
Chapter 2

CSP solving — An overview

2.1  Introduction

This chapter gives an overview of CSP solving techniques, which can roughly be
classified into three categories: problem reduction, search and solution synthesis.
We shall also analyse the general characteristics of CSPs, and explain how these
characteristics could be exploited in solving CSPs. Finally, we shall look at features
of CSPs, as some of them could be exploited to develop specialized techniques for
solving CSPs efficiently.

2.1.1  Soundness and completeness of algorithms

Definition 2-1:

An algorithm is sound if every result that is returned by it is indeed a solu-
tion; in CSPs, that means any compound label which is returned by it con-
tains labels for every variable, and this compound label satisfies all the
constraints in the problem. ■

Definition 2-2:

An algorithm is complete if every solution can be found by it. ■

Soundness and completeness are desirable properties of algorithms. Most of the
algorithms described in this book are sound and complete unless otherwise speci-
fied. However, it is worth pointing out that some real life problems are intractable.
In that case, incomplete (and sometimes even unsound) but efficient algorithms are
sometimes considered acceptable. Examples of incomplete strategies are hill-climb-
ing algorithms, which we discuss in Chapters 8 and 10.
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2.1.2  Domain specific vs. general methods

It is generally believed that efficiency can be gained by encoding domain specific
knowledge into the problem solver. For example, after careful analysis of the N-
queens problem, one can find algorithms which solve it very efficiently [AbrYun89,
Bern91]. However, there are good reasons for studying general algorithms. First,
tailor made algorithms are costly. Second, tailored algorithms are limited to the
problems for which they are designed. A slight change of the problem specification
would render the algorithm inapplicable. Finally, general algorithms can often form
the basis for the development of specialized algorithms.

The CSP is worth studying because it appears in a large number of applications. It
also has specific characteristics which can be exploited for the development of spe-
cialized algorithms. This book is mainly concerned with CSP solving algorithms.

2.2  Problem Reduction

Problem reduction is a class of techniques for transforming a CSP into problems
which are hopefully easier to solve or recognizable as insoluble. Although problem
reduction alone does not normally produce solutions, it can be extremely useful
when used together with search or problem synthesis methods. As we shall see in
later chapters, problem reduction plays a very significant role in CSP solving.

2.2.1  Equivalence

Definition 2-3:

We call two CSPs equivalent if they have identical sets of variables and
identical sets of solution tuples:

∀  csp((Z, D, C)), csp((Z', D', C')):
equivalent((Z, D, C), (Z', D', C')) ≡

Z = Z' ∧ ∀ T : (solution_tuple(T , (Z, D, C)) ⇔
solution_tuple(T , (Z', D', C'))) ■

Definition 2-4:

A problem P = (Z, D, C) is reduced to P' = (Z', D', C') if (a) P and P' are
equivalent; (b) every variable’s domain in D' is a subset of its domain in D;
and (c) C' is more restrictive than, or as restrictive as, C (i.e. all compound
labels that satisfies C' will satisfy C). We write the relationship between P
and P' as reduced(P, P' ):
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∀  csp((Z, D, C)), csp((Z', D', C')):
reduced((Z, D, C), (Z', D', C')) ≡

equivalent((Z, D, C), (Z', D', C')) ∧
(∀ x ∈ Z: D'x ⊆ Dx) ∧
(∀ S ⊆ Z: (CS ∈  C ⇒ C'S ∈ C' ∧ C'S ⊆ CS)) ■

Since we see constraints as sets of compound labels, reducing a problem means
removing elements from the constraints those compound labels which appear in no
solution tuples. If constraints are seen as functions, then reducing a problem means
modifying the constraint functions. For convenience, we define redundancy of val-
ues and redundancy of compound labels below.

Definition 2-5:

A value in a domain is redundant if it is not part of any solution tuple:

∀  csp((Z, D, C)): ∀ x ∈ Z: ∀ v ∈ Dx:
redundant(v, x, (Z, D, C)) ≡

¬ ∃ T : (solution_tuple(T , (Z, D, C)) ∧  projection(T , (<x,v>))) ■

Such values are called “redundant” because the removal of them from their corre-
sponding domains does not affect the set of solution tuples in the problem.

Definition 2-6:

A compound label in a constraint is redundant if it is not a projection of
any solution tuple:

∀  csp((Z, D, C)): ∀ C S ∈ C: ∀ cl ∈ CS:
redundant(cl , (Z, D, C)) ≡

¬ ∃ T : (solution_tuple(T , (Z, D, C)) ∧  projection(T , cl )) ■

Similarly, such compound labels are called redundant because the removal of them
from their corresponding constraints does not affect the set of solution tuples in the
problem.

2.2.2  Reduction of a problem

Problem reduction techniques transform CSPs to equivalent but hopefully easier
problems by reducing the size of the domains and constraints in the problems. Prob-
lem reduction is possible in CSP solving because the domains and constraints are
specified in the problems, and that constraints can be propagated.

Problem reduction involves two possible tasks: (1) removing redundant values from
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the domains of the variables; and (2) tightening the constraints so that fewer com-
pound labels satisfy them; if constraints are seen as sets, then this means removing
redundant compound labels from the constraints. If the domain of any variable or
any constraint is reduced to an empty set, then one can conclude that the problem is
insoluble. Reduced problems are possibly, though not necessarily, easier to solve for
the following reasons. Firstly, the domains of the variables in the reduced problem
are no larger than the domains in the original problem. This leaves us with fewer
labels to consider. Secondly, the constraints of the reduced problem are at least as
tight as those in the original problem. This means that fewer compound labels need
to be considered in the reduced problem.

Problem reduction requires one to be able to recognize redundant values and redun-
dant compound labels. Such information can be deduced from the constraints. For
example, if x and y are variables, and a constraint requires x to be greater than y in
value, then we can remove from the domain of x all the values which are smaller
than the smallest value in the domain of y. Similarly, we can remove from the
domain of y all the values which are greater than the greatest value of x. Problem
reduction algorithms will be discussed in Chapter 4.

Problem reduction is often referred to as consistency maintenance in the literature.
Maintaining consistency of a problem means reducing a problem to one which has
certain properties. Maintaining a different consistency means maintaining different
properties in the problem, which will be explained in Chapter 3.

The use of the term consistency in the CSP literature may need some clarification.
In logical systems, we call a system inconsistent if absurdity can be derived from it;
for example, if x < 0 and x > 4 must both hold. In the CSP literature, a problem is
called inconsistent with regard to a property when that property does not hold in the
problem. Therefore, being inconsistent does not prevent a problem from being solv-
able. The use of the term inconsistency in these two different contexts should not be
confused.

2.2.3  Minimal problems

Definition 2-7:

A graph which is associated to a binary CSP is called a minimal graph1 if
no domain contains any redundant values and no constraint contains any
redundant compound labels. In other words, every compound label in every
binary constraint appears in some solution tuples:

1.  Montanari [1974] defines minimal networks in binary constraint problems. According to
our definitions of a graph and a network in Chapter 1, a binary CSP is in general associated with
a constraint graph rather than a constraint network. Therefore, we shall use the term minimal
graph instead of minimal network.
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∀  csp((Z, D, C)):
minimal_graph((Z, D, C)) ≡

(∀ x ∈ Z: (¬ ∃ v ∈ Dx: redundant(v, x, (Z, D, C)))) ∧
(∀ Cy,z ∈ C: (¬ ∃ cl ∈ Cy,x: redundant(cl , (Z, D, C)))) ■

Montanari points out that although reducing a problem to its minimal graph is
intractable in general, it may be feasible to reduce it to an approximation of its min-
imal graph — where some redundant values and redundant compound labels are
removed.

Graphs can only represent binary CSPs. General CSPs (CSPs with general con-
straints) must be represented by hypergraphs. Therefore, we extend the concept of
minimal graphs to general CSPs.

Definition 2-8:

A CSP is called a minimal problem if no domain contains any redundant
values and no constraint contains any redundant compound labels:

∀  csp((Z, D, C)):
minimal_problem((Z, D, C)) ≡

(∀ x ∈  Z: (¬ ∃ v ∈ Dx: redundant(v, x, (Z, D, C)))) ∧
(∀ CS ∈ C: (¬ ∃ cl ∈ CS: redundant(cl , (Z, D, C)))) ■

In principle, there is nothing to stop one from reducing a problem to its minimal
problem. This can be done by creating dummy constraints for all combinations of
variables whenever necessary, and tightening each constraint to the set of com-
pound labels which satisfy all the constraints (by checking all the compound labels
in all constraints). When that is done, the constraint CZ, where Z is the set of all var-
iables, contains nothing but solution tuples. However, doing so is in general NP-
hard, so most problem reduction algorithms limit their efforts to removing only
those redundant values and compound labels which can be recognized relatively
easily. Only in special cases will solutions be found by problem reduction alone. A
number of algorithms combine problem reduction and searching,  and these are dis-
cussed in Chapters 5.

2.3  Searching For Solution Tuples

Probably more research effort in CSP research has been spent on searching than in
other approaches. In this section, we first describe a basic search algorithm, then
analyse the properties of CSPs. Specialized search algorithms can be designed to
solve CSPs efficiently by exploiting those properties.
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2.3.1  Simple backtracking

The basic algorithm to search for solution tuples is simple backtracking, which is a
general search strategy which has been widely used in problem solving (e.g. Prolog
uses simple backtracking to answer queries). In the CSP context, the basic operation
is to pick one variable at a time, and consider one value for it at a time, making sure
that the newly picked label is compatible with all the labels picked so far. Assigning
a value to a variable is called labelling. If labelling the current variable with the
picked value violates certain constraints, then an alternative value, when available,
is picked. If all the variables are labelled, then the problem is solved. If at any stage
no value can be assigned to a variable without violating any constraints, the label
which was last picked is revised, and an alternative value, when available, is
assigned to that variable. This carries on until either a solution is found or all the
combinations of labels have been tried and have failed. Figure 2.1 shows the control
of BT.

Figure 2.1 Control of the chronological backtracking (BT) algorithm
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Since the BT algorithm will always backtrack to the last decision when it becomes
unable to proceed, it is also called chronological backtracking. The pseudo code for
the simple backtracking algorithm is shown in the Chronological_Backtracking and
BT-1 procedures below.

PROCEDURE Chronological_Backtracking( Z, D, C );
BEGIN

BT-1( Z, { }, D, C );
END

PROCEDURE BT-1( UNLABELLED, COMPOUND_LABEL, D, C );
/* UNLABELLED is a set of variables to be labelled; */
/* COMPOUND_LABEL is a set of labels already committed to */
BEGIN

IF (UNLABELLED = { }) THEN return(COMPOUND_LABEL)
ELSE BEGIN

Pick one variable x from UNLABELLED;
REPEAT

Pick one value v from Dx;
Delete v from Dx;
IF COMPOUND_LABEL + {<x,v>} violates no constraints
THEN BEGIN

Result ←
BT-1(UNLABELLED − {x}, COMPOUND_LABEL +

{<x,v>}, D, C);
IF (Result ≠ NIL) THEN return(Result);

END
UNTIL (Dx = { });
return(NIL); /* signifying no solution */

END /* of ELSE */
END /* of BT-1*/

Let n be the number of variables, e be the number of constraints, and a be the

domain sizes of the variables in a CSP. Since there are altogether an possible combi-
nations of n-tuples (candidate solutions), and for each candidate solution all the
constraints must be checked once in the worst case, the time complexity of this

backtracking algorithm is O(ane).

To store the domains of the problem requires O(na) space. The BT algorithm does
not require more temporary memory than O(n) to store the compound label. There-
fore, the space complexity of Chronological_Backtracking is O(na).
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The time complexity above shows that search efficiency could be improved if a can
be reduced. This could be achieved by problem reduction techniques, as mentioned
in the previous section. The combination of problem reduction and searching will
be discussed in greater detail later.

2.3.2  Search space of CSPs

The search space is the space of all those states which a search could possibly arrive
at. Since different sets of variables and search paths could be introduced in different
problem formalization, the search space could be different from one formalization
to another. The BT algorithm searches in the space of all compound labels. Its
search space is shown in Figure 2.2.
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Figure 2.2 Search space of BT in a CSP (Z, D, C) when the variables
are not ordered; here: Z = {x, y, z}, Dx = {a,b,c,d}, Dy = {e, f, g} and
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The node marked ✽ in Figure 2.2 represents a state in the search space in which x is
labelled with a, and y is picked for labelling but not yet assigned a value. Note that
the constraints play no part in the definition of the search space, although, as it will
become clear later, it affects the search space that needs to be explored by an algo-
rithm. If we assume a fixed ordering among the variables in our search, then the
search space of BT is the tree shown in Figure 2.3.

Each node X in the search space represents a state in which a compound label is
committed to, and each of its children represents a state in which an extra label is
added into the compound label in X. For example, the node marked ✵  in Figure 2.3
represents a state in the search space in which x is assigned the value a, and y and z
are yet to be labelled. The search space is different if the variables are searched in
another fixed order. For example, Figure 2.4 shows the search space under the vari-
able ordering (z, y, x).

Figure 2.3 Search space for a CSP (Z, D, C), given the ordering (x, y,
z), where Z = {x, y, z}, Dx = {a, b, c, d}, Dy = {e, f, g} and Dz = {p, q}
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2.3.3  General characteristics of CSP’s search space

There are properties of CSPs which differentiate them from general search prob-
lems. It is the presence of these properties that makes problem reduction possible in
CSPs. Besides, specialized search techniques can be, and have been, developed to
exploit these properties so as to solve CSPs more efficiently. These algorithms will
be described in detail later in the book. To help understand why those techniques
work, we shall describe these properties here:

(1) The size of the search space is finite

The number of leaves of the search tree is L = , where

is the domain of variable xi, and  is the size of this domain. Notice that L

is not affected by the ordering in which we decide to label the variables.
However, this ordering does affect the number of internal nodes in the search
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Figure 2.4 Alternative organization of the search space for the csp (Z,
D, C) in Figure 2.3, given the ordering (z, y, x), where Z = {x, y, z}, Dx

= {a, b, c, d}, Dy = {e, f, g} and Dz = {p, q}
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space. For example, the total number of internal nodes in the search space in
Figure 2.3 is 16, as opposed to 8 in Figure 2.4. In general, if we assume that
the variables are ordered as x1, x2, ..., xn, the number of nodes in the search
tree is:

 1 + , or  1 +

With this formula, together with our examples in Figures 2.3 and 2.4, it is not
difficult to see that if the variables were ordered by their domain sizes in
descending order, then the number of nodes in the search space would be
maximal. That should also be the upper bound of the size of the search space.
If the variables were ordered by their domain sizes in ascending order, then
the number of nodes in the search space would be minimal. However, the size
of the problem is dominated by the last and most significant term,

.

(2) The depth of the tree is fixed
When the variables are ordered, the depth of the search tree is always equal to
the number of variables in the problem regardless of the ordering. In both
Figures 2.3 and 2.4, the depth of the search tree is 3. When the ordering of the
variables is not fixed, the depth of the tree is exactly 2n, where n is the
number of variables (see Figure 2.2).

(3) Subtrees are similar
If we fix the ordering of the variables, then the subtrees under each branch of
the same level are identical in their topology. In Figures 2.3 and 2.4, the same
choices are available in all sibling subtrees. Figure 2.2 shows that even when
the variables are not given a fixed ordering, similar choices are available in
sibling subtrees.
The fact that the subtrees are similar means that experiences in searching one
subtree may be useful in subsequently searching its siblings. This makes
learning possible (discussed in Chapter 5).

2.3.4  Combining problem reduction and search

Efficiency of a backtracking search can be improved if one can prune off search
spaces that contain no solution. This is precisely where problem reduction can help.
Earlier we said that problem reduction reduces the size of domains of the variables
and tightens constraints. Reducing the domain size of a variable is effectively the
same as pruning off branches in the search space. Tightening constraints potentially
helps us to reduce the search space at a later stage of the search. Problem reduction
could be performed at any stage of the search. Various search strategies combine
problem reduction and search in various ways (described in detail in Chapters 5 to
7). Some of these strategies have been proved to be extremely effective.
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In general, the more redundant values and compound labels one attempts to remove,
the more computation is required. One the other hand, the less redundant values and
compound labels one removes, the more time one is likely to spend in backtracking.
One often has to find a balance between the efforts made and the potential gains in
problem reduction. Figure 2.5 roughly shows the relationship between the two.

2.3.5  Choice points in searching

There are three sets of choice points in the chronological backtracking algorithm
above:
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Figure 2.5  Cost of problem reduction vs. cost of backtracking (the
more effort one spends on problem reduction, the less effort one needs

in searching)
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(1) which variable to look at next?
(2) which value to look at next?
(3) which constraint to examine next?

The first two choice points are shown in the flow chart in Figure 2.1. Different
search space will be explored under different ordering among the variables and val-
ues. Since constraints can be propagated, the different orderings in which the varia-
bles and values are considered could affect the efficiency of a search algorithm. This
is especially significant when a search is combined with problem reduction, as com-
mitting to different branches of the search tree may cause different amounts of the
search space to be pruned off.

For problems in which a single solution is required, search efficiency could be
improved by the use of heuristics — rules which guide us to look at those branches
in the search space that are more likely to lead to solutions.

In some problems, checking whether a constraint is satisfied is itself computation
expensive. In that case, the ordering in which the constraints are examined could
significantly affect the efficiency of an algorithm. If the situation is over-con-
strained, then the sooner the violated constraint is examined, the more computation
one could save.

2.3.6  Backtrack-free search

In Chapter 1, we defined the basic concepts of constraints and satisfiability. In this
section, we extend our discussion on these concepts.

Definition 2-9:

A constraint expression on a set of variables S, which we denote by CE(S),
is a collection of constraints on S and its subset of variables. ■

Definition 2-10:

A constraint expression on a subset of variables S in a CSP P, denoted

CE(S, P), is the collection of all the relevant constraints in P on S and its
subset of variables:

∀  csp((Z, D, C)): ∀ S ⊆ Z: (CE(S, (Z, D, C)) ≡ {CY | Y ⊆ S ∧ CY ∈ C}) ■

It should not be difficult to see that the problem designation (Z, D, C) can be written
as (Z, D, CE(Z, (Z, D, C))).
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Definition 2-11:

A compound label CL satisfies a constraint expression CE if CL satisfies
all the constraints in CE:

∀  csp((Z, D, C)): ∀ x1, x2, ..., xk ∈ Z: (∀ v1 ∈ , v2 ∈ , ...,vk ∈ :

∀ S ⊆  {x1, x2, ..., xk}:
satisfies((<x1,v1><x2,v2>...<xk,vk>), CE(S, (Z, D, C))) ≡

∀ CR: (CR ∈ CE( S, (Z, D, C)) ⇒
satisfies((<x1,v1><x2,v2>...<xk,vk>), CR))) ■

Definition 2-12:

A search in a CSP is backtrack-free in a depth first search under an ordering
of its variables if for every variable that is to be labelled, one can always find
for it a value which is compatible with all the labels committed to so far:

∀  csp((Z, D, C)): (∀  <: total_ordering(Z, <):
backtrack-free((Z, D, C), <) ≡

(∀ x1, x2, ..., xm ∈ Z: (x1 < x2 < ... < xm ⇒
(∀ v1 ∈ , v2 ∈ , ..., vm ∈ :

(satisfies( (<x1,v1>... <xm,vm>), CE({x1,,...,xm}, (Z, D, C))) ⇒
(∀ y ∈ Z: (xm < y ⇒ ∃ a ∈ Dy :

satisfies((<x1,v1>...<xm,vm><y,a>),
CE({x1,...,xm,y}, (Z, D, C)))))))) ■

A number of strategies have been developed to make search backtrack-free in CSPs.
They will be discussed later in this book.

2.4  Solution Synthesis

In this section, we shall give an overview of the solution synthesis approach in CSP
solving. Solution synthesis can be seen as search algorithms which explore multiple
branches simultaneously. It can also be seen as problem reduction in which the con-
straint for the set of all variables (i.e. the n-constraint for a problem with n varia-
bles) is created, and reduced to such a set that contains all the solution tuples, and
solution tuples only. The distinctive feature of solution synthesis is that solutions
are constructively generated.

In searching, one partial solution (which is a compound label) is looked at at a time.
A compound label is extended by adding one label to it at a time, until a solution
tuple is found or all the compound labels have been exhausted. The basic idea of
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solution synthesis is to collect the sets of all legal labels for larger and larger sets of
variables, until this is done for the set of all variables. To ensure soundness, a solu-
tion synthesis algorithm has to make sure that all illegal compound labels are
removed from this set. To ensure completeness, the algorithm has to make sure that
no legal compound label is removed from this set. A naive solution synthesis algo-
rithm is shown in the pseudo code Naive_synthesis, and the synthesis process is
shown in Figure 2.6.

partial_
solution[0]

partial_
solution[1]

partial_
solution[n]

partial_
solution[2]

Dx1

Dx2

Dxn

{}

Set of all (<x1,v1>)
which satisfy
CE({x1})

Set of all
(<x1,v1><x2,v2>)
which satisfy
CE({x1,x2})

Set of all
(<x1,v1>...<xn,vn>)
which satisfy
CE({x1,x2,...,xn});
i.e. set of all
solution tuples

Figure 2.6 A naive solution synthesis approach



46 CSP solving — An overview

PROCEDURE Naive_synthesis(Z, D, C)
BEGIN

order the variables in Z as x1, x2, ..., xn;
partial_solution[0] ← {()};
FOR i = 1 to n DO

BEGIN
partial_solution[i] ← { cl + <xi, vi>  cl ∈  partial_solution[i−1]

∧ v i ∈ ∧  cl + <xi, vi> satisfies all the constraints on

variables_of(cl) + xi };
END

return(partial_solution[n]);
END /* of Naive_synthesis */

Solution synthesis was first introduced by Freuder [1978]. Freuder’s algorithm and
other solution synthesis algorithms will be explained in detail in Chapter 9.

2.5  Characteristics of Individual CSPs

CSPs are NP-hard in general, but every CSP is unique, and it is quite possible to
develop specialized techniques to exploit the specific features of individual CSPs.
Indeed, some such techniques have been developed, and they will be explained in
Chapter 7. In this section, we shall list some of the most commonly studied charac-
teristics of CSPs. This will help us to relate the different CSP solving techniques to
the problems for which they are particularly effective when these techniques are
introduced in subsequent chapters.

2.5.1  Number of solutions required

Some applications require a single solution and some require all solutions to be
found. Examples of problems which require single solutions are scene labelling in
vision, scheduling jobs to meet deadlines, and constructive proof of the consistency
of a temporal constraints network. Examples of problems where all solutions are
required are logic programming where all variable bindings are to be returned, and
scheduling where all possible schedules are to be returned for comparison.

Problems which require a single solution favour techniques which have a better
chance of finding solutions at an earlier stage. The ordering of the variables and the
values in searching is especially significant in solving such problems. Consequently,
heuristics for ordering variables and values could play an important role in solving
them. Solution synthesis techniques are normally used to generate all solutions.

Dxi
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2.5.2  Problem size

The size of a problem could be measured by the number of variables, the domain
sizes, the number of constraints, or a combination of all three.

We mentioned earlier that the number of variables determines the depth of the
search tree. The domain sizes determine the branching factors (number of branches)

at the nodes. The number of leaves in the search tree, , dominates

the size of the search tree (see Section 2.3.3). This is probably the most commonly
used criteria for measuring the size of a problem, but the number of constraints in a
problem should not be overlooked. The more constraints there are in a problem, the
more compatibility checks one is likely to require in solving it. On the other hand,
constraints could help one to prune off part of the search space, and therefore reduce
the total number of consistency checks.

Small problems are only difficult when compatibility checks are computationally
expensive. For such problems, techniques which minimize the number of compati-
bility checks necessary should be favoured.

2.5.3  Types of variables and constraints

The type of variable affects the techniques that one can apply. Most of the tech-
niques described in this book focus on symbolic variables. If all the variables in a
problem are numbers and all the constraints are conjunctive linear inequalities, then
integer programming or linear programming, both studied extensively in operations
research (OR), are appropriate tools for handling it.

A number of CSP solving techniques have been developed for binary CSPs. Nor-
mally, constraints can be propagated more effectively through binary constraints
rather than through general constraints. For example, if X + Y < 10 is a constraint,
then the values of X and Y determine one another. If one commits to X = 2, then one
can immediately remove from the domain of Y all the values which are greater than
7. But if the constraint is A + B + C < 10, then committing to A = 2 leaves us with B
+ C < 8, which will not allow us to reduce the domains of B and C until either B or
C is fixed.

2.5.4  Structure of the constraint graph in binary-constraint-problems

We mentioned in Chapter 1 that associated to each CSP is a hypergraph. Associated
to each binary CSP is a graph. We also mentioned that the efficiency of a search is
affected by the ordering of the variables in the search. In fact, the efficiency of a
search in an ordering is significantly affected by the connectivity of the nodes in the
constraint hypergraph. In Chapters 6 and 7, we shall explain that when the con-
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straint graph/hypergraph is or can be transformed into a tree, the problem can be
solved in polynomial time. Some heuristics also exploit the connectivity of the
nodes.

Definition 2-13:

A complete graph is a graph in which an edge exists between every two
nodes:

∀  graph((V, E)): complete_graph((V, E)) ≡ E = { (x, y) | x, y ∈ V } ■

When the graph is not complete, the connectivity of the nodes (i.e. the structure of
the graph) can be exploited to improve search efficiency. One well known heuristic
is the adjacency heuristic, which suggests that after labelling a variable X, one
should choose a variable which is connected to X as the next variable to label. This
idea is extended to more complex heuristics such as the minimal bandwidth order-
ing heuristics, which will be discussed in Chapter 6 alongside other variable order-
ing techniques.

2.5.5  Tightness of a problem

Problems can be characterized by their tightness, which could be measured under
the following definition.

Definition 2-14:

The tightness of a constraint CS is measured by the number of compound
labels satisfying CS over the number of all compound labels on S:

∀  csp((Z, D, C)): ∀ ∈ C:

 tightness( , (Z, D, C)) ≡

where:
s = number of compound labels satisfying

=  {(<x1,v1>...<xk,vk>)   satisfies((<x1,v1>...<xk,vk>), )}

T = maximum number of compound labels for x1, .. xk = ■

Definition 2-15:

The tightness of a CSP is measured by the number of solution tuples over

Cx1 x2 … xk, , ,

Cx1 x2 … xk, , ,
s
T

Cx1 … xk, ,

Cx1 … xk, ,

Dxii 1=
k∏
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the number of all distinct compound labels for all variables:

∀  csp((Z, D, C)): tightness((Z, D, C)) ≡

where S = the set of all solution tuples = {T | solution_tuples(T , (Z,D,C))} ■

Tightness is a relative measure. Some CSP solving techniques are more suitable for
tighter problems, while others are suitable for looser problems. In principle, the
tighter the constraints, the more effectively can one propagate the constraints, which
makes problem reduction more effective. Partly because of this, problems with
tighter constraints need not be harder to solve than loosely constrained problems.
Whether a problem is easier or harder to solve depends on the tightness of the prob-
lem combined with the number of solutions required.

For loose problems, many leaves of the search space represent solutions. Therefore,
a simple backtracking algorithm like Chronological_Backtracking would not
require much backtracking before a solution can be found. A strategy which com-
bines searching and problem reduction is likely to spend its efforts unnecessarily in
attempting to reduce the problem. However, if all solutions are required, then a
loosely constrained problem becomes harder by its very nature. This is because of
the fact that, since the problem is loosely constrained, a large proportion of the
search space lead to solutions. Since all solutions are required, a larger search space
has to be explored.

The tighter a problem is, the more backtracking a naive backtracking algorithm is
likely to require to find solutions. Therefore, tighter problems are harder to solve if
a single solution is required. However, when all solutions are required, looser prob-
lems becomes harder to solve. The tighter a problem is, the more likely it becomes
that domains can be reduced through constraint propagation (see problem reduction
strategies in Chapters 3 and 4); consequently, a smaller space needs to be searched
to find all the solutions. Table 2.1 summarizes the conclusions made in this section.

2.5.6  Quality of solutions

In applications such as industrial scheduling, the objective is often to find single
solutions. However, not all solution tuples are as good as one another. For example,
assigning different machines (value) to the same job (variables) could incur differ-
ent costs. It might also affect the production time. Given an optimization function
(for instance, to minimize the cost or the production time) the requirement is to find
the optimal or near-optimal solution tuple(s), rather than finding any solution tuple.
If the variables are numbers, and the constraints are inequalities, then linear pro-
gramming or integer programming may be useful for finding optimal solutions.

S
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A CSP in which the optimal solution is required is akin to a problem in which all
solutions are required. A naive approach is to look at all the solutions in order to
choose the best. However, in some applications one may be able to find heuristics to
help pruning off search space which has no hope of containing solutions that are
better than the best solution found so far. When such heuristics are available, which
is the case in many applications, we can use search strategies called branch and
bound to solve the problem without looking at all solutions.

In industrial scheduling, the environment changes dynamically (e.g. machines may
break down from time to time, different jobs may be given different priority at dif-
ferent times, etc.). Under such situations, near-optimal solutions are often sufficient
because optimal solutions at the point when it is generated may become suboptimal
very soon. For such applications, stochastic search techniques are often used. Tech-
niques for finding optimal and near-optimal solutions will be discussed in
Chapters 8 and 10.

2.5.7  Partial solutions

Not every CSP is solvable. In many applications, problems are mostly over-con-
strained. When no solution exists, there are basically two things that one can do.
One is to relax the constraints, and the other is to satisfy as many of the require-
ments as possible. The latter solution could take different meanings. It could mean
labelling as many variables as possible without violating any constraints. It could
also mean labelling all the variables in such a way that as few constraints are vio-
lated as possible. Such compound labels are actually useful for constraint relaxation
because they indicate the minimum set of constraints which need to be violated.
Furthermore, weights could be added to the labelling of each variable or each con-
straint violation. In other words, the problems are:

Table 2.1 Relating difficulty of problems, tightness and number of solutions

Solutions
 required

Tightness of the problem

Loosely constrained Tightly constrained

Single
solution
required

Solutions can easily be found by
simple backtracking, hence such
problems are easy

Simple backtracking may
require a lot of backtracking,
hence harder compared with
loose problems

All
solutions
required

More space needs to be
searched, hence such problems
could be harder than tightly con-
strained problems

Less space needs to be searched,
hence, given the right tools,
could be easier than loosely
constrained problems
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(1) to maximize the number of variables labelled, where the variables are possi-
bly weighted by their importance;

(2) to minimize the number of constraints violated, where the constraints are pos-
sibly weighted by their costs.

These are optimization problems, which are different from the standard CSPs
defined in Definition 1-12. This class of problems is called the Partial CSP (PCSP),
and will be discussed in Chapter 10.

2.6  Summary

We have given an overview of Constraint Satisfaction Problem solving approaches,
and have proposed the classification of techniques in CSP solving into three catego-
ries:

(1) problem reduction: to reduce the problem to problems which are hopefully
easier to solve or recognizable as insoluble;

(2) search: to enumerate combinations of labels so as to find solutions. It is often
used together with problem reduction;

(3) solution synthesis: to construct and extend partial solutions in order to gener-
ate the set of all solution tuples.

Since domains in a CSP are known in advance, constraints can be used to identify
redundant values and redundant compound labels — values and compound labels
which will never appear in any solutions. Problem reduction is concerned with the
removal of redundant values and redundant compound labels (i.e. to tighten con-
straints). The reduced CSP is hopefully easier to solve.

Search is probably the most studied approach in CSP research. We have pointed out
that specialized search techniques can be developed to take advantage of properties
that are special to CSPs. Such properties include the fact that choice points are
known in advance (because the variables and their domains are fixed given any
CSP). This allows one to fix or shape the search space before searching starts.
Besides, in a search tree, all the sibling subtrees under a choice point are very simi-
lar. Since the search space is known in advance, it is possible to prune off search
spaces after committing to a certain branch (constraint propagation). This leads to
look ahead algorithms. Since sibling subtrees are very similar, one can learn from
failures in a search. Both look ahead algorithms and learning algorithms are
explained in Chapter 5.

Understandably, every CSP solving technique is applicable to and effective in a
subset of CSPs. In this chapter we have listed some of the most studied problem-
specific characteristics of CSPs, and outlined the classes of techniques which are
relevant to each of them. Being able to relate CSP solving techniques to problem-
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specific characteristics is important, because it allows one to pick the most relevant
techniques for a given problem. When discussing the CSP solving techniques in
detail, we shall also identify the problem-specific characteristics which when
present make these techniques applicable or effective.

2.7  Bibliographical Remarks

Meseguer [1989] and Kumar [1992] give overviews of CSP solving. The minimal
network (which we refer to as the minimal graph) concept is introduced by Montan-
ari [1974]. Mackworth [1977] elaborates on Montanari’s work, and introduces a
number of problem reduction strategies and algorithms. Later work such as Freuder
[1978, 1982, 1990], Mackworth & Freuder [1985], Cooper [1989] and Tsang [1989]
analyse and extend problem reduction concepts and techniques. Haralick & Elliott
[1980] summarize some of the most important search strategies for CSP solving.
Work on search techniques for CSPs is abundant (see bibliographical remarks in
Chapters 5 to 8).

Backtrack-free search is studied by Dechter & Pearl [1988a]. Freuder [1985]
extends the concept of backtrack-free search to backtrack-bound search. Examples
of incomplete search strategies are hill-climbing (e.g. see Nilsson, 1980 and Minton
et al., 1992), staged search [DorMic66], beam search, wave search [Fox87] and
stochastic search [Glov89,90, TsaWar90, WanTsa91,92, TsaWan92]. Work on solu-
tion synthesis include [Freu78], [Seid81] and [TsaFos90]. Bibel [1988] tackles
CSPs from a deductive viewpoint, which is closely related to solution synthesis.
Recently, Vempaty [1992] proposed tackling CSPs using finite state automata.


