'x,x,i,i. If such a y exists, all the entries on the i-
th row of Cx,y must be 0’s. In that case, C'x,y = Cx,y * Cy,y will also be a matrix
in which all the entries on the i-th row are 0’s. Therefore, C'x,x = C'x,y * Cy,x

would also be a matrix in which all the entries on the i-th row are 0’s. Such
C'x,x would have made Cx,x,i,i 0 before the termination of PC-1, and this con-
tradicts the above assumption. Therefore, we can conclude that for every

label <x,i> which is allowed in P2, there exists no variable y such that no

value in D'y satisfies C'x,y. So P2 must be AC.
(2) P2 should be PC

For all variables x and y, constraint Cx,y is restricted by the relations composi-
tion of Cx,z and Cy,z for all variables z after termination of PC-1. Therefore, if
Cx,y,i,j is 1, there must be a k for every z such that both Cx,z,i,k and Cz,y,k,j are 1.

Therefore P2 should be PC by definition.
(3) All solution tuples for P2 satisfy P1

Constraints can only be restricted by the relations composition mechanism
(only 1’s can be changed to 0’s, not the other way round). Because of this, for
any subset of the variables S {x1, ..., xk} in the problem, C'S ⊆ CS. Therefore,
any solution tuple that satisfies C'S should satisfy CS.

(4) All solutions in P1 satisfy P2
To justify this we need to show that no solution is ruled out by the relations
composition mechanism, since this is the only operation which changes 1’s to
0’s in PC-1. We observe that any entry in any constraint Cx,y, say Cx,y,i,j,
would be changed from 1 to 0 only under the following three situations, but

in none of these situations will solution tuples in P1 be ruled out:
(i) When Cx,x,i,i is 0, Cx,x * Cx,y will force the entries in the whole i-th row

of Cx,y to 0 (including the entry Cx,y,i,j which is under our investigation

here). But in this case, no solution tuple in P1 should take the i-th

102 Problem reduction

value of x (as it will not satisfy Cx,x). Therefore, if Cx,y,i,j is changed
from 1 to 0 by such a composition, no solution tuple should have been
removed.

(ii) When Cy,y,j,j is 0, Cx,y * Cy,y will force the entries in the whole jth col-
umn of Cx,y to 0 (including the entry Cx,y,i,j which is under investiga-
tion here). This will not remove any solution tuple for the same reasons
as those explained in (i).

(iii) When there exists a variable w such that no k exists so that both Cx,w,i,k
and Cw,y,k,j are 1, Cx,w,i,k * Cw,y,k,j would change Cx,y,i,j from 1 to 0. But
in this case, the i-th value of x and the jth value of y will not be in the
same solution tuple because there is no value for w which is compatible
with them. Therefore, no solution tuple in P1 would have been deleted
by this composition.

Therefore, no solution tuples in P1 will be absent in P2.

We shall not attempt to prove or justify the correctness of algorithms PC-2 and PC-
4, but it is reasonable to assume that they have the same post-condition as PC-1.

Running PC-1 before a search starts (which is referred to as preprocessing in
searching) may improve search efficiency. By achieving NC, AC and PC, PC-1
removes local inconsistencies which would otherwise be repeatedly discovered in
backtracking search. If the problem is 1-unsatisfiable, all the entries in Cx,x for some
variable x will be turned to 0 by PC-1. Furthermore, since, according to Theorem 3-
4, 1-satisfiability and 3-consistency together are the necessary conditions for 3-sat-
isfiability, preprocessing with PC-1 can help to detect 3-unsatisfiability.

4.5 Algorithm for Achieving k-consistency

Node-, arc- and path-consistency and directional consistency algorithms are defined
for binary constraint problems only. Since the concept of k-consistency applies to
general CSPs, algorithms for achieving k-consistency could be valuable for some
applications.

Cooper [1989] proposes an algorithm, which we shall call KS-1 here, for achieving
k-consistency. It borrows its ideas from Freuder’s solution synthesis algorithm
(which will be described in Chapter 9) and Han & Lee’s PC-4 algorithm. The fol-
lowing is the pseudo-code of KS-1:

PROCEDURE KS-1(Z, D, C, k) /* achieving k-consistency */
BEGIN

/* Step 1: initialization */
Set ← { }; M ← 0;

4.5 Algorithm for Achieving k-consistency 103

FOR i = 1 to k DO
FOR each i-tuple Xi = (x1,...,xi) of variables x1 < ... < xi DO

FOR each i-tuple Vi = (v1,v2,...,vi) of values v1, ..., vi DO
BEGIN

FOR each y ∈ (Z − {x1,x2,...,xi}) DO

Counter[Xi,Vi,y] ←  Dy;
IF NOT satisfies((<x1,v1>...<xi,vi>),) THEN

BEGIN Set ← Set + {(Xi,Vi,i)}; M[Xi , Vi] ← 1; END
END;

/* Set stores a set of redundant i-compound-labels, indexed by i */

/* Step 2: constraint propagation*/
WHILE Set ≠ { } DO

BEGIN
Remove any (Xi,Vi,i) from Set, where Xi = (x1,...,xi) and Vi =

(v1,...,vi);

KS_Upward_Propagate(Xi, Vi, i, k);
KS_Downward_Propagate(Xi, Vi, i, k)

END
return(Z, D, C);

END /* of KS-1 */

PROCEDURE KS_Upward_Propagate(Xi, Vi ,i, k)

/* Xi = (x1,...,xi) and Vi = (v1,...,vi), X
i and Vi together represents a

redundant compound label which has been rejected. KS_Up-
ward_Propagate examines i + 1 compound labels. Z, D, C, Set
and M are treated as global variables. */

BEGIN
IF (i < k) THEN

FOR each <x',v'> such that x' ∉ { x1,x2,...,xi} DO
BEGIN

Xi+1 ← (x1,...,xi,x'); Vi+1 ← (v1,...,vi,v');

IF (M[Xi+1, Vi+1] = 0) THEN
BEGIN

Set ← Set + {(Xi+1,Vi+1,i+1)}; M[Xi+1, Vi+1] = 1;
← − {(<x1,v1>...<xi,vi><x',v'>)};

END
END

END /* of KS_Upward_Propagate */

Cx1…xi

Cx1…xix' Cx1…xix'

PROCEDURE KS_Downward_Propagate(Xi, Vi, i, k)

/* Xi = (x1,...,xi) and Vi = (v1,...,vi), X
i and Vi together represents a

redundant compound label which has been rejected. KS_Down-
ward_Propagate examines i - 1 compound labels. Z, D, C, Coun-
ter, Set and M are treated as global variables. */

BEGIN
IF (i > 1) THEN

FOR j = 1 to i DO
BEGIN

Xi-1 ← Xi with xj removed; Vi-1 ← Vi with vj removed;

Counter[Xi-1,Vi-1,xj] ← Counter[Xi-1,Vi-1,xj] − 1;

IF (Counter[Xi-1,Vi-1,xj] = 0) AND (M[Xi-1, Vi-1] = 0) THEN
BEGIN

Set ← Set + {(Xi-1,Vi-1, i − 1)}; M[Xi-1, Vi-1] = 1;
← − {(<x1,v1>...<xi-1,vi-1>)};

END
END

END /* of KS_Downward_Propagate */

The KS-1 algorithm is much simpler than it appears. The principle is that if a com-
pound label cl = (<x1,v1> ... <xi,vi>) is identified to be redundant and therefore
rejected, all compound labels in which cl is a projection will be rejected. Besides,
all projections of cl will be examined.

Similar data structures to those used in PC-4 are maintained in KS-1. Xi and Vi are
taken as i-tuples of variables and i-tuples of values respectively. Set is a set of

(Xi,Vi,i). For convenience, we can see (Xi,Vi) as the compound label of assigning the

i values in Vi to the i variables in Xi. Then Set stores the set of compound labels
which have been identified to be redundant, deleted from their corresponding con-
straints and awaiting further processing. Counters count the number of supports that
are given by each variable x to each compound label that does not include x. For
example, Counter[(x1,...,xi), (v1,...,vi), xj] records the number of supports that xj

gives to the compound label (<x1,v1>...<xi,vi>). All Counter’s are initialized to the
domain sizes of the supporting variables. The algorithm KS-1 makes
Counter[(x1,...,xi), (v1,...,vi), xj] equal to the number of vj’s such that

satisfies((<x1,v1>...<xi,vi><xj,vj>),) holds. The Counters are only used

for propagating constraints to projections of the subject compound labels.

Note that in PC-4, path-consistency is achieved by restricting constraints Ci,j. When

Cxi 1−
Cxi 1−

Cx1…xixj

4.6 Adaptive-consistency 105

i is equal to j, Ci,j represents a unary constraint. Otherwise, it represents a binary
constraint. In KS-1, consistency is achieved by restricting general constraints.
When KS-1 terminates, some k-constraints in C may have been tightened.

According to Cooper’s analysis, both the time and space complexity of KS-1 are

O().3 Obviously, to achieve k-consistency for a higher k requires

more computation. It is only worth doing if it results in removing enough redundant
compound labels to sufficiently increase search efficiency. This tends to be the case
in problems which are tightly constrained.

4.6 Adaptive-consistency

For general CSPs, one can ensure that a search is backtrack-free by achieving a
property called adaptive-consistency. The algorithm for achieving adaptive consist-
ency can probably be explained better with the help of the following terminology.
Firstly, we extend our definition of constraint graphs (Definition 1-18) to general
CSPs. Every CSP is associated with a primal graph, which is defined below.

Definition 4-1:

The constraint graph of a general CSP (Z, D, C) is an undirected graph in
which each node represents a variable in Z, and for every pair of distinct
nodes which corresponding variables are involved in any k-constraint in C
there is an edge between them. The constraint graph of a general CSP P is

also called a primal graph of P. We continue to use G(P) to denote the con-

straint graph of the CSP P:

∀ graph((V, E)):
(V, E) = G((Z, D, C)) ≡

((V = Z) ∧ E = {(x,y) | x, y ∈ Z ∧ (∃ CS ∈ C: x, y ∈ S)}) ■

Definition 4-2:

The Parents of a variable x under an ordering is the set of all nodes which
precede x according to the ordering and are adjacent to x in the primal graph:

∀ csp((Z, D, C)):
(∀ <: total_ordering(Z, <): (V, E) = primal_graph((Z, D, C)):

(∀ x ∈ V: parents(x, (V, E), <) ≡ {y | y < x ∧ (x,y) ∈ E})) ■

3. There are in fact nCi possible combinations of i-tuples, and therefore nCia
i+1 counters are

required. So the author suspects that the complexity of KS-1 is in fact .

Cn i ai⋅()
i 1=
k∑

Cn i ai 1+⋅()
i 1=
k∑

106 Problem reduction

Definition 4-3:

A CSP P is adaptive-consistent under a total-ordering of its variables if for
all variables x, there exists a constraint CS on the parents of x (S), and every
compound label in CS satisfies all the relevant constraints on S.

∀ csp((Z, D, C)): (∀ <: total_ordering(Z, <):
(adaptive-consistent((Z, D, C), <) ≡

(∀ x ∈ Z: (S = {y | y < x ∧ ∃ CS' ∈ C: x, y ∈ S'} ⇒
∃ CS ∈ C: ∀ cl ∈ CS: satisfies(cl, CE(S, (Z, D, C))))))) ■

The concept of backtrack-free search involves an ordering of the variables
(Definitions 1-28, 1-29). To achieve adaptive-consistency, the variables are proc-
essed according to the reverse of this ordering. For each variable x that is being
processed, a k-constraint is created for its Parents, where k is the cardinality of x’s
parents in the primal graph. Compound labels in this constraint which are either
incompatible with each other or incompatible with all the values in Dx are removed.
Then edges are added between all pairs of nodes in the parents in the primal graph.
Figure 4.3 shows the change of an example primal graph during the achievement of
adaptive-consistency. The following is the pseudo code for achieving adaptive-con-
sistency:

PROCEDURE Adaptive_consistency(Z, D, C, <)
/* xi denotes the i-th variable in Z according to the ordering < */
BEGIN

FOR i =  Z to 1 by −1 DO
BEGIN

S ← {w | w ∈ Z ∧ w < x i ∧ (∃ CX ∈ C: w, xi ∈ X)};
CS ← {cl | cl = compound label for S such that ∃ vi ∈ :

satisfies(cl+<xi,vi>, CE(S + {xi}, (Z, D, C)))};
C ← C + {CS};

END;
return(Z, D, C, <);

END /* of Adaptive_consistency */

The Adaptive_consistency procedure assumes that the variables are given the order-
ing x1, x2, ..., xn, where n is the number of variables in the problem. These variables
are processed in reverse order. When xi is processed, the procedure removes from
the constraint for the parents of xi all those compound labels which either violate
some constraints on the parents or have no compatible values in xi. Therefore, this

Dxi

(a) Ordered graph to be processed (from Figure 3.5)

F D B ACEG

F D B ACEG

nodes order: (G,F,E,D,C,B,A), process order: (A,B,C,D,E,F,G)

F D B ACEG

F D B ACEG

F D B ACEG

(b) Node A is processed, and edge (F, B) is added

(c) Node B is processed, and edges (G, C) and (F, C) are added

(d) Node C is processed, and edge (F, D) is added

(e) Node D is processed, and edge (G, E) is added

ordering

Figure 4.3 Example showing the change of a graph during adaptive-
consistency achievement (Processing of E, F and G add no more edges,
and therefore the graph shown in (e) is the induced graph. Its width

is 3)

108 Problem reduction

procedure deals with j-constraints rather than just binary constraints. It may be
worth noting that the primal graph need not be represented and modified in the pro-
cedure. It was only mentioned above to help explain the algorithm.

Theorem 4.1

If adaptive-consistency is achieved in a CSP under an ordering, then a search
under this ordering is backtrack-free:

∀ csp((Z, D, C)): (∀ <: total_ordering(Z, <):
(adaptive-consistent((Z, D, C),<) ⇒ backtrack-free((Z, D, C), <)))

Proof (see [DecPea88a])

Assume that the variables are given the ordering x1, x2, ..., xn, and adaptive-
consistency has been achieved under this ordering. At any stage of a search,
a (possibly empty) sequence of variables x1, x2, ..., xk have been consistently
labelled. Let S be the set of parents of xk+1. When xk+1 is being labelled,
there are only two possibilities:

(1) The domain of xk+1 is an empty set, in which case the search may ter-
minate with failure being reported. Note that this can only be the case if
xk+1 has no parents (i.e. S is an empty set). This is because if S is non-
empty, then there must exist a constraint CS which is an empty set
(because no compound label for S is compatible with any value for
xk+1), and therefore S could not have been consistently labelled (which
contradicts the assumption).

(2) If the domain of xk+1 is nonempty, then since the parents of xk+1

(which could be an empty set) have been consistently labelled (by
assumption), there must exist a value for xk+1 which is compatible with
all its parents (because every compound label in CS has a compatible
value in xk+1).

In both cases, no backtracking is required.

(Q.E.D.)

Definition 4-4:

The primal graph of a CSP P after adaptive-consistency is achieved under
some ordering of the variables (i.e. possibly with new edges added) is called
the induced-graph of P under that ordering, denoted by induced-graph(P,
Ordering):

4.6 Adaptive-consistency 109

∀ csp((Z, D, C)): (∀ <: total_ordering(Z, <):
(∀ csp((Z, D', C')):

equivalent((Z,D,C), (Z,D',C')) ∧ adaptive-consistent((Z,D',C'),<):
induced-graph((Z, D, C), <) ≡ G((Z,D',C')))) ■

Readers are reminded that two CSPs are equivalent if they have the identical sets of
variables and identical sets of solution tuples (Definition 2-3).

Definition 4-5:

The width of the induced graph of a CSP P under some orderings of its vari-

ables is called the induced-width of P under that ordering. It is denoted by

induced-width(P, <):

∀ csp((Z, D, C)): (∀ <: total_ordering(Z, <):
induced-width((Z, D, C), <) ≡ width(induced-graph((Z, D, C), <)))) ■

Definition 4-6:

The induced-width of a CSP P, denoted by induced-width(P), is the mini-

mum induced-width of P under all orderings:

∀ csp((Z, D, C)):
induced-width((Z, D, C)) ≡

MIN width(induced-graph((Z, D, C),<))): total_ordering(Z, <)) ■

If a is the maximum size of the domains in a CSP and W* is the induced-width of
the problem under some ordering <, then the time complexity of Adaptive_consist-

ency under < is O(aW*+1), and the space complexity is O(aW*). This can be seen as
follows. Let S be the largest parent set in the induced primal graph. By the definition
of width, W* must be equal to S  . To construct or reduce the constraint CS, W*+1
variables must be considered (the variables in S plus the variable of which they are
parents). That is equivalent to solving a CSP with W*+1 variables, which complex-

ity is O(aW*+1) in general. In the worst case, the size of the constraint CS is O(aW*),
which is the time and space complexity of Adaptive_consistency.

Unfortunately, the optimal ordering which gives W* (the minimum induced-width
of all possible orderings) is NP-hard to compute. Therefore, the actual time com-
plexity of the Adaptive_consistency algorithm is hard to compute. Partly because of
this, how useful this algorithm is for solving realistic problems is yet to be studied.
However, it does give us some insight into the complexity of CSP solving.

110 Problem reduction

4.7 Parallel/Distributed Consistency Achievement

As a result of advances in hardware, parallel processing becomes more and more
widely available. Therefore, in evaluating an algorithm, one may want to evaluate
their suitability for parallel processing. Although AC-1 and PC-1 have higher com-
plexity, they have more inherent parallelism than the AC-3 and PC-2 algorithm. In
the following sections, we introduce two algorithms designed for parallel achieve-
ment of arc-consistency.

4.7.1 A connectionist approach to AC achievement

A connectionist approach to problem solving is to represent the problem with a net-
work, where each node is implemented by a piece of hardware which is only
required to perform very simple tasks. Efficiency is gained by making use of a large
number of (simple) processors and the carefully chosen connections. Connectionist
approaches to CSP solving will be revisited in Section 8.3 of Chapter 8.

AC-3 and AC-4 are based on the notion of support. A label <x,a> is supported if for
every variable y there exists a value b such that <y,b> is legal and (<x,a><y,b>) sat-
isfies the constraint Cx,y. Swain & Cooper [1988] show how this logic can be built
into a hardware network, as explained below.

Given a binary CSP, a network is set up in the following way: a v-node is used to
represent each variable, and a c-node is use to represent each 2-compound label,
regardless of whether the 2-compound label satisfies the relevant constraints.
Figure 4.4 shows the network for a CSP with three variables x, y and z, which are all
assumed to have the same domain {a, b}. Each node in the network may take a
binary value (0 or 1), indicating whether this label or compound label is legal. For
variables x, x1 and x2 we use v(<x,a>) to denote the value taken by the v-node
which represents the label <x,a>, and c(<x1,v1> <x1,v2>) to denote the value taken
by the c-node which represents the 2-compound label (<x1,v1> <x2,v2>).

Each pair of v-nodes which represent the labels <x1,v1> and <x2,v2> such that x1 ≠
x2 are connected through an AND gate to the c-node which represents the 2-com-
pound label (<x1,v1><x2,v2>). For example, Figure 4.4 shows a connection from the
v-nodes which represent <x,a> and <y,a> to the c-node which represents (<x,a>
<y,a>), and a connection from <y,b> and <z,b> to (<y,b> <z,b>). In other words,
c(<x1,v1><x2,v2>) will be set to 0 if either of <x1,v1> or <x2,v2> is 0.

Each v-node <x1,v1> is connected by all the c-nodes which represent 2-compound
labels (<x1,v1> <x2,v2>) for some x2 (≠ x1) and v2 under the following logic:

v(<x1,v1>) ← v(<x1,v1>) ∧

4.7 Parallel/Distributed Consistency Achievement 111

where Z is the set of variables in the problem and is the domain of x2.

Figure 4.4 shows the input connections to the v-node for <x,a>.

v x2 v2,〈 〉() c x1 v1,〈 〉 x2 v2,〈 〉()∧
v2 Dx2

∈
∪

 
 

x2 Z∈ x1 x2≠∧
∩

Dx2

x

y

z

a bvariables

values

<y,a> <y,b>

<x,a>

<x,b>

Constraint Cx,y

<z,a> <z,b>

<y,a>

<y,b>

Constraint Cy,z

<z,a> <z,b>

<x,a>

<x,b>

Constraint Cx,z

AND connection

OR connection

v-node
c-node

Figure 4.4 A connectionist representation of a binary CSP (Z, D, C),
where the variables Z = {x, y, z} and all the domains are {a, b} (only three

sets of connections are shown here)

112 Problem reduction

The network is initialized in such a way that all the v-nodes are set to 1 and all the c-
nodes are set to 1 if the compound label that it represents satisfies the constraint on
the variables; it is set to 0 otherwise.

After initialization, the network is allowed to converge to a stable stage. A network
will always converge because nodes can only be switched from 1 to 0, and there are
only a finite number of nodes. When the network converges, all the v-nodes which
are set to 0 represent labels that are incompatible with all the values of at least one
other variable (because of the set up of the network). The soundness and complete-
ness of this network follow trivially from the fact that its logic is built directly from

the definition of AC. The space complexity of this approach is O(n2a2), where n is
the number of variables and a is the largest domain size in the problem.

4.7.2 Extended parallel arc-consistency

After convergence, AC is achieved in the network described in the previous section.
Guesgen & Hertzberg [Gues91] [GueHer92] propose a method that stores informa-
tion in the network which can help in solving the CSP.

A few modifications are made to the network described in the previous section.
Firstly, each c-node is given a signature, which could, for example, be a unique
prime number. Secondly, instead of storing binary values, each v-node is made to
store a set of signatures. Although each c-node stores a binary value as before, what
it outputs is not this value, but a set of signatures, as explained later. For conven-
ience, we call the signatures of the c-node for the compound label (<x1,v1> <x2,v2>)
s(<x1,v1> <x2,v2>).

The connections remain the same as before. Each v-node representing <x,v> is ini-
tialized to the set of all signatures for all the c-nodes except those which represent
2-compound labels involving <x,v'> with v' ≠ v. In other words:

v(<x,v>) ← {s(<x,v><x',v'>) | x' ∈ Z & v' ∈ Dx' & x ≠ x'} ∪
{s(<x1,v1><x2,v2>) |

x1 ∈ Z & v1 ∈ & x1 ≠ x & x2 ∈ Z & v2 ∈ & x2 ≠ x}

where Z is the set of variables and Dx is the domain of the variable x. For example,
in the problem shown in Figure 4.4, there are three variables x, y and z, all of which
have the domain {a, b}. The v-node for <x,a> will be initialized to the set of signa-
tures {s(<x,a><y,a>), s(<x,a><y,b>), s(<x,a><z,a>), s(<x,a><z,b>), s(<y,a><z,a>),
s(<y,a><z,b>), s(<y,b><z,a>), s(<y,b><z,b>)}.

The initial values for the c-nodes are the same as the network described in the last
section, i.e. a c-node is set to 1 if the compound label that it represents is legal, and

Dx1
Dx2

4.7 Parallel/Distributed Consistency Achievement 113

0 otherwise.

Guesgen calls the convergence mechanism graceful degradation. Each v-node out-
puts the signatures that it stores to its connected c-nodes. When a c-node is on, it
takes the intersection of the (two) input sets of signatures and outputs the result to
the v-nodes connected to it; an empty set is output if it is off. Therefore, input to
each v-node is sets of signatures from the c-nodes. These inputs will be combined
using the logic shown in Figure 4.4, with AND operations replaced by set union
operations, and OR operations replaced by set intersection operations. This com-
bined result is intersected with the value currently stored in the v-node. The input,
output and the values of each node are summarized in Figure 4.5.

The network will always converge because the number of signatures stored in the v-
nodes is finite and nonincreasing. After the network has converged, a solution W to
the CSP is a compound label such that:

input: v(<x, a>) ∩ v(<y, b>)

output: v(<x, a>) ∩ v(<y, b>)

For the c-node for (<x, a> <y, b>):

if c(<x, a> <y, b>) = 1;
{} otherwise

For the v-node for <x, a>:

input: ∩ ∪ output of the c-node for (<x, a> <y, b>)

output:

value (static): 1
0

current value (i.e. v(<x, a>))

y ∈ Z b ∈ D y

value: current value ∩ input

Figure 4.5 Summary of the input, output and values of the nodes in
Guesgen’s network (Z = set of variables, Dy = domain of y)

if (<x, a> <y, b>) satisfies Cx,y ;
otherwise

114 Problem reduction

(1) W contains exactly one label per variable; and
(2) for every label w in W, v(w) contains the signatures of all the c-nodes which

represent some 2-compound labels which are projections of W. In other
words,∀ w ∈ W: P ⊆ v(w), where P = {s(l1,l2) | l1 ∈ W ∧ l2 ∈ W ∧ l1 ≠ l2}

How this compound label W can be found is not suggested by Guesgen & Hertz-
berg. However, if an algorithm does find Ws which satisfy the above conditions,
then this algorithm is sound and complete for binary CSPs. Soundness can be
proved by refutation. Let us assume that W is a compound label which satisfies the
above conditions, but that one of its projections (<x,a> <y,b>) violates the con-
straint Cx,y. The initialization stipulates that the signature s(<x,a> <y,b>) cannot be
stored in any v-node for <x,a'> and <y,b'> where a ≠ a' and b ≠ b'. Since c(<x,a>
<y,b>) is (initialized to) 0, a little reflection should convince the readers that s(<x,a>
<y,b>) can never find its way back to both the v-nodes for <x,a> and <y,b> via any
c-nodes. Therefore, condition 2 must be violated, which contradicts our assumption
above. Therefore, all the compound labels W which satisfy the above conditions
must be solutions to the binary CSP.

Let us assume that S is a solution to the binary CSP. We shall show that S must sat-
isfy the conditions set above. Since S is a solution, all the c-nodes that represent
some 2-compound labels which are projections of S must be initialized to 1. Pick
any label <x,a> in S. It is not difficult to see from the graceful degradation rules that
a signature will be ruled out from the v-node for <x,a> if and only if there exists
some variable y such that for all b in Dy, c(<x,a><y,b>) = 0. But if <x,a> is part of a
solution, there exists at least one compatible b for every y. So S must satisfy condi-
tion 2 above, hence any algorithm which finds all the Ws that satisfy the above con-
ditions is complete.

Let n be the number of variables and a be the maximum size of the domains. There

are na v-nodes, and n2a2 signatures, so the space complexity of Guesgen’s algo-

rithm for the network is n3a3.

The space requirement of Guesgen’s algorithm can be improved if the signatures
are made unique prime numbers. In that case, instead of asking each node to store a
set, they could be asked to store the grand product of the signatures input to it. Then
one may compute the greatest common divisor (gcd) instead of computing the set
intersections in the algorithm, and the least common multiples (lcm) instead of set
unions. Under this stipulation, a c-node whose value is 0 will be made to send 1
instead of an empty set. Space is traded with speed if gcd’s and lcm’s are more
expensive to compute than set intersections and unions. Another advantage of using
prime numbers as signatures is that a single integer (though it needs to be very large
for realistic problems) is sent through each connection. Had sets been used, a poten-
tially large set of signatures would have had to be sent.

4.8 Summary 115

4.7.3 Intractability of parallel consistency

Kasif [1990] points out that the problem of achieving AC and the problem of testing
the satisfiability of propositional Horn clauses belong to the same class of problems
which are logarithmic-space complete. What this implies is that AC-consistency is
unlikely to be achievable in less than logarithmic time by massive parallelism. From
this, Kasif concludes intuitively that CSPs cannot be solved in logarithmic time by
using only a polynomial number of processors. This conjecture is supported inde-
pendently by other researchers (e.g. Collin et al., 1991) who have experimented in
using connectionist-type architectures for solving CSPs, but failed to find general
asynchronous models for solving even relatively simple constraint graphs for binary
CSPs.

However, such results do not preclude the possibility of achieving linear speed up
by solving CSPs using parallel architectures. Linear speed up is likely to be achiev-
able when the number of processors is significantly smaller than the size of the con-
straint graph (which is often true), as has been illustrated by Saletore & Kale
[1990].

4.8 Summary

In this chapter, we have described algorithms for problem reduction, which is done
by achieving consistency in the problems. Consistency can be achieved by either
removing redundant values from domains, or by removing redundant compound
labels from constraints.

In this chapter, we have introduced algorithms for achieving NC, AC, DAC, PC,
DPC, adaptive-consistency and k-consistency. Algorithms which achieve NC, AC
and DAC do so by removing redundant values from the domains. Algorithms which
achieve PC and DPC do so by removing redundant 2-compound labels from binary-
constraints. Algorithms for achieving adaptive-consistency remove compound-
labels from general constraints; and algorithms for achieving k-consistency remove
redundant compound-labels from m-constraints where m ≤ k.

The time and space complexity of the above algorithms could be expressed in terms
of the following parameters:

n = number of variables in the problem;
e = number of binary constraints in the problem;
a = size of the largest domain.

The time and space complexity of the above consistency achievement algorithms
are summarized in Table 4-1.

The removal of redundant values from domains and redundant compound labels

116 Problem reduction

from constraints in problem reduction is based on the notion of support. Such sup-
port can be built into networks in connectionist approaches. Swain & Cooper’s con-
nectionist approach implements the logic of AC in hardware. Each value in each
domain and each 2-compound label (whether constraint exist on the two subject
variables or not) is implemented by a resetable piece of hardware (a JK-flip-flop, to
be precise). The logic makes sure that the converged network represents a CSP
which is reduced to AC. Guesgen & Hertzberg extend Swain & Cooper’s approach
to allow solutions to be generated from the converged network, although the com-

Table 4.1 Summary of time and space complexity of problem reduction
algorithms

n = number of variables;
e = number of binary constraints;

a = size of the largest domain

Algorithm Time complexity Space complexity

NC-1 O(an) O(an)

AC-1 worst case: O(a3ne) O(e+na)

AC-3 lower bound: Ω(a2e)
upper bound: O(a3e)

O(e+na)

AC-4 worst case: O(a2e) O(a2e)

DAC-1 worst case: O(a2e); or O(a2n) when the
constraint graph forms a tree

O(e+na)

PC-1 worst case: O(a5n5) O(n3a2)

PC-2 lower bound: Ω(a3n3), upper bound:
O(a5n3)

O(n3+n2a2)

PC-4 worst case: O(a3n3) O(n3a3)

DPC-1 worst case: O(a3n3) O(n2a2)

KS-1
(to achieve k-
consistency)

worst case : O()

Adaptive_
consistency

worst case: O(aW*+1), where W* =
induced-width of the constraint graph
(W* is NP-hard to compute)

O(aW*), where W*
= induced-width

O Cn i ai⋅()
i 1=

k

∑ 
  Cn i ai⋅()

i 1=

k

∑

4.9 Bibliographical Remarks 117

plexity of the solution finding process is unclear.

Kasif [1990] shows that problem reduction is inherently sequential, and conjectures
that it is unlikely to solve CSPs in logarithmic time by using only a polynomial
number of processors. This conjecture is supported by other researchers, (e.g. Col-
lin et al., 1991). However, linear speed-up is achievable in parallel processing.

4.9 Bibliographical Remarks

CSP solving algorithms based on problem reduction are also called relaxation
algorithms in the literature [CohFei82]. AC-1, AC-2 and AC-3 are summarized by
Mackworth [1977]. The Waltz filtering algorithm [Wins75] is also an algorithm
which achieves AC. AC-4, the improvement of these algorithms, is presented in
Mohr & Henderson [1986]. van Hentenryck and his colleagues generalize the arc-
consistency algorithms in a generic algorithm called AC-5 [DevHen91]
[VaDeTe92]. They have also demonstrated that the complexity of AC-5 on specific
types of constraints, namely functional and monotonic constraints, which are impor-
tant in logic programming, is O(ea), where e is the number of binary constraints and
a is the largest domain size. Recently, van Beek [1992] generalized Montanari’s and
Deville and van Hentenryck’s results to row-convex constraints, and showed that a
binary CSP in which constraints are row-convex can be reduced to a minimal prob-
lem by achieving path-consistency in it. DAC-1 and DPC-1 are based on the work
of Dechter & Pearl [1985b].

The relaxation algorithm PC-1 and PC-2 can be found in Mackworth [1977]. (The
PC-1 algorithm is called “Algorithm C” by Montanari [1974].) PC-2 is improved to
PC-3 by Mohr & Henderson [1986], in a same manner as AC-3 is improved to AC-
4. However, minor mistakes have been made in PC-3, which are corrected by Han
& Lee [1988], producing PC-4. GAC4 is proposed by Mohr & Masini [1988]. Bes-
sière [1992] extends GAC4 (to an algorithm called DnGAC4) to deal with dynamic
CSPs (in which constraints are added and removed dynamically). The algorithm for
achieving k-consistency is presented by Cooper [1989], and the concept of adap-
tive-consistency is introduced by Dechter & Pearl [1988a].

Complexity analysis of the above algorithms can be found in Mackworth & Freuder
[1985], Mohr & Henderson [1986], Dechter & Pearl [1988a], Han & Lee [1988]
and Cooper [1989]. For foundations of complexity theory, readers are referred to
textbooks such as Knuth [1973] and Azmoodeh [1988].

Mackworth & Freuder [1985] evaluate the suitability of parallel processing among
the arc-consistency achievement algorithms. Swain & Cooper [1988] propose to use
a connectionist approach to achieve arc-consistency, and Cooper [1988] applies this
technique to graph matching. Guesgen & Hertzberg [1991, 1992] extend Swain &
Cooper’s approach to facilitate the generation of solutions from the converged net-

118 Problem reduction

work. In Guesgen & Hertzberg’s work, unique prime numbers are being used as sig-
natures. Further discussion on applying connectionist approaches to CSP solving
can be found in Chapter 8.

Kasif’s work appears in [Kasi90]. Collin et al. [1991] use connectionist approaches
to CSP solving. van Hentenryck [1989b] studies parallel CSP solving in the context
of logic programming. Saletore & Kale [1990] show that linear speed up is possible
in using parallel algorithms to find single solutions for CSPs.

Some notations in the literature have been modified to either improve readability or
ensure consistency in this book.

