
Chapter 3

Fundamental concepts in the CSP

3.1  Introduction

In the last chapter we explained that problem reduction serves two purposes: to
reduce the problem to one which is hopefully easier to solve, and to recognize insol-
uble problems. The whole idea of problem reduction is about removing redundant
values and redundant compound labels — values and compound labels which
appear in no solution tuples. The question is how to identify such values and com-
pound labels.

Over the years, a number of consistency concepts have been developed to help in
identifying redundant values and compound labels. These concepts are defined in
such a way that if the presence of a value in a domain or a compound label in a con-
straint falsifies them, then it can be deduced to be redundant. In this chapter we shall
look at these consistency concepts.

As mentioned in the last chapter, “consistency” in the CSP literature is neither a
necessary nor a sufficient condition for a problem to be solvable. In other words, a
problem can be inconsistent and yet have valid solutions. It can also be consistent
but insoluble. In CSP, “a CSP being consistent with regard to a certain property”
should be interpreted as “values and compound labels whose presence would cause
certain properties to be false have been removed from their corresponding domains
and constraints”. Different types of consistency guarantee different properties.

We continue to define concepts both verbally and in First Order Predicate Calculus
(FOPC). The former is easier to read, and the latter is unambiguous. Defining these
concepts with FOPC allows one to interpret them more precisely.
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3.2  Concepts Concerning Satisfiability and Consistency

In this section, we shall first extend the satisfiability concepts introduced in the last
two chapters. Then we shall introduce k-consistency, which are a concept in general
CSPs. Finally, we shall introduce some important consistency concepts for binary
CSPs.

3.2.1  Definition of satisfiability

In Chapter 1, we defined the satisfiability relationship between compound labels
and constraints when the variables of the compound label is a superset of the varia-
bles of the constraint (Definition 1-11). In Chapter 2, we introduced constraint
expressions, and defined the satisfiability relationship between compound label and
constraint expressions (Definitions 2-9 to 2-11). Here we extend these concepts to
k-satisfiability, which is a relationship between a k-compound label (Definition 1-
4) and a constraint expression.

Definition 3-1:

A k-compound label CL k-satisfies a constraint expression CE if and only if
CL satisfies all the constraints in CE1:

∀  csp((Z, D, C)): ∀ X ⊆  Z:
(∀ x1, x2, ..., xk ∈ Z: (∀ v1 ∈  , v2 ∈  , ... , vk ∈  :

k-satisfies((<x1,v1>...<xk,vk>), CE(X)) ≡
(∀ S: (S ⊆  {x1, x2, ..., xk} ∩ X ∧ CS ∈ CE( X)) ⇒

satisfies((<x1,v1> ... <xk,vk>), CS))) ■

Definition 3-2:

A CSP (Z, D, C) is k-satisfiable if and only if for all subsets of k variables in
Z there exists a set of labels for them which satisfies all the relevant con-
straints in CE(Z, (Z, D, C)):

∀  csp((Z, D, C)):
k-satisfiable( (Z, D, C) ) ≡

1.  Note that the k in the definition of k-satisfies is actually treated as an argument of the
predicate. A more accurate syntax in first order logic would be to put k between the brackets,
which makes satisfies(k, Compound_label, Cs). The present syntax is adopted for both simplicity
and conformation with the CSP literature. The same arrangement applies to the definition of k-
satisfiable (Definition 3-2), k-unsatisfiable (Definition 3-3), (i, j)-consistent (Definition 3-14),
strong-(i, j)-consistency (Definition 3-15), k-tree (Definition 3-26), partial-k-tree (Definition 3-
29) and weak partial-k-tree (Definition 3-30) in this chapter.

Dx1
Dx2

Dxk
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(∀ x1, x2, ..., xk ∈ Z: (∃ v1 ∈  , v2 ∈  , ... , vk ∈  :

k-satisfies((<x1,v1> ... <xk,vk>), CE({x1,x2,...,xk}, (Z, D, C))))) ■

For convenience, we define the satisfiability of a CSP below.

Definition 3-2(a):

A CSP which has n variables is satisfiable if it is n-satisfiable:

∀  csp((Z, D, C)): Z  = n:
satisfiable( (Z, D, C) ) ≡ n-satisfiable( (Z, D, C) ) ■

Definition 3-3:

A CSP is called k-unsatisfiable if it is not k-satisfiable:

∀  csp(P ): k-unsatisfiable(P ) ≡ ¬ k-satisfiable(P ) ■

3.2.2  Definition of k-consistency

In this section, we define the concept of k-consistency in CSPs. If a CSP has n
nodes, then k-consistency is defined when k is less than or equal to n.

Definition 3-4:

A CSP is 1-consistent if and only if every value in every domain satisfies
the unary constraints on the subject variable. A CSP is k-consistent for k
greater than 1 if and only if all (k − 1)-compound labels which satisfy all the
relevant constraints can be extended to include any additional variable to
form a k-compound label that satisfies all the relevant constraints:

When k = 1:
1-consistent( (Z, D, C) ) ≡ (∀ x ∈  Z: (∀ v ∈  Dx: satisfies((<x,v>), Cx))

When k ³ 2:
k-consistent( (Z, D, C) ) ≡

(∀ x1, ..., xk-1 ∈ Z: (∀ v1 ∈  , ... , vk-1 ∈ :

(k−1)-satisfies((<x1,v1>...<xk-1,vk-1>), CE({x1,...,xk-1}, (Z, D, C)))

⇒  (∀ xk ∈ Z: (∃ vk ∈ :

k-satisfies((<x1,v1>...<xk,vk>), CE({x1, ..., xk}, (Z, D, C)))
)))) ■

Trivial though it may be, it is worth emphasizing that a 1-satisfiable problem needs
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not be 1-consistent. This will be the case when some values in some domains vio-
late the constraint on that variable. A 1-consistent problem can also be 1-unsatisfia-
ble. This will be the case when some domains are empty.

If for all variables x in a CSP we remove from Dx all the values which do not satisfy
Cx, then the resulting CSP must be equivalent to the original problem. This is
because we can be sure that no solutions will be added or deleted (any value that
does not appear in Cx cannot appear in the solution tuple). The resulting CSP is 1-
consistent by definition.

Definition 3-5:

A CSP which is not k-consistent is called k-inconsistent:

∀  csp(P ): k-inconsistent(P ) ≡ ¬ k-consistent(P ) ■

It may be tempting to believe that k-consistency implies (k − 1)-consistency. How-
ever, Freuder [1982] points out that a CSP which is k-consistent needs not be (k −
1)-consistent. Consider the problem CSP-1 shown in Figure 3.1. A counter-example
will show that CSP-1 is 2-inconsistent. The label <B,r> 1-satisfies CB, but no label
for A is compatible with <B,r> (i.e. no 2-compound labels for A and B which con-
tains <A,r> will 2-satisfy CE({A,B})). Therefore CSP-1 is 2-inconsistent by defini-
tion. However, CSP-1 is 3-consistent. This can be seen by observing that the only
compound labels that 2-satisfy the constraints are (<A,r><B,b>), (<A,r><C,r>) and
(<B,b><C,r>). They are all projections of (<A,r><B,b><C,r>), which 3-satisfies
CE({A,B,C}). Therefore, they can all be extended to include the missing variable to
form a 3-compound-label which 3-satisfies all the constraints; hence CSP-1 is 3-
consistent.

B

A C {r}

{r, b}

{r}

A ≠ B B ≠ C

Figure 3.1 CSP-1: example of a 3-consistent CSP which is not 2-con-
sistent (from Freuder [1982])
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In view of the weakness of k-consistency, Freuder [1982] introduces the concept of
strong k-consistency.

Definition 3-6:

A CSP is strong k-consistent if it is 1-, 2-, ..., up to k-consistent:

∀  csp(P ): strong k-consistent(P ) ≡ (∀ j: 1 ≤ j ≤ k: j-consistent(P )) ■

By definition, strong k-consistency entails strong (k − 1)-consistency.

3.2.3  Definition of node- and arc-consistency

In Chapter 1, we pointed out that associated to each binary constraint problem is an
undirected graph, where the nodes represent the variables and the edges represent
the binary constraints. Because of the importance of binary constraint problems, a
set of consistency concepts has been defined for them. Borrowing terminology from
graph theory, these concepts are called node-, arc- and path-consistency.

Definition 3-7:

A CSP is node-consistent (NC) if and only if for all variables all values in
its domain satisfy the constraints on that variable. We use NC(P) to denote
that P is node-consistent:

∀  csp((Z, D, C)):
node-consistent( (Z, D, C) ) ≡ (∀ x ∈  Z: (∀ v ∈  Dx: satisfies(<x,v>, Cx)) ■

The formal definition of node-consistency (NC) is exactly the same as 1-consist-
ency.

Recall that we take an arc as a pair of variables, and denote it with (a, b), where a
and b are the nodes joined by this arc. For undirected graphs, (a, b) is the same
object as (b, a). (An edge (x, y) can be seen as a pair of arcs (x, y) and (y, x) in a
directed graph.)

Definition 3-8:

An arc (x, y) in the constraint graph of a CSP (Z, D, C) is arc-consistent
(AC) if and only if for every value a in the domain of x which satisfies the
constraint on x, there exists a value in the domain of y which is compatible
with <x,a>:

∀  csp((Z, D, C)): ∀ x, y ∈ Z:
AC( (x, y), (Z, D, C) ) ≡ (∀ a ∈  Dx: satisfies((<x,a>), Cx) ⇒

∃ b ∈ D y: (satisfies((<y,b>), Cy)) ∧ satisfies((< x,a><y,b>), Cx,y))) ■
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Definition 3-9:

A CSP is arc-consistent (AC) if and only if every arc in its constraint graph
is arc-consistent:

∀  csp((Z, D, C)): AC( (Z, D, C) ) ≡ (∀ x, y ∈  Z: AC((x, y), (Z, D, C))) ■

In other words, a CSP is arc-consistent if and only if for every variable x, for every
label <x,a> that satisfies the constraints on x, there exists a value b for every varia-
ble y such that the compound label (<x,a> <y,b>) satisfies all the constraints on x
and y. This is exactly the same as the definition of 2-consistency defined in
Definition 3-4.

The concept of arc-consistency is useful in searching. Freuder [1982] points out that
in any binary CSP which constraint graph forms a tree, a search can be made back-
track-free if both node and arc-consistency are achieved in the problem. The Waltz
filtering algorithm that we mentioned in Chapter 1 is basically an algorithm which
maintains AC throughout the search. The Waltz algorithm and other algorithms for
maintaining AC will be discussed in Chapter 4. Here we shall formally state Freud-
er’s theorem.

Theorem 3-1 (mainly due to Freuder, 1982)

A search in a CSP is backtrack-free if the constraint graph of a problem
forms a tree and both node- and arc-consistency are achieved in the prob-
lem:

∀  csp(P ): P = (Z, D, C) ⇒
((tree(G(P )) ∧  NC(P ) ∧ AC( P )) ⇒

∃  <: total_ordering(Z, <): backtrack-free(P, <))

Proof

(1) assume that P = (Z, D, C) is a binary CSP which constraint graph

G(P ) forms a tree. Assume further that both NC(P ) and AC(P ) are
true.

(2) Since G(P ) forms a tree, and every node has at most one parent node

in a tree, there exists an ordering < such that every node x in G(P )
except the first node has exactly one node y such that y < x and (x,y) is

an edge in G(P ).

(3) Let the variables be labelled according to the ordering specified in (2).
When a variable x is to be labelled, there exists at most one variable y
which has already been labelled which label could possibly be in con-
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flict with x’s. But since P is arc-consistent, there is always a value vx

which x may take that is compatible with the label y has taken. Further-

more, since P is NC and vx is in the domain of x, the label <x,vx> must
satisfy Cx. Therefore, the search is backtrack-free.

(Q.E.D.)

3.2.4  Definition of path-consistency

Definition 3-10:

A path (x0, x1, ..., xm) in the constraint graph for a CSP is path-consistent
(PC) if and only if for any 2-compound label (<x0,v0> <xm, vm>) that satis-
fies all the constraints on x0 and xm there exists a label for each of the varia-
bles x1 to xm-1 such that every binary constraint on the adjacent variables in
the path is satisfied:

∀  csp((Z, D, C)): ∀x 0, x1, x2, ..., xm ∈  Z:
PC((x0, x1, x2, ..., xm), (Z, D, C)) ≡

(∀ v0 ∈ , vm ∈  :

(satisfies((<x0,v0>), ) ∧  satisfies((<xm,vm>), ) ∧

satisfies((<x0,v0><xm,vm>), ) ⇒

(∃ v1 ∈  , v2 ∈  , ... , vm-1 ∈  :

satisfies((<x1,v1>), }) ∧  ... ∧

satisfies((<xm-1,vm-1>), ) ∧

satisfies((<x0,v0><x1,v1>), ) ∧

satisfies((<x1,v1><x2,v2>), ) ∧  ... ∧

satisfies((<xm-1,vm-1><xm,vm>), )))) ■

Note carefully that the definition of path-consistency for the path (x0, x1, ..., xm)
does not require the values v0, v1, ..., vm to satisfy all the constraints in the constraint
expression CE({x0, x1, ..., xm}, (Z, D, C)). For example, since x3 and x5 are not adja-

cent variables in the path, (<x3,v3> <x5,v5>) needs not satisfy the constraint .

Dx0
Dxm

Cx0
Cxm

Cx0 xm,

Dx1
Dx2

Dxm 1−
Cx1

Cxm 1−
Cx0 x1,

Cx1 x2,

Cxm 1− xm,

Cx3 x5,
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Definition 3-11:

A CSP is said to be path-consistent if and only if every path in its graph is
consistent:

∀  csp((Z, D, C)):
PC( (Z, D, C) ) ≡ ∀ x0, x1, ..., xm ∈ Z: PC((x0, x1, ..., xm), (Z, D, C)) ■

This implies that if a CSP is path-consistent, then for all variables x and y, whenever
a compound label (<x,a> <y,b>) satisfies the constraints on both x and y, there exists
a label <z,c> for every variable z such that (<x,a> <y,b> <z,c>) satisfies all the con-
straints on x, y and z.

3.2.5  Refinement of PC

Montanari [1974] points out that if every path of length 2 of a complete constraint
graph is path consistent then the graph is path consistent. We shall prove this theo-
rem under the definitions given above.

Theorem 3-2 (due to Montanari, 1974)

A CSP is path-consistent if and only if all paths of length 2 are path-consist-
ent:

∀  csp(P ): P = (Z, D, C) ⇒
((∀ z1, z2, z3 ∈ Z: PC((z1, z2, z3), P )) ⇔

(∀ x1, x2, ..., xk ∈ Z: PC( (x1, x2, ..., xk), P )))

Proof

PC((z1, z2, z3), P ) is just a special case of PC((x1, x2, ..., xk), P ). So it is triv-
ially true that:

 (∀ z1, z2, z3 ∈ Z: PC((z1, z2, z3), P )) ⇐
(∀ x1, x2, ..., xk ∈ Z: PC( (x1, x2, ..., xk), P )).

To prove the ⇒  aspect of the theorem, let us first assume that:

(∀ z1 ∈ Z ∧ z2 ∈ Z ∧ z3 ∈ Z: PC((z1, z2, z3), P). (3.1)

Then we shall prove that all paths are path-consistent using strong induction
on the length of the path:

Base Step

When a path has length = 2, the above theorem holds (trivial).
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Induction step (by strong induction)

(1) Assume that (3.1) is true for all paths with length between 2 and some
integer m:

(∀  2 ≤ k ≤ m: ∀ x0, x1, ..., xk ∈ Z: PC((x0, x1, ..., xk), (Z, D, C))

(2) Pick any two variables x0 and xm+1. Assume that v0 and vm+1 are two
values such that:

v0 ∈  ∧ vm+1 ∈  ∧

(satisfies((<x0,v0>), ) ∧  satisfies((<xm+1,vm+1>), ) ∧

satisfies((<x0,v0><xm+1,vm+1>), ))

(3) Now pick any m variables x1, x2, ..., xm. It must be the case that:

∃ vm ∈ : (satisfies((<xm,vm>), ) ∧

satisfies((<x0,v0><xm,vm>), ) ∧

satisfies((<xm,vm><xm+1,vm+1>), )))

(the length of the path (x0, xm, xm+1) is 2; by the assumption made in
step (1), PC((x0, xm, xm+1), (Z, D, C)) holds)

(4) PC((x0, x1, ..., xm), (Z, D, C)) (by assumption in step (1))

(5) ∃ v1 ∈  , v2 ∈  , ... , vm-1 ∈ :

(satisfies((<x1,v1>), ) ∧  ... ∧  satisfies((<xm-1,vm-1>), ) ∧

satisfies((<x0,v0><x1,v1>), ) ∧  ... ∧

satisfies((<xm-1,vm-1><xm,vm>), )

(by step (4) and definition of PC)

(6) The compound label (<x0,v0><x1,v1>...<xm+1,vm+1>) satisfies ,

, ...,  and , , ..., ,

.

(by steps (2), (3) and (5))

(7) PC((x0,x1,...,xm+1), (Z, D, C)) (by step (6) and definition of PC)

(Q.E.D.)
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Cxm 1− xm,
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Cx1
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Cx0 xm 1+, Cx0 x1, Cxm 1− xm,

Cxm xm 1+,
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Therefore, we can redefine PC as follows.

Definition 3-10(R):

∀  csp((Z, D, C)): ∀ x, y , z ∈ Z:
PC( (x, y, z), (Z, D, C) ) ≡

(∀ vx ∈  Dx, vz ∈ D z:
(satisfies((<x,vx>), Cx) ∧ satisfies((< z,vz>), Cz) ∧

satisfies((<x,vx><z,vz>), Cx,z) ⇒
(∃ vy ∈  Dy: satisfies((<y,vy>), Cy) ∧

satisfies((<x,vx><y,vy>), Cx,y) ∧
satisfies((<y,vy><z,vz>), Cy,z))) ■

Definition 3-11(R):

∀  csp((Z, D, C)): PC((Z, D, C)) ≡ ∀ x, y, z ∈ Z: PC( (x, y, z), (Z, D, C) ) ■

Freuder [1982] points out that path-consistency is equivalent to 3-consistency in
binary CSPs. This is not too difficult to realize under the above definitions. Accord-
ing to our definition of k-consistency:

3-consistent((Z, D, C)) ≡ (3.2)
(∀ x, z ∈ Z : (∀ vx ∈  Dx, vz ∈  Dz:

(2-satisfies((<x,vx><z,vz>), CE({x, z}, (Z, D, C)))) ⇒
(∀ y ∈  Z: (∃ vy ∈  Dy:

3-satisfies((<x,vx><y,vy><z,vz>), CE({x, y, z}, (Z, D, C)))))))

We shall show that this is equivalent to PC((Z, D, C)) for binary CSPs. Firstly, the
universal quantifier for y in the definition of 3-consistency (3.2) can be moved to the
outmost level to make it comparable with the z in the definition in PC in
Definition 3-11(R). Secondly, by definition, 2-satisfies((<x,vx><z,vz>),
CE({x, z}, (Z, D, C))) in the definition of 3-consistency is equivalent to:

satisfies((<x,vx>),Cx) ∧ (3.3)
satisfies((<z,vz>),Cz) ∧
satisfies((<x,vx><z,vz>),Cx,z).

The proposition 3-satisfies((<x,vx><y,vy><z,vz>), CE({x, y, z}, (Z, D, C))) on the
right hand side of ⇒  of (3.2) is equivalent to:

satisfies((<x,vx>), Cx) ∧ (3.4)
satisfies((<y,vy>), Cy) ∧
satisfies((<z,vz>), Cz) ∧
satisfies((<x,vx><y,vy>),Cx,y) ∧
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satisfies((<x,vx><z,vz>),Cx,z) ∧
satisfies((<y,vy><z,vz>),Cy,z)

in binary CSPs. (Three of the terms in (3.4) appear in (3.3), or appear on the left
hand side of ⇒  in (3.2).) By comparing the two well form formulae 3-11(R) and
(3.2) after elaborating the definitions, it is not difficult to see that PC in Definition 3-
11(R) is equivalent to 3-consistency.

3.2.6  Directional arc- and path-consistency

Dechter & Pearl [1988a] observe that node- plus arc-consistency is stronger than
necessary for enabling backtrack-free search in CSPs which constraints form trees.
They propose the concept of directional arc-consistency, which is a sufficient condi-
tion for backtrack-free search in trees. Directional-arc-consistency is defined under
total ordering of the variables.

Definition 3-12:

A CSP is directional arc-consistent (DAC) under an ordering of the varia-
bles if and only if for every label <x,a> which satisfies the constraints on x,
there exists a compatible label <y,b> for every variable y which is after x
according to the ordering:

∀  csp((Z, D, C)): (∀ <: total_ordering(Z, <):
DAC((Z, D, C), <) ≡ (∀ x, y ∈  Z: x < y ⇒ AC(( x, y), (Z, D, C)))) ■

Here AC((x, y), (Z, D, C)) is defined in Definition 3-8 above. Notice that the differ-
ence between AC and DAC is in the qualification of y: all y’s in Z are considered in
AC, but only those y’s which satisfy x < y are considered in DAC. Similarly, we can
define directional path-consistent.

Definition 3-13:

A CSP P is directional path-consistent (DPC) under an ordering of the var-
iables if and only if for every 2-compound label on variables x and z,
PC((x, y, z), P ) holds for all variables y which is ordered after both x and z:

∀  csp((Z, D, C)):
(∀ <: total_ordering(Z, <):

DPC((Z, D, C), <) ≡
(∀ x, y, z ∈  Z: (x < y ∧ z < y) ⇒  PC((x, y, z), (Z, D, C))) ■

The use of NC, AC, DAC, PC and DPC concepts will be elaborated further in
Chapter 5.
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3.3  Relating Consistency to Satisfiability

Before we continue, let us examine the relationship between the satisfiability and
consistency concepts that we have introduced so far. In particular, is k-consistency,
or strong k-consistency, a sufficient or necessary condition for k-satisfiability? Is k-
consistency, or strong k-consistency, a sufficient or necessary condition for the satis-
fiability of a problem? These questions will be answered in this section.

It is not difficult to show that k-consistency is insufficient to guarantee satisfiability
of a CSP which has more than k variables. For example, the colouring problem
CSP-2 shown in Figure 3.2 is a 3-consistent but unsatisfiable CSP.

The domains of the variables are shown in curly brackets next to the variables in
Figure 3.2. On the edges, the compound labels allowed for the joined nodes are
shown. CSP-2 is 3-consistent because whatever combination of three variables that
we pick, assigning two of them any two different values from “r”, “g” and “b”
would allow one to assign the remaining value to the remaining variable without
violating any of the constraints on the three variables. But this problem is unsatisfi-
able because one needs four values to label all the variables without having any
adjacent variables taking the same value.

A

B

D

C

{r, g, b}

{r, g, b}

{r, g, b} {r, g, b}

Figure 3.2 CSP-2: example of a 3-consistent but unsatisfiable CSP
constraint: no adjacent nodes should take the same value (from

Freuder, 1978)

A ≠ B

B ≠ C

A ≠ C

D ≠ C

A
≠

D

B ≠ D
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The example CSP-3 in Figure 3.3 shows that 3-consistency is not a necessary con-
dition for satisfiability either. In CSP-3, if A = 1, then from CA,B we have to make
B = 2, which by CB,C forces C = 3, which by CC,D forces D = 4. Similarly, if A = 5,
then B = 6, which forces C = 7, which in turn forces D = 8. Therefore, two and only
two compound labels for the variables in the problem satisfy all the constraints:

(<A, 1><B, 2><C, 3><D, 4>)

and (<A, 5><B, 6><C, 7><D, 8>)

But consider the compound label (<A,1><C,7>): it satisfies all the constraints CA,
CC and CA,C (CA,C is not a constraint stated in the problem, and therefore not shown
in Figure 3.3). But no value for B is compatible with (<A,1><C,7>) (<B,2> violates
the constraint CB,C and <B,6> violates the constraint CA,B). Therefore PC((A, B, C),
CSP-3) is false; in other words, PC does not hold for CSP-3. This example shows
that path-consistency, or 3-consistency, is not a necessary condition for satisfiability
of a CSP. Therefore, k-consistency is neither a necessary nor a sufficient condition
for satisfiability.

A

B

D

C

{1, 5}

{3, 7}{2, 6}

{4, 8}

{(<A,1><B,2>),
 (<A,5><B,6>)}

{(<A,1><D,4>),

 (<A,5><D,8>)}

{(<B,2><C,3>),
 (<B,6><C,7>)}

{(<C,3><D,4>),
 (<C,7><D,8>)}

Figure 3.3 CSP-3: a problem which is satisfiable but not path-con-
sistent. The variables are A, B, C and D; their domains are shown next
to the nodes which represent them. The labels on the edges show the
sets of all compatible relations between the variables of the adjacent

nodes
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In fact, we can show that a CSP which is 1-consistent need not be 1-satisfiable. This
would be the case if there exist some variables which have empty domains, and all
the values in the nonempty domains satisfy the constraints of the corresponding var-
iables. Theorem 3-3 states that a CSP which has all the domains and constraints as
empty sets is strong k-consistent for all k.

Theorem 3-3

A CSP in which all the domains are empty sets is strong k-consistent for all
k:

∀  csp((Z, D, C)) ⇒
(∀ Dx ∈ D: Dx = {}) ⇒ (∀ k ≤Z : strong k-consistent((Z, D, C)))))

Proof

Let P = (Z, D, C) be a CSP in which all the domains are empty sets. It is 1-
unsatisfiable by definition. It is also h-unsatisfiable for all 1 ≤ h ≤  Z
because no h-compound label h-satisfies C. However, P is 1-consistent (by
definition of 1-consistency, since for all x, Dx is empty). For any k > 1, there

exists no (k − 1)-compound label which (k − 1)-satisfies the constraints of P,
and therefore the left hand side of the “⇒ ” in the definition of k-consistency
(Definition 3-4) is never satisfied. Therefore, the proposition k-consisten-

cy(P) is always true for all k, which means strong k-consistency(P) is
always true.

(Q.E.D.)

One significant implication of Theorem 3-3 is that strong n-consistency itself does
not guarantee n-satisfiability. Careful analysis shows that 1-satisfiability together
with strong k-consistency is a sufficient (but not necessary) condition to k-satisfia-
bility.

Theorem 3-4 (The Satisfiability Theorem)

A CSP which is 1-satisfiable and strong k-consistent is k-satisfiable for all k:

∀  csp(P ): 1-satisfiable(P ) ∧ strong k-consistent(P ) ⇒ k-satisfiable(P )

Proof

Let P = (Z, D, C) be 1-satisfiable and strong k-consistent for some integer k.
Pick an arbitrary subset of k variables S = {z1, z2, ..., zk} from Z. We shall
prove that there exists at least one compound label for all the variables in S

which satisfies all the relevant constraints (i.e. CE(S, P )).
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Since P is 1-satisfiable, for any arbitrary element x1 that we pick from S, we
can at least find one value v1 from the domain of x1 such that satis-

fies(<x1,v1>, ) holds. Furthermore, since P is 2-consistent, for any other

variable x2 that we pick from S, we would be able to find a compound label

(<x1, v1><x2, v2>) which satisfies CE({x1,x2}, P). Since P is strong-k-con-
sistent, it should not be difficult to show by induction that for any 3rd, 4th,
..., kth variables in S that we pick, we shall be able to find 3-, 4-, ..., k-com-
pound labels that satisfy the corresponding constraints CE({x1, x2, ...,

xk}, P). Therefore, the subproblem on S is satisfiable, and so P is k-satisfia-
ble.

(Q.E.D.)

We summarize below the results that we have concluded so far:

(1) k-satisfiability subsumes (k − 1)-satisfiability (trivial).
(2) However, k-consistency does not entail (k − 1)-consistency. This is illustrated

by example CSP-1, which is 3-consistent but not 2-consistent. But some k-
consistent CSPs must be (k − 1)-consistent, and vice versa. This leads to the
definition of strong k-consistency, which entails strong (k − 1)-consistency.

(3) k-consistency does not guarantee 1-satisfiability. Consequently, k-consistency
does not guarantee h-satisfiability for any h. This is true for k ≤ h, as illus-
trated in the example CSP-2 which is 3-consistent but not 4-satisfiable. It is
also true for k > h, as it is illustrated by the colouring problem CSP-4 in
Figure 3.4, which is 3-consistent, but not 2-satisfiable.

Cx1

A

B C {r}

{r}

{r}

A ≠ B A ≠ C

B ≠ C

Figure 3.4 CSP-4: a CSP which is 1 satisfiable and 3-consistent, but
2-inconsistent and 2-unsatisfiable (it is 3-consistent because there is
no 2-compound label which satisfies any of the binary constraints)
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(4) Similarly, h-satisfiability does not guarantee k-consistency when k > 1. We
have shown in the CSP-3 example that a 4-satisfiable CSP need not be 3-con-
sistent.

(5) Neither does strong k-consistency guarantee k-satisfiability: Theorem 3-3
indicates that if the domain of all variables are empty, the problem is 2-con-
sistent.

(6) However (as proved in Theorem 3-4), 1-satisfiability plus strong k-consist-
ency guarantees k-satisfiability. A little reflection should convince the readers
that this means a strong k-consistent CSP without any empty domain is k-sat-
isfiable.

These results will be summarized in Figure 3.7 at the end of this chapter, after the
introduction of more consistency concepts.

3.4  (i, j)-consistency

The concept of k-consistency is generalized to (i, j)-consistency by Freuder.

Definition 3-14:

A CSP is (i, j)-consistent if, given any i-compound label that satisfies all the
constraints on a set of i variables I, and given any set of j or less variables K
which does not overlap with I, one can always find for the variables in K val-
ues which are compatible with the compound label for I. In other words, the
combined compound label for both I and K satisfies all the constraints on I
union K:

∀  csp((Z, D, C)): ∀ i, j:
(i, j)-consistent((Z, D, C)) ≡

(∀ x1, x2, ..., xi ∈ Z: ∀ v1 ∈ , v2 ∈ , ...,vi ∈ :

(satisfies((<x1,v1>...<xi,vi>), CE({x1, x2, ..., xi}, (Z, D, C))) ⇒
(∀ x'1, x'2, ..., x'k ∈ Z: k ≤ j:

 (({x1,x2,...,xi} ∩ {x'1, x'2, ..., x'k} = {}) ⇒
(∃ v'1 ∈ , v'2 ∈ , ...,v'k ∈ :

satisfies((<x1,v1>...<xi,vi><x'1,v'1>...<x'k,v'k>),
CE({x1, ..., xi, x'1, ..., x'k}, (Z, D, C)))))))) ■

It follows that k-consistency is equivalent to (k − 1, 1)-consistency.

Definition 3-15:

A CSP is strong (i, j)-consistent if it is (k, j)-consistent for all 1 ≤ k ≤ i:

Dx1
Dx2

Dxi

Dx ' 1
Dx ' 2

Dx ' k
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∀  csp(P ): ∀ i, j:

strong-(i, j)-consistent(P ) ≡ (∀ k: 1 ≤ k ≤ i: (k, j)-consistent(P )) ■

It should be pointed out that a CSP which is (i, j)-consistent need not be (i', j')-con-
sistent even though i + j = i' + j' may hold. (i, j)-consistency has interesting proper-
ties which is relevant to backtracking search. Interesting properties of (i, j)-
consistent CSPs are illustrated in Chapter 7, when we explain search techniques.

3.5  Redundancy of Constraints

In Chapter 2, we defined the concept of redundancy on values and compound labels.
Dechter & Dechter [1987] extend these concepts to the redundancy of constraints.
These concepts, which could help us to derive algorithms for removing constraints,
are defined in this section.

Definition 3-16:

A k-constraint in a CSP is redundant if it does not restrict the k-compound
labels of the subject variables further than the restrictions imposed by other
constraints in that problem. This means that the removal of it does not
change (increase) the set of solution tuples in the problem:

∀  csp((Z, D, C)): (∀ S ⊆ Z: CS ∈ C:
redundant(CS, (Z, D, C)) ≡

(∀ T : solution_tuple(T , (Z, D, C − {CS})) ⇔
solution_tuple(T , (Z, D, C)))) ■

For example, if x, y and z are integer variables, and x < y, x < z and y < z are three
constraints, then the constraint x < z is redundant because it imposes no more con-
straints to x and z than x < y and y < z together.

Redundancy is in general difficult to detect. However, some redundant constraints
could be detected quite easily. In Dechter & Dechter [1987], which focuses on
binary CSPs, a number of concepts for helping to identify redundant binary con-
straints are introduced.

Definition 3-17:

A 2-compound label CL is path-allowed by a path PA that begins and ends
with the variables of CL if in addition to the labels in CL, one can assign a
value to each of the variables in the path satisfying all the binary constraints
on adjacent nodes in the path:
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∀  csp((Z, D, C)): (∀ x0, x1, ..., xk ∈ Z: (∀ v0 ∈ , vk ∈ :

path-allowed((<x0,v0><xk,vk>), (x1, x2, ..., xk-1), (Z, D, C)) ≡
(∃ v1 ∈ , v2 ∈ , ..., vk-1 ∈ :

(∀ p: 0 ≤ p < k: satisfies((<xp,vp><xp+1,vp+1>), )))) ■

Definition 3-18:

A 2-compound label is path-induced in a problem if it is path-allowed by
every path in the graph which represents the problem:

∀  csp((Z, D, C)): ∀ x, y ∈ Z: ∀ a ∈ Dx, b ∈ Dy:
path-induced( (<x,a><y,b>), (Z, D, C) ) ≡

(∀ z1 ∈  Z, z2 ∈  Z, ..., zm ∈ Z :
path-allowed((<x,a><y,b>), (z1, z2, ..., zm), (Z, D, C)) ■

Definition 3-19:

A binary constraint is path-redundant if no 2-compound label which vio-
lates it is path induced. In other words, it does not restrict the choice of com-
pound labels for the subject variables more than the paths have already done
so:

∀  csp((Z, D, C)): ∀ C x,y ∈ C:
path-redundant(Cx,y, (Z, D, C)) ≡

(∀  a ∈ Dx, b ∈ Dy:
((<x,a><y,b>) ∉ Cx,y) ⇒

¬  path-induced((<x,a><y,b>), (Z, D, C))) ■

A binary constraint can be removed if it is path-redundant. Removal of path-redun-
dant constraints would change the topology of the constraint graph. This would be
desirable if the resulting topology of the constraint graph enables specialized algo-
rithms to be applied — e.g. when the resulting constraint graphs are unconnected or
acyclic. This will be elaborated further in Chapter 7.

3.6  More Graph-related Concepts

Every binary CSP is associated with a constraint graph. Many CSP solving tech-
niques are designed to exploit the topology of the constraint graphs of the problems.
To help in illustrating those techniques later in this book, we shall define the rele-
vant concepts in graph theory in this section. Readers may choose to skip this sec-
tion and refer to it for the relevant definitions when they are encountered in

Dx0
Dxk

Dx1
Dx2

Dxk 1−
Cxp xp 1+,
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subsequent chapters.

In this section, we shall continue to denote graphs by G, where G = (V, E), with V
being a set of nodes and E being a set of edges (see Definition 1-15). All graphs
referred to in this section are undirected graphs without loops.

The first group of definitions are about the width of a graph. These concepts are use-
ful for explaining the ordering of variables in searching, which will be discussed in
Chapter 6.

Definition 3-20:

Given a graph (V, E) and a total ordering on its nodes, the width of a node v
is the number of nodes that are before and adjacent to v:

∀  graph((V, E)): (∀ <: total_ordering( V, <): (∀ x ∈ V :

width(x, (V, E), <) ≡  {y | y < x ∧ ( x, y) ∈ E} )) ■

Definition 3-21:

The width of a graph under an ordering is the maximum width of all the
nodes in the in the graph under that ordering:

∀  graph((V, E)): (∀ <: total_ordering( V, <):
width((V, E), <) ≡ MAX width(x, (V, E), <): x ∈ V) ■

Definition 3-22:

The width of a graph is the minimum width of the graph under all possible
orderings of its nodes:

∀  graph((V, E)): width((V, E)) ≡ MIN width((V, E), <): total_ordering(V, <) ■

For example, Figure 3.5(a) shows a graph. If the ordering of the nodes is (A, B, C,
D, E, F, G), then the width of the nodes are 0, 1, 1, 1, 1, 2, 3, respectively
(Figure 3.5(b)). Therefore the width of this ordering is 3, which is the maximum
width among all nodes. Should the ordering be (G, F, E, D, C, B, A), the width of the
nodes would be 0, 1, 1, 2, 1, 2, 2 (Figure 3.5(c)). The width of this ordering is 2.

Definition 3-23:

A graph G' = (V', E') is induced by another graph G = (V, E) if V' is a subset
of V, and E' is the set of all the edges in E which join the nodes in V':

∀  graph((V, E)), graph((V', E')):
induced_by( (V', E'), (V, E) ) ≡
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Figure 3.5 Example of a constraint graph with the width of different
orderings shown

(a) A constraint graph to be labelled

(b) Width of the nodes given the order A, B, C, D, E, F, G

(c) Width of the nodes given the order G, F, E, D, C, B, A
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(V' ⊆ V) ∧ ( E' = {(a, b) | (a, b) ∈ E ∧ a ∈ V' ∧ b ∈  V'}) ■

Definition 3-24:

The neighbourhood of a node v in a graph G is the set of all the nodes in G
which are adjacent to v:

∀  graph((V, E)): (∀ v ∈ V :
neighbourhood(v, (V, E) ) ≡ {w | w ∈ V ∧ ( v, w) ∈ E}) ■

Definition 3-25:

The degree (which is sometimes called valency in the literature) of a
node in a graph is the number of nodes to which this node is adjacent:

∀  graph((V, E)): (∀ v ∈  V: degree(v, (V, E)) ≡  neighbourhood(v, (V, E)) ) ■

Definition 3-26:

A k-tree is either a complete graph with k nodes, or a graph in which one can
find a node v that satisfies three conditions: (1) that it is adjacent to k nodes;
(2) its neighbourhood (which has k nodes) forms a complete graph; and (3)
the graph without both v and the edges involving v forms a k-tree. A k-tree
which is a complete graph G with k nodes is called a trivial k-tree, denoted
trivial_k-tree(G):

∀  graph((V, E)):
k-tree((V, E)) ≡

(( V=  k ∧  complete_graph((V, E))) ∨
∃ v ∈ V : (degree(v, (V, E)) = k ∧

(G' = (neighbourhood(v, (V, E)), E') ⇒
induced_by(G', (V, E)) ∧ complete_graph( G')) ∧

(k-tree( (V − {v}, E − {(v, w) | (v, w) ∈ E}) )))) ■

Figure 3.6 shows examples and counter-examples of k-trees. The graph in
Figure 3.6(a) is a trivial 3-tree which is a complete graph with 3 nodes. The graph in
Figure 3.6(b) is the graph in Figure 3.6(a) with an extra node D added. It is a 3-tree
because there exists a node D which has a degree of 3, its neighbourhood {A, B, C}
forms a complete graph and the graph without D is a (trivial) 3-tree. In each of the
graphs in Figures 3.6(c) and (d), one more node is added. They are 3-trees as the
added nodes satisfy the above conditions. The graph in Figure 3.6(e) is not a 3-tree
because there exists only one node, F, which degree is 3. But the neighbourhood of
F, which is the set {C, D, E}, does not form a complete graph.
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Definition 3-27:

G' = (V', E') is a partial graph of G = (V, E) if V' is a subset of V and E' is a
subset of the edges in E which join the nodes in V'. Partial_graph(G', G)
reads “G' is a partial graph of G”:

∀  graph((V, E)), graph((V', E')):
partial_graph((V', E'), (V, E)) ≡

(V' ⊆ V ∧ E' ⊆  {(a, b) | a ∈ V' ∧ b ∈ V' ∧  (a, b) ∈  E}) ■

In the above definition, when E' equals the set of all the edges in E which join the
nodes in V', G' is induced by G.

Definition 3-28:

Graph G embeds graph G' if G' is a partial graph of G and G is a k-tree for
some integer k. Embedding(G, G') reads “G embeds G'”:

∀  graph(G), graph(G'): embedding(G, G') ≡
(partial_graph(G', G) ∧ (∃ k: k-tree(G))) ■

Definition 3-29:

G is a partial-k-tree if there exists a k-tree G' of which G is a partial graph:

∀  graph(G): ∀ k: partial-k-tree(G) ≡ (∃ G': partial_graph(G, G') ∧ k-tree(G'))
■

According to this definition, any graph is a partial-k-tree for a sufficiently large k.

Definition 3-30:

A weak-k-tree is either a complete graph with k or less nodes, or a graph in
which one can find a node v which satisfies three conditions: (1) that it is
adjacent to no more than k nodes; (2) its neighbourhood forms a complete
graph; and (3) the graph without v and edges involving v forms a weak-k-
tree:

∀  graph((V, E)):
weak-k-tree((V, E)) ≡

(( V ≤ k ∧  complete((V, E))) ∨
∃ v ∈ V : (degree(v, (V, E)) ≤ k ∧

(G'=(neighbourhood(v, (V, E)), E') ⇒
induced_by(G', (V, E)) ∧ complete( G')) ∧

(weak-k-tree( (V − {v}, E − {(v, w) | (v, w) ∈ E}) )))) ■
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The definition of weak-k-tree is similar to k-tree except that all “= k” are replaced
by “≤ k”.

3.7  Discussion and Summary

A number of concepts, many of which surround the notion of consistency, have
been defined in this chapter. Many of these concepts are directly related to problem
reduction and search methods, which we shall introduce in the coming chapters.

In this chapter, we first introduced the concept of k-satisfiability. Then we intro-
duced a number of consistency concepts that may help in identifying redundant val-
ues in the domains and redundant compound labels in the constraints. Node-, arc-,
path-, directional arc- and directional path-consistency are some of the best known
consistency concepts for binary constraint problems, while k-consistency and strong
k-consistency are concepts for general CSPs. Figure 3.7 summarizes the relation-
ship among the consistency concepts introduced in this chapter. In general, the
stronger the level of consistency one achieves, the more computation one requires,
but the more redundant values and redundant compound labels one can be expected
to remove.

We have pointed out in this chapter that not even strong-k-consistency is strong
enough to be a necessary condition for k-satisfiability. We have shown that 1-satisfi-
ability together with strong k-consistency guarantees k-satisfiability.

We have also introduced Freuder’s (i, j)-consistency, which is an extension of k-
consistency. The concept of redundancy in Chapter 2 is extended to constraints.
Finally, we introduced more concepts in graph theory. These concepts will be used
in the chapters to come.

3.8  Bibliographical Remarks

Although we suggest that problem reduction has a good chance of reducing the
problem to easier problems, Prosser [1992] points out that there are exceptions. The
ideas of node-, arc- and path-consistency originate from Montanari [1974]; these
terminologies are well summarized by Mackworth [1977]. Freuder [1978] first
introduced the more general concept of k-consistency, which is later extended to
strong-k-consistency. Freuder also points out the sufficient condition for backtrack-
free search, which lays the foundation for a number of specialized CSP solving
techniques which we shall introduce in Chapter 7. Although the maintenance of
directional arc-consistency (DAC) has long been proposed and analysed in search-
ing (e.g. see Haralick & Elliott, 1980), the concept was never formally defined until
Dechter & Pearl [1988a]. Freuder [1985] introduces the concept of (i, j)-consistency
and k-trees. The use of them in CSP solving will be explored in Chapter 7. Most of
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the above concepts have been defined verbally in the literature. Tsang [1989] makes
an attempt to define them in first order logic, as well as outlining the relationship
between consistency and satisfiability concepts.


