
Chapter 1

Introduction

Almost everybody who works in artificial intelligence should know something
about the Constraint Satisfaction Problem (CSP). CSPs appear in many areas, for
instance, vision, resource allocation in scheduling and temporal reasoning. The CSP
is worth studying in isolation because it is a general problem that has unique fea-
tures which can be exploited to arrive at solutions. The main objective of this book
is to identify these properties and explain techniques for tackling CSPs.

In this chapter, we shall first define the standard CSP and the important concepts
around it. To avoid ambiguity, concepts are defined both verbally and in first order
predicate calculus (FOPC). The verbal definitions alone should be sufficient for
readers who do not have enough knowledge of FOPC to understand the formal defi-
nitions.

1.1 What is a constraint satisfaction problem?

In this section, we shall give an informal definition of the Constraint Satisfaction
Problem (CSP), along with two examples.

Basically, a CSP is a problem composed of a finite set of variables, each of which is
associated with a finite domain, and a set of constraints that restricts the values the
variables can simultaneously take. The task is to assign a value to each variable sat-
isfying all the constraints.

1.1.1 Example 1 —The N-queens problem

The N-queens problem is a well known puzzle among computer scientists.
Although the N-queens problem has very specific features (explained below) which
can be exploited in solving it, it has been used extensively for illustrating CSP solv-
ing algorithms.

2 Introduction

This version is prepared for University of New Hampshire January 1997

Given any integer N, the problem is to place N queens on N distinct squares in an
N × N chess board, satisfying the constraint that no two queens should threaten each
other. The rule is such that a queen can threaten any other pieces on the same row,
column or diagonal. Figure 1.1 shows one possible solution to the 8-queens prob-
lem.

1

2

3

4

5

6

7

8

A B C D E F G H

Figure 1.1 A possible solution to the 8-queens problem. The problem
is to place eight queens on an 8×8 chessboard satisfying the constraint
that no two queens should be on the same row, column or diagonal

1.1 What is a constraint satisfaction problem? 3

One way to formalize the 8-queens problem as a CSP is to see it as a problem with
eight variables (i.e. a finite set of variables), each of which may take a value from A
to H. The task is to assign values to the variables satisfying the above-specified con-
straints.

1.1.2 Example 2 — The car sequencing problem

In modern car production, cars are placed on conveyor belts which move through
different work areas. Each of these work areas specializes to do a particular job,
such as fitting sunroofs, car radios or air-conditioners. When a car enters a work
area, a team of engineers in that area travels with the car while working on it. The
production line is designed so as to allow enough time for the engineers to finish
this job while the car is in their work area. For example, if the time taken to install a
sunroof is 20 minutes, and one car enters the conveyor belt every four minutes, then
the work area for sunroof installation will be given a capacity of carrying (20 ÷ 4 =)
five cars. Figure 1.2 shows a section of the production line.

A production line is normally required to produce cars of different models. The
number of cars required for each model is called the production requirement. Since
cars of different models require different options to be fitted, not every car requires
work to be done in every work area. For example, one model may need air-condi-
tioning and power brakes to be installed, but not a sunroof. The upper half of
Figure 1.2 shows an example of the production requirement and the options
required by four models. For example, 30 cars of model A are required, each of
which needs a radio cassette, air-conditioning and power brakes to be fitted, but not
a sunroof or anti-rust treatment.

Each work area is constrained by its resource constraint. For example, if three teams
of engineers are designated to fitting sunroofs, and the sunroof work area has a
space capacity for five cars, then the sunroof work area can cope with no more than
three out of five cars requiring the fitting of sunroofs in any sub-sequence of cars on
the conveyor belt. If more than three cars in any sequence of five cars require sun-
roofs, then the engineers would not have time to finish before the conveyor belt
takes the cars away. The ratio 3/5 is called the capacity constraint of the work area
for sunroof. In the example in Figure 1.2, the capacity constraints of the sunroof and
radio cassette work areas are 3/5 and 2/3, respectively. We have not specified the
capacity constraints of the other options there.

A car-sequencing problem is specified by the production and option requirements
and the capacity constraints. Given the production requirements, the scheduler’s
task is to order the cars in the conveyor belt so that the capacity constraint of all the
work areas are satisfied. In the above example, 120 cars of the four specified models
must be scheduled. The sub-sequence shown in Figure 1.2 is:

 ..., B, C, A, A, B, C, D, B, D, C, ...

Production Requirements:

Options (✓ = required, ✕ = not):
Sunroof
Radio cassette
Air-conditioning
Anti-rust treatment
Power brakes

✕
✓
✓
✕

✓
✕
✓
✓

✓
✓
✕
✓

✕
✓
✓
✓

✓ ✕ ✓ ✕

30 30 20 40Number of cars required:
Total:
120

Work area for sunroof
Work area for
radio cassette

Capacity Constraint: 2/3Capacity Constraint: 3/5

Model DModel CModel BModel A

CDBDCBAACB

Figure 1.2 Example of a car sequencing problem

1.2 Formal Definition of the CSP 5

To check that it satisfies the capacity constraint of the sunroof work area, one has to
look at every sub-sequence of five cars, e.g.

B, C, A, A, B
C, A, A, B, C
A, A, B, C, D
.....

Careful examination should convince readers that the sub-sequence (C, A, A) in
Figure 1.2 actually violates the capacity constraints of the radio cassette work area.

The car-sequencing problem is difficult when a large number (say, hundreds) of cars
are to be scheduled. Failure has been reported in attempting to solve it using theo-
rem provers and expert system tools [PaKaWo86] [Parr88]. It has been shown that
this problem can be solved efficiently by formulating this problem as a CSP and
applying CSP solving techniques to it [DiSiVa88b].

We have already explained that a CSP is composed of variables, domains and con-
straints. The car-sequencing problem can be formulated as a CSP in the following
way. One variable is used to represent the car model of one position in the conveyor
belt (i.e. if there are n cars to be scheduled, the problem consists of n variables). The
domain of each variable is the set of car models, A to D in the above example. The
task is to assign a value (a car model) to each variable (a position in the conveyor
belt), satisfying both the production requirements and capacity constraints.

1.2 Formal Definition of the CSP

In this section, we shall give a more formal definition of the CSP. Before doing so,
we first define domains, assignments (which we call labels below), and the concept
of satisfying in terms of set relations.

1.2.1 Definitions of domain and labels

Definition 1-1:

The domain of a variable is a set of all possible values that can be assigned
to the variable. If x is a variable, then we use Dx to denote the domain of it. ■

When the domain contains numbers only, the variables are called numerical varia-
bles. The domain of a numerical variable may be further restricted to integers,
rational numbers or real numbers. For example, the domain of an integer variable is
an infinite set {1, 2, 3, ...}. The majority of this book focuses on CSPs with finite
domains.

When the domain contains boolean values only, the variables are called boolean

6 Introduction

This version is prepared for University of New Hampshire January 1997

variables. When the domain contains an enumerated type of objects, the variables
are called symbolic variables. For example, a variable that represents a day of the
week is a symbolic variable of which the domain is the finite set {Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday}.

Definition 1-2:

A label is a variable-value pair that represents the assignment of the value to
the variable. We use <x, v> to denote the label of assigning the value v to the
variable x. <x, v> is only meaningful if v is in the domain of x (i.e. v ∈ Dx).
■

Definition 1-3:

A compound label is the simultaneous assignment of values to a (possibly
empty) set of variables. We use (<x1,v1><x2,v2>...<xn,vn>) to denote the
compound label of assigning v1, v2, ..., vn to x1, x2, ..., xn respectively. ■

Since a compound label is seen as a set, the ordering of the labels in our representa-
tion is insignificant. In other words, (<x,a><y,b><z,c>) is treated as exactly the
same compound label as (<y,b><x,a><z,c>), (<z,c><x,a><y,b>), etc. Besides, it is
important to remember that a set does not have duplicate objects.

Definition 1-4:

A k-compound label is a compound label which assigns k values to k varia-
bles simultaneously. ■

Definition 1-5:

If m and n are integers such that m ≤ n, then a projection of an n-compound
label N to an m-compound label M, written as projection(N, M), (read as: M
is a projection of N) if the labels in M all appear in N.

∀ (<x1,v1>...<xm,vm>), (<z1,w1>...<zn,wn>): {x1, ..., xm} ⊆ {z1, ..., zn} :
projection((<z1,w1>...<zn,wn>),(<x1,v1>...<xm,vm>)) ≡

<x1,v1>, ..., <xm,vm> ∈ {< z1,w1>, ..., <zn,wn>} ■ 1

For example, (<a,1><c,3>) is a projection of (<a,1><b,2><c,3>), which means the
proposition projection((<a,1><b,2><c,3>), (<a,1><c,3>)) is true.

1. We use this notation to indicate that projection((<z1,w1>...<zn,wn>), (<x1,v1>...<xm,vm>))

is only defined if (<z1,w1>...<zn,wn>) and (<x1,v1>...<xm,vm>) are compound labels, and {x1,

..., xm} is a subset of {z1, ..., zn.}. It is undefined otherwise.

1.2 Formal Definition of the CSP 7

Definition 1-6:

The variables of a compound label is the set of all variables which appear
in that compound label:

variables_of((<x1,v1> <x2,v2> ... <xk,vk>)) ≡ { x1, x2, ..., xk } ■

1.2.2 Definitions of constraints

A constraint on a set of variables is a restriction on the values that they can take
simultaneously. Conceptually, a constraint can be seen as a set that contains all the
legal compound labels for the subject variables; though in practice, constraints can
be represented in many other ways, for example, functions, inequalities, matrices,
etc., which we shall discuss later.

Definition 1-7:

A constraint on a set of variables is conceptually a set of compound labels
for the subject variables. For convenience, we use CS to denote the con-
straint on the set of variables S. ■

Definition 1-8:

The variables of a constraint is the variables of the members of the con-
straint:

variables_of() ≡ { x1, x2, ..., xk } ■

“Subsumed-by” is a binary relationship on constraints.

Definition 1-9:

If m and n are integers such that m ≤ n, then an m-constraint M is subsumed-
by an n-constraint N (written as subsumed-by(M,N)) if for all elements c in
M there exists an element d in N such that c is a projection of d:

∀ CM, CN: M = m ∧ N = n ∧ m ≤ n:
subsumed-by(CM, CN) ≡

(∀ (<x1,v1>...<xm,vm>) ∈ CM:
(∃ (<z1,w1>...<zn,wn>) ∈ CN:

projection((<z1,w1>...<zn,wn>),(<x1,v1>...<xm,vm>)))) ■

Here M and N denote the number of variables in M and N respectively. If:

CM = {(<a,1><c,3>), (<a,4><c,6>)}

and CN = {(<a,1><b,2><c,3>), (<a,1><b,4><c,3>), (<a,4><b,5><c,6>)},

Cx1 x2 … xk, , ,

8 Introduction

This version is prepared for University of New Hampshire January 1997

then the proposition subsumed-by(CM, CN) is true. In other words, if constraint M is
subsumed by constraint N, then N is at least as restrictive as M. Apart from con-
straining the variables of M, N could possibly constrain other variables too (in the
above example, CM constrains variables a and c, while CN constrains a, b and c).

1.2.3 Definitions of satisfiability

Satisfies is a binary relationship between a label or a compound label and a con-
straint.

Definition 1-10a:

If the variables of the compound label X are the same as those variables of
the elements of the compound labels in constraint C, then X satisfies C if and
only if X is an element of C:

satisfies((<x1,v1><x2,v2>...<xk,vk>) ,) ≡

(<x1,v1><x2,v2>...<xk,vk>) ∈ ■

For convenience, satisfies is also defined between labels and unary constraints.

Definition 1-10b:

satisfies(<x,v>, Cx) ≡ (<x,v>) ∈ Cx ■

This allows us to write something like satisfies(<x,v>, Cx) as well as satis-

fies((<x,v>),Cx). Following Freuder [1978], the concept of satisfies(L,C) is
extended to the case when C is a constraint on a subset of the variables of the com-
pound label L.

Definition 1-11:

Given a compound label L and a constraint C such that the variables of C are
a subset of the variables of L, the compound label L satisfies constraint C if
and only if the projection of L onto the variables of C is an element of C:

∀ x1, x2, ..., xk: ∀ v1 ∈ , v2 ∈ , ... , vk ∈ :

(∀ S ⊆ {x1, x2, ..., xk}:

satisfies((<x1,v1> <x2,v2 >... <xk,vk>),) ≡

(∃ cl ∈ : projection((<x1,v1> ... <xk,vk>), cl))) ■

Cx1 x2 … xk, , ,

Cx1 x2 … xk, , ,

Dx1
Dx2

Dxk

CS

CS

1.2 Formal Definition of the CSP 9

In other words, when we say that L satisfies C, we mean that if C is a constraint on
the variables {x1, x2, ..., xk} or its subset, then the labels for those variables in L are
legal as far as C is concerned. For example, (<a,1> <b,2> <c,3> <d,4>) satisfies the
constraint Cc,d if and only if (<c,3> <d,4>) is a member of Cc,d:

Cc,d = {..., (<c,3> <d,4>), ...}.

1.2.4 Formal definition of constraint satisfaction problems

We stated earlier that a CSP is a problem with a finite set of variables, each associ-
ated to a finite domain, and a set of constraints which restrict the values that these
variables can simultaneously take. Here we shall give this problem a more formal
definition.

Definition 1-12:

A constraint satisfaction problem is a triple:

(Z, D, C)

where Z = a finite set of variables {x1, x2, ..., xn};
D = a function which maps every variable in Z to a set of objects of arbitrary

type:
D: Z → finite set of objects (of any type)

We shall take as the set of objects mapped from xi by D. We call

these objects possible values of xi and the set the domain of xi;

C = a finite (possibly empty) set of constraints on an arbitrary subset of var-
iables in Z. In other words, C is a set of sets of compound labels.

We use csp(P) to denote that P is a constraint satisfaction problem. ■

 restricts the set of compound labels that x1, x2, ..., and xk can take

simultaneously. For example, if the variable x can only take the values a, b and c,
then we write Cx = {(<x,a>),(<x,b>),(<x,c>)}. (Note the difference between Cx and
Dx: Cx is a set of labels while Dx is a set of values.) The value that x can take may be
subject to constraints other than Cx. That means although <x,a> satisfies Cx, a may
not be a valid value for x in the overall problem. To qualify as a valid label, <x,a>
must satisfy all constraints which constrain x, including Cx,y, Cw,x,z, etc.

We focus on CSPs with finite number of variables and finite domains because, as
illustrated later, efficient algorithms which exploit these features can be developed.

Dxi

Dxi

Cx1 x2 … xk, , ,

10 Introduction

This version is prepared for University of New Hampshire January 1997

1.2.5 Task in a CSP

The task in a CSP is to assign a value to each variable such that all the constraints
are satisfied simultaneously.

Definition 1-13:

A solution tuple of a CSP is a compound label for all those variables which
satisfy all the constraints:

∀ csp((Z, D, C)): ∀ x1, x2, ..., xn ∈ Z: (∀ v1 ∈ , v2 ∈ , ...,vn ∈ :

solution_tuple((<x1,v1> <x2,v2> ... <xn,vn>), (Z, D, C)) ≡
((Z = {x1, x2, ..., xn}) ∧
(∀ c ∈ C: satisfies((<x1,v1> <x2,v2> ... <xn,vn>), c))) ■

A CSP is satisfiable if solution tuple exists. Depending on the requirements of an
application, CSPs can be classified into the following categories:

(1) CSPs in which one has to find any solution tuple.
(2) CSPs in which one has to find all solution tuples.
(3) CSPs in which one has to find optimal solutions, where optimality is defined

according to some domain knowledge. Optimal or near optimal solutions are
often required in scheduling. This kind of problem will be discussed in Chap-
ter 10.

1.2.6 Remarks on the definition of CSPs

The CSP defined above is sometimes referred to as the Finite Constraint Satisfac-
tion Problem or the Consistent Labelling Problem. The term “constraint satisfac-
tion” is often used loosely to describe problems which need not conform to the
above definition. In some problems, variables may have infinite domains (e.g.
numerical variables). There are also problems in which the set of variables could
change dynamically — depending on the value that one variable takes, different sets
of new variables could emerge. Though these problems are important, they belong
to another class of problems which demand a different set of specialized techniques
for solving them. We shall focus on the problems under the above definition until
Chapter 10, where extensions of this definition are examined.

1.3 Constraint Representation and Binary CSPs

We said earlier that if S = {x1, x2, ..., xk}, we use CS or to denote the

constraint on S. CS restricts the compound labels that the variables in S can simulta-

Dx1
Dx2

Dxn

Cx1 x2 … xk, , ,

1.3 Constraint Representation and Binary CSPs 11

neously take.

A constraint can be represented in a number of different ways. Constraints on
numerical variables can be represented by equations or inequalities; for example, a
binary constraint Cx,y may be x + y < 10. A constraint may also be viewed as a func-
tion which maps every compound label on the subject variables to true or false.
Alternatively, a constraint may be seen as the set of all legal compound labels for
the subject variables. This logical representation will be taken in this book as it
helps to explain the concept of problem reduction (explained in Chapters 2 and 3)
— where tightening a constraint means removing elements from the set. This
choice of representation should not affect the generality of our discussions.

One way in which to represent binary constraints is to use matrices of boolean val-
ues. For example, assume that variable x can take values 1, 2 and 3, and variable y
can take values 4, 5, 6 and 7. The constraint on x and y which states that “x + y must
be odd” can be represented by a matrix, as shown in Figure 1.3.

The matrix in Figure 1.3 represents the fact that:

(<x,1><y,4>)
(<x,1><y,6>)
(<x,2><y,5>)
(<x,2><y,7>)
(<x,3><y,4>)
(<x,3><y,6>)

are all the compound labels that variables x and y can take.

Since a lot of research focuses on problems with unary and binary constraints only,
we define the term binary constraint problem for future reference.

1

2

3

4 5 6 7
y

x

1 0 1 0

0 1 0 1

1 0 1 0

Cxy

Figure 1.3 matrix representing the constraint between x and y

12 Introduction

This version is prepared for University of New Hampshire January 1997

Definition 1-14:

A binary CSP, or binary constraint problem, is a CSP with unary and
binary constraints only. A CSP with constraints not limited to unary and
binary will be referred to as a general CSP. ■

It is worth pointing out that all problems can be transformed into binary constraint
problems, though whether one would benefit from doing so is another question. In
general, if x1, x2, ..., xk are k variables, and there exists a k-ary constraint CC on
them, then this constraint can be replaced by a new variable W and k binary con-
straints. The domain of W is the set of all compound labels in CC (we mentioned
earlier that we see constraints as sets of compound labels). Each of the k newly cre-
ated binary constraints connects W and one of the k variables x1 to xk. The binary
constraint which connects W and a variable xi requires xi to take a value which is
projected from some values in W. This could be illustrated by the example in
Figure 1.4. Let x, y and z be three variables in which the domains are all {1, 2}, and
there exists a 3-constraint insisting that not all three variables must take the same
value (as shown in Figure 1.4(a)). This problem can be transformed into the binary
constraint problem shown in Figure 1.4(b). In the transformed problem the variable
W is created. The domain of W is the set of compound labels in Cx,y,z:

(<x,1>,<y,1>,<z,2>)
(<x,1>,<y,2>,<z,2>)
(<x,1>,<y,2>,<z,1>)
(<x,2>,<y,1>,<z,2>)
(<x,2>,<y,1>,<z,1>)
(<x,2>,<y,2>,<z,1>)

The constraint between W and x, say, is that projection(vW , (<x,vx>)) must hold,
where vW and vx are the values that W and x take, respectively. For example, accord-
ing to this constraint, if W takes the value (<x,1>,<y,1>,<z,2>), then x must take the
value 1.

By removing k-ary constraints for all k > 2, we introduce new variables which have
large domains. Whether one could benefit from this transformation depends on what
we can do with the resulting problem. A number of CSP solving techniques which
we shall illustrate in this book are applicable only to binary CSPs.

In Chapter 7, we shall explain that every CSP is associated to a dual CSP, which is
also a binary CSP.

1.4 Graph-related Concepts

Since graph theory plays an important part in CSP research, we shall define some

{(<x, 1><y, 1><z, 2>), (<x, 1><y, 2><z, 1>)
(<x, 1><y, 2><z, 2>), (<x, 2><y, 1><z, 2>)
(<x, 2><y, 2><z, 1>), (<x, 2><y, 1><z, 1>)}

x y z{1, 2} {1, 2} {1, 2}

W
binary constraints —

3-constraint — legal combinations are:

x y z{1, 2} {1, 2} {1, 2}

{(<x, 1><y, 1><z, 2>), (<x,1><y, 2><z, 1>)
(<x, 1><y, 2><z, 2>), (<x, 2><y, 1><z, 2>)
(<x, 2><y, 2><z, 1>), (<x, 2><y, 1><z, 1>)}

new variable, which domain is:

requiring the label for
x to be a projection
of the value of W

Figure 1.4 Transformation of a 3-constraint problem into a binary
constraint

(a) A problem with the 3-constraint which disallows all of x, y and z
to take the same values simultaneously. The domains of all x, y and

z are {1, 2}

(b) A binary constraint problem which is transformed from (a). A new
variable W is created, in which the domain is the set of all compound
labels for x, y and z. The constraints between W and the other three
variables require that labels for x, y and z must be projections of W ’s

value

14 Introduction

This version is prepared for University of New Hampshire January 1997

terminologies in graph theory which we shall refer to later in this book.

Definition 1-15:

A graph is a tuple (V, U) where V is a set of nodes and U (⊆ V × V) is a set of
arcs. A node can be an object of any type and an arc is a pair of nodes. For
convenience, we use graph(G) to denote that G is a graph.

An undirected graph is a tuple (V, E) where V is a set of nodes and E is a set
of edges, each of which being a collection of exactly two elements in V. ■

The nodes in an arc are ordered whereas the nodes in an edge are not. An edge can
be seen as a pair of arcs (x,y) and (y,x). A binary CSP is often visualized as a con-
straint graph, which is an undirected graph where the nodes represent variables and
each edge represents a binary constraint.

Definition 1-16:

For all graphs (V, E), node x is adjacent to node y if and only if (x, y) is in E:

∀ graph((V, E)): (∀x , y ∈ V: adjacent(x, y, (V, E)) ≡ (x, y) ∈ E) ■

Definition 1-17:

A hypergraph is a tuple (V, E) where V is a set of nodes and E is a set of
hyperedges, each of which is a set of nodes. For convenience we use
hypergraph((V, E)) to denote that (V, E) is a hypergraph, hyperedges(F , V)
to denote that F is a set of hyperedges for the nodes V (i.e. F is a set of set
of nodes in V), and nodes_of(e) to denote the nodes involved in the hyper-

edge e. ■

Hypergraphs are a generalization of graphs. In a hypergraph, each hyperedge may
connect more than two nodes. In general, every CSP is associated with a constraint
hypergraph.

Definition 1-18:

The constraint hypergraph of a CSP (Z, D, C) is a hypergraph in which
each node represents a variable in Z, and each hyperedge represents a con-
straint in C. We denote the constraint hypergraph of a CSP P by H(P). If P
is a binary CSP and we exclude hyperedges on single nodes, then H(P) is a

graph. We denote the constraint graph of a CSP by G(P):

∀ csp((Z, D, C)):

1.4 Graph-related Concepts 15

(V , E) = H((Z, D, C)) ≡
((V = Z) ∧ (E = {S | ∃ c ∈ C ∧ S = variables_of(c)})) ■

What a constraint hypergraph does not show are those domains and the compound
labels which are allowed or disallowed by the constraints in the CSP.

Later we shall extend our definition of a constraint graph of a CSP to general CSPs
(see Definition 4-1 in Chapter 4).

Definition 1-19:

A path in a graph is a sequence of nodes drawn from it, where every pair of
adjacent nodes in this sequence is connected by an edge (or an arc, depend-
ing on whether the graph is directed or undirected) in the graph:

∀ graph((V, E)):
∀ x1, x2, ..., xk ∈ V:

(path((x1, x2, ..., xk), (V, E)) ≡ ((x1, x2) ∈ E) ∧ ... ∧ ((xk-1, xk) ∈ E)))
■

Definition 1-20:

A path of length n is a path which goes through n + 1 (not necessarily dis-
tinct) nodes:

length_of_path((x1, x2, ..., xk)) ≡ k - 1 ■

Definition 1-21:

A node y is accessible from another node x if there exists a path from x to y:

∀ graph((V, E)): (∀x , y ∈ V:
accessible(x, y, (V, E)) ≡

((x,y) ∈ E ∨ (∃ z1, z2, ..., zk: path((x, z1, z2, ..., zk, y), (V, E)))) ■

Definition 1-22:

A graph is connected if there exists a path between every pair of nodes:

∀ graph((V, E)):
(connected((V, E)) ≡ (∀ x, y ∈ V: accessible(x, y, (V, E)))) ■

A constraint graph need not be connected (some variables may not be constrained,
and sometimes variables may be partitioned into mutually unconstrained groups).

16 Introduction

This version is prepared for University of New Hampshire January 1997

Definition 1-23:

A loop in a graph is an edge or an arc which goes from a node to itself, i.e. a
loop is (x,x), where x is a node. ■

Definition 1-24:

A network is a graph which is connected and without loops:

∀ graph((V, E)):
(network((V, E)) ≡ (connected((V, E)) ∧ (∀ x ∈ V: (x, x) ∉ E)))) ■

Definition 1-25:

A cycle is a path on which end-points coincide:

∀ graph((V, E)): (∀x 0, x1, x2, ..., xk ∈ V:
(cycle((x0, x1, x2, ..., xk), (V, E)) ≡

(path((x0, x1, x2, ..., xk), (V, E)) ∧ x0 = xk))) ■

Definition 1-26:

An acyclic graph is a graph which has no cycles:

∀ graph(G): (acyclic(G) ≡ (¬ ∃ path(p, G): cycle(p, G))) ■

Definition 1-27:

A tree is a connected acyclic graph:

∀ graph(G): (tree(G) ≡ (network(G) ∧ (¬ ∃ path(p, G): cycle(p, G)))) ■

Definition 1-28:

A binary relation (<) on a set S is called an ordering of S when it is irreflex-
ive, asymmetric and transitive:

irreflexive(S, <): ∀ x ∈ S: ¬ x < x
asymmetric(S, <): ∀ x, y ∈ S: (x < y ⇒ ¬ y < x)
transitive(S, <): ∀ x, y, z ∈ S: (x < y ∧ y < z ⇒ x < z). ■

Definition 1-29:

A set S is totally ordered if every two elements in S are ordered. Such an
ordering is called a total ordering of the elements in S:

1.5 Examples and Applications of CSPs 17

total_ordering(S, <) ≡ (∀ x, y ∈ S: x < y ∨ y < x). ■

1.5 Examples and Applications of CSPs

To help understand what a CSP is and where they appear, we shall look at some
examples and applications of CSPs in this section.

1.5.1 The N-queens problem

In this section, we shall formulate the N-queens problem that we introduced in
Section 1.1.1 according to the formal definition of CSP, and illustrate that a problem
can be formulated as a CSP in different ways.

1.5.1.1 Problem formalization

To formalize a problem as a CSP, we must identify a set of variables, a set of
domains and a set of constraints. One way to formalize the 8-queens problem as a
CSP is to make each of the eight rows in the 8-queens problem a variable: the set of
variables Z = {Q1, Q2, ..., Q8}. Each of these eight variables can take one of the
eight columns as its value. If we label the columns with values 1 to 8 (for computa-
tion purposes, which will be made clear below), then the domains of all the varia-
bles in this CSP are as follows:

 = = ... = = {1, 2, 3, 4, 5, 6, 7, 8}.

Now let us look at the set of constraints. The fact that we represent each row as a
variable has ensured that no two queens can be on the same row. To make sure that
no two queens are on the same column, we have the following constraint:

Constraint (1): ∀ i, j: Qi ≠ Qj

To make sure that no two queens are on the same diagonal, we can include the fol-
lowing constraint in our set of constraints:

Constraint (2): ∀ i, j, if Qi = a and Qj = b, then i − j ≠ a − b, and i − j ≠ b −a.

(Making the values integers allows us to do arithmetic with them.) To represent
these constraints, we could explicitly record the set of all compatible values
between each pair of variables. Alternatively, we can make them functions or proce-
dures — given a pair of labels, these functions or procedures return true or false,
depending on whether the given labels are compatible or not. Program 1.1 is a sim-
ple example of such a piece of code.

DQ1
DQ2

DQ8

18 Introduction

This version is prepared for University of New Hampshire January 1997

/*compatible1(X/Vx, Y/Vy)
X/Vx represents the X-th row, Vx-th column; and Y/Vy repre-

sents the Y-th row, Vy-th column (where Vx and Vy both
range from 1 to 8), compatible1/2 succeeds if and only if X/
Vx and Y/Vy are compatible according to the constraints in
the N-queens problem.

*/
compatible1(X/Vx, Y/Vy) :-
Vx =\= Vy, /* Constraint (1) */
X - Y =\= Vx - Vy, /* Constraint (2) */
X - Y =\= Vy - Vx. /* Constraint (2) */

Program 1.1: Functional representation of a constraint in the N-
queens problem

Under this problem formalization, there are 88 combinations of values for the eight

variables to be considered. In general, an N-queens problem has NN candidate solu-
tions to be considered.

1.5.1.2 Alternative formalization of the N-queens problem

It is worth pointing out here that there is often more than one way to formalize a
problem as a CSP. The N-queens problem need not be formalized in the above way.
An alternative representation is to use Q1, Q2, ..., Q8 to represent the positions of the
queen (rather than the column of each queen in the above formalization). If the 64
squares in the 8 × 8 board are numbered 1 to 64, then the domain of each variable
becomes {1, 2, ..., 64}. In other words:

Z = {Q1, Q2, ..., Q8}

 = = ... = = {1, 2, 3, 4, ..., 64}.

Let us assume that we number the squares from left to right, top to bottom. Then
given a number which represents a square, the row and column of that square can be
computed as follows:

row = (number div 8) + 1
column = (number mod 8) + 1

Given the rows and columns of two squares, we can check whether they are com-
patible with each other using the codes shown in Program 1.2.

/*compatible2(N1, N2)
given N1 and N2, which both range from 1 to 64, this predicate

succeeds if and only if N1 and N2 are compatible according

DQ1
DQ2

DQ8

1.5 Examples and Applications of CSPs 19

to the constraints in the 8-queens problem.
*/
compatible2(N1, N2) :-

R1 is (N1 div 8) + 1, C1 is (N1 mod 8) + 1,
R2 is (N2 div 8) + 1, C2 is (N2 mod 8) + 1,
R1 =\= R2,
C1 =\= C2,
R1 - R2 =\= C1 - C2,
R1 - R2 =\= C2 - C1.

Program 1.2: Alternative functional representation of a constraint in
the 8-queens problem

Some formalizations of a problem are easier to solve than others. The 8-queens

problem formalized in this section allows 648 combinations of 8-compound labels,
which makes the problem potentially more difficult to solve than the CSP formal-

ized in the preceding section (which allows only 88 combinations of 8-compound
labels). The formalization in the preceding section in fact has built into it the con-
straint that no two queens can be placed in the same row.

1.5.1.3 Caution about benchmarking using the N-queens problem

The N-queens problem will be used to illustrate a number of CSP solving algo-
rithms in this book, but it is worth pointing out that benchmarks on different algo-
rithms produced using this problem must be interpreted with caution. This is
because the N-queens problem has very specific features: firstly, it is a binary con-
straints problem; secondly, every variable is constrained by every other variable,
which need not be the case in other problems. More importantly, in the N-queens
problem, each label for every variable conflicts with at most three values of each
other variable, regardless of the number of variables (i.e. N) in the problem. For
example, <1,2> has conflict with <2,1>, <2,2> and <2,3>. In an 8-queens problem,
for example, when 2 is assigned to Queen 1, there are 5 out of 8 values that Queen 2
can take. But in the 1,000,000-queens problem, there are 999,997 out of 1,000,000
values that Queen 2 can take after <1,2> has been committed to. Therefore, con-
straints get looser as N grows larger (see formal definition of tightness in
Definition 2-13). Such features may not be shared by many other CSPs.

1.5.2 The graph colouring problem

Another problem which is often used to explain concepts and algorithms for the
CSP is the colouring problem. Given a graph and a number of colours, the problem
is to assign colours to those nodes satisfying the constraint that no adjacent nodes

20 Introduction

This version is prepared for University of New Hampshire January 1997

should have the same colour assigned to them. One instance of the colouring prob-
lem is the map colouring problem: the problem is to colour the different areas of a
given map with a limited number of colours, subject to the constraint that no adja-
cent areas in the map have the same colour. Figure 1.5(a) shows an example of a
map which is to be coloured. The map colouring problem is an instance of the gen-
eral graph colouring problem, as a map can be represented by a graph where each
node represents an area in the map, and every pair of nodes which represent two
adjacent areas in the map is connected by an edge (see Figure 1.5(b)).

The areas to be coloured in Figure 1.5(a) are w, x, y and z. Assume that we are
allowed to label the map with three colours only: r (for red), g (for green) and b (for
blue). The values in {} next to the nodes (i.e. variables) in Figure 1.5(b) specify the
domain. Each of the edges in the graph in Figure 1.5(b) represents a constraint
which states that the connected nodes must not take the same value. The constraint
on variables A and B (denoted CA,B) is conceptually seen as the set {(<A,r><B,g>),
(<A,r><B,b>), (<A,g><B,r>), (<A,g><B,b>), (<A,b><B,r>), (<A,b><B,g>)}. (In
practice, it can be represented by other means, e.g. a function). One solution tuple
for this problem is: (<A,r> <B,g> <C,b> <D,r>). To summarize, the CSP (Z, D, C)
for this problem is:

w

x

y z

w x

y z

{r, g, b}{r, g, b}

{r, g, b} {r, g, b}

Figure 1.5 Example of a map colouring problem

(b) constraint graph of the CSP in
(a): w, x, y and z are variables which
all have the same domain {r, g, b}

(a) map to be coloured

1.5 Examples and Applications of CSPs 21

Z = {w, x, y, z}
Dw = Dx = Dy = Dz = {r, g, b}
C = {Cw,x, Cw,y, Cx,y, Cx,z, Cy,z}

1.5.3 The scene labelling problem

The scene labelling problem in computer vision is probably the first CSP to be for-
malized. In vision, the scenes are normally captured as images by cameras. After
some preprocessing, lines can be recognized from the images, then scenes like the
one shown in Figure 1.6 are generated.

To recognize the objects in the scene, one must first interpret the lines in the draw-
ings. One can categorize the lines in a scene into the following types:

(1) convex edges
A convex edge is an edge formed by two planes, both of which extend (from
the edge) away from the viewer. Convex edges are marked by “+”.

(2) concave edges
A concave edge is an edge formed by two planes both of which extend (from
the edge) towards the viewer. Concave edges are marked by “−”.

(3) occluding edges
An occluding edge is a convex edge where one of the planes is hidden behind
the other and therefore not seen by the viewer. Occluding edges are marked
by either “→” or “←”, depending on the situation. If one moves along an
occluding edge following the direction of the arrow, the area on the right rep-
resents the face of an object which can be seen by the viewer, and the area on
the left represents the background or some faces of the objects at the back.

Figure 1.6 Example of a scene to be labelled

Figure 1.7 The scene in Figure 1.6 with labelled edges

+
+

+

+ +

+
+

+
+

+ +
+

+

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o) (p)

Figure 1.8 Legal labels for junctions (from Huffman, 1971)

1.5 Examples and Applications of CSPs 23

The scene in Figure 1.6 can be labelled as shown in Figure 1.7. Given any junction
independent of the scene, there are limited choices of labels. These choices are
shown in Figure 1.8.

One way in which to formalize the scene labelling problem as a CSP is to use one
variable to represent the value of a line in the scene. For example, in the scene in
Figure 1.6 we have the following variables: {A, B, C, D, E, F, G, H, I}, as shown in
Figure 1.9. The domain of each variable is therefore the set {+, −, →, ←}.

The limited choices of label combinations in the junctions (as shown in Figure 1.8)
impose constraints on the variables. Since lines A, F, G form an arrow, according to
(g)-(i) in Figure 1.8, the values that these three variables can take simultaneously
are restricted to:

Similarly, every other junction posts constraints to the labelling of the lines which
form it. The task is to label all the variables, satisfying all the constraints. One may
want to find one or all solutions to this problem, depending on the need of subse-

A

G

E

F

H

C

B

I
D

Figure 1.9 Variables in the scene labelling problem in Figure 1.6

+ +

+−

−
−
+

(<A,−> <F,−> <G,+>)(<A,→> <F,→> <G,+>) (<A,+> <F,+> <G,−>)

A

F

G
A

F

G
A

F

G

24 Introduction

This version is prepared for University of New Hampshire January 1997

quent processing. Waltz introduced an algorithm, referred to as the Waltz filtering
algorithm, for solving this problem. The algorithm is based on constraint propaga-
tion, and is discussed in Chapter 4.

1.5.4 Temporal reasoning

Temporal reasoning, which involves constraint satisfaction, is an important area in
AI planning and many other applications (e.g. see Tsang, 1987b; Dechter et al.
1991). Events are all temporally related to each other. Depending on the time struc-
ture that one uses, different sets of temporal relations apply. In early research in
planning, the world is simplified in such a way that all events are assumed to be
instantaneous. In that case, three relations are possible between any two events A
and B: “A before B”, “B before A” or “A equals B”. Allen [1983] points out that
when durations in events are reasoned about, 13 relations are possible between any
two events. These relations are shown in Figure 1.10.

position of event B
position of event A

A before B

A meets B

A overlaps B

A finished by B

A contains B

A finishes B

A overlapped by B

A after B

A during B

A met by B

1

3

2

5

4

9

11

10

12

13

A starts B6

A equals B

A started by B

7

8

Figure 1.10 Thirteen possible temporal relations between two events

1.5 Examples and Applications of CSPs 25

In planning and scheduling, one has to determine the temporal relationship between
events. There are basically two approaches. One is to assume one temporal relation
per pair of events at a time, and backtrack when the hypothetical situation has been
proved to be over-constrained. Most conventional planners do this (for example, see
Fikes & Nilsson, 1971; Sacerdoti, 1974; Tate, 1977; and Wilkins, 1988). These
planners adopt the assumption that events are instantaneous, therefore their ability
to represent real life temporal knowledge is limited.

The other approach is to reason with all disjunctive temporal relations simultane-
ously. This approach is taken by Allen & Koomen [1983]. In order to schedule the
events, one has to assign one temporal relation between each pair of events
[Tsan86,87b]. The CSP in temporal reasoning under this approach is one where
each variable represents the temporal relationship between a pair or events. (Among
n events, there are n × (n − 1) ÷ 2 temporal relations, i.e. variables.) Each variable
may take one of the 13 primitive relations in Figure 1.10 as its value. The property
of time imposes constraints on the values that we can assign to each variable. For
example, if A is before B, and B is before C, then A must be before C. If A overlaps
B, and B overlaps C, then A must overlap, meet or be before C. The task is then to
find a consistent set of primitive relations between the intervals — a set which satis-
fies all the constraints.

1.5.5 Resource allocation in AI planning and scheduling

Resource allocation and scheduling are better known applications of CSP. The car
sequencing problem described in Section 1.1.2 is an example of a scheduling prob-
lem to which CSP solving techniques have been applied successfully. A typical
scheduling problem is a problem in which one is given a set of jobs and asked to
allocate resources to them. Each job may require a number of resources, which
include time (during which these jobs are finished), machines, tools, manpower, etc.

Resource allocation, especially when time and shared resources are involved, is
basically a CSP. Each variable in the CSP represents one shared resource require-
ment. For example, variable X may represent the machine requirement of a job. The
domain of a variable is the set of possible values that this variable can take. The
domain of X in the above example may be the set of machines available in the work-
shop which have the capacity to do the job, e.g. {machine-203, machine-208,
machine-209}. Assigning a value to a variable represents the allocation of a
resource to a job. The allocation of resources is normally constrained in many ways.
For example, among the M machines available to a job J, only machines P, Q and R
have the capacity to cope with job J. Very often, one machine can only process one
job at a time. Sometimes, if job J is to use machine M1, then it must also be given
certain tools and certain engineers. The task is to allocate to each variable a value
such that all the constraints are satisfied.

26 Introduction

This version is prepared for University of New Hampshire January 1997

1.5.6 Graph matching

In semantic networks, one may want to check whether a particular concept is
present. This problem can be seen as a graph matching problem, as defined below.
Given two graphs G1 and G2, the problem is to check whether G2 has a subgraph
which matches G1. Graph (V1, E1) contains graph (V2, E2) if:

(1) every node in V2 can be mapped to a distinct node in V1; and
(2) for all x1, y1 in V1 and x2, y2 in V2, if x2 and y2 are mapped to x1 and y1,

respectively, then whenever (x2,y2) is an edge in E2, then (x1,y1) is an edge in
E1.

Figure 1.11 shows an example of a graph matching problem. Given the graphs G1

and G2 (shown in Figures 1.11(a) and (b), respectively), the task is to find out
whether G2 contains a subgraph of G1. This can be formalized as a CSP where the
variables are A, B, C, D and E, and the domains for all of them are {a,b,c,d,e,f,-
g,h,i,j}. The constraint is that for all compound labels (<x,p><y,q>), if x and y are
connected in G1, then p and q must be connected in G2. For example, (<A,h><B,g>)
satisfies the constraint on A and B because (g,h) is an edge in G2. A little reflection
should convince the readers that the compound label (<A,h><B,g><C,e><D,-
d><E,b>) is a solution tuple to this problem.

1.5.7 Other applications

In natural language parsing, each word has a finite number of roles that it can play.
The language restricts the domain of roles (e.g. “noun”, “verb”, “adverb”, etc.) that
each word can play. The grammar of the language restricts the roles that a string of
words can take simultaneously. Part of the parsing task is to identify the roles of
each word. Rich & Knight [1991] advocate that this task is a CSP.

Database queries often have variables in them. Instantiating the variables in a data-
base query is a CSP. Query optimization is an important database research area in
which CSP solving techniques can be applied. On the other hand, techniques devel-
oped in query optimization research can be used in CSP solving. The tree-clustering
method described in Chapter 8 is one example of such cross-fertilization of the two
research disciplines.

CSP techniques have also been applied to parameter setting for greenhouses in agri-
cultural applications, and demonstrated to be successful [CroMar91]. Problem
reduction techniques in CSP (see Chapters 2 to 4) have been demonstrated as being
effective for cutting down search spaces for spatial reasoning [duVTsa91].

1.6 Constraint Programming 27

1.6 Constraint Programming

The generality of the CSP has lead to the development of constraint programming
languages. These languages provide built-in functions (or predicates) for describing
commonly encountered constraints, and help users to solve problems by applying
techniques which have been developed in CSP research.

Many approaches for constraint programming are based on and extended from the
logic programming paradigm. Some of the better known constraint logic program-
ming languages and systems are CLP, PROLOG III and CHIP. In these languages,
unification in conventional logic programming is replaced by constraint satisfac-
tion. Numerical constraints are being focused on. The idea is to hide the constraint
solving techniques from the user.

One of the main objectives of developing CLP is to define a class of logic program-
ming languages with well defined semantics under a particular equational theory
(see Jaffar et al. [JaLaMa86]). An instance of CLP called CLP(R) (R here stands for
real numbers) has been implemented and proposed for applications such as electri-
cal engineering by Heintze et al. [HeMiSt87] and option trading by Lassez et al.
[LaMcYa87]. In CLP(R), constraints are handled incrementally using linear pro-

Figure 1.11 Example of a graph matching problem. Does graph G2
contain a subgraph which matches graph G1? (The answer is yes, if

A→h, B→g, C→e, D→d, E→b)

A

B C

D E

(a) graph G1 (b) graph G2

b

d e

g h

a

j

c

f

i

28 Introduction

This version is prepared for University of New Hampshire January 1997

gramming methods such as the simplex method.

Prolog III was developed with similar goals as CLP, but with refined manipulation
on trees (including infinite trees), lists and boolean variables. It has been developed
into a commercial product that has been demonstrated to be efficient and elegant in
problem solving. Like CLP, Prolog III basically uses the simplex method for han-
dling equations and inequalities with numerical variables.

CHIP is a logic programming language for handling symbolic, boolean as well as
numerical variables. Search techniques, discussed later, are used to instantiate sym-
bolic variables. The basic search strategy used in CHIP is called forward checking
(FC). It is used together with a heuristic called the fail first principle (FFP). FC and
FFP are discussed in Chapters 5 and 6 respectively. The combination of this search
strategy and heuristic has been found to be very effective. CHIP has been applied to
a number of problems, and success has been claimed. Some of the reported applica-
tions of CHIP include the car-sequencing problem [DiSiVa88b], the spares alloca-
tion problem [DVSAG88a], job-shop scheduling, warehouse location, circuit
verification (to verify that an implementation of a circuit meets its specifications)
[DVSAG88a] and the cut stock problem [DiSiVa88a].

The success of CHIP has led to the development of two other commercially availa-
ble languages, Charme and PECOS. The basic CSP solving techniques used in them
are no different from CHIP, and therefore the comparison among CHIP, Charme and
PECOS is down to the differences in their language types and their implementation
efficiency.

Charme uses the syntax of C, and one of its merits is that it can easily be integrated
into the users’ other C programs. Arrays (which have to be implemented by lists in
CHIP) are introduced in Charme. It has been applied to similar problems as CHIP
[Charme90]. PECOS uses LISP syntax. Both Charme and PECOS are mainly built
to handle symbolic but not numerical and boolean variables (boolean variables may
be represented by symbolic variables with specific constraints such as logical AND
and logical OR).

1.7 Structure Of Subsequent Chapters

We emphasized earlier that the CSP is an important problem not only because of its
generality, but also because it has specific features which allows one to develop spe-
cialized techniques to tackle it. The main features of CSPs will be studied in Chap-
ter 2. There we also propose a classification of CSP solving techniques, and give an
overview of them. The three classes of CSP solving techniques are: (1) problem
reduction; (2) searching; and (3) solution synthesis.

In Chapter 3, some of the most important concepts related to CSP solving will be

1.8 Bibliographical Remarks 29

introduced. These concepts are useful for describing the techniques in the chapters
that follow.

Chapter 4 covers problem reduction algorithms. These algorithms transform prob-
lems into equivalent problems which are hopefully easier to solve.

Chapters 5 to 8 are about searching techniques for CSPs. Chapter 5 describes basic
control strategies of searching which are relevant to CSP solving. Chapter 6 dis-
cusses the significance of ordering the variables, values and compatibility checking
in searching. Chapter 7 discusses specialized search techniques which gain their
efficiency by exploiting problem specific features. Chapter 8 discusses stochastic
search approaches (including hill climbing and connectionist approaches) for CSP
solving.

Chapter 9 discusses how solutions can be synthesized rather than searched for.

The definition of CSP in Definition 1.12 is extended in Chapter 10 to include the
notion of optimality. In many real life problems, certain solutions are preferred to
others. Besides, in problems which do not contain any solutions, one may want a
problem solver to find near solutions rather than simply reporting failure. These
problems will be formally defined in Chapter 10, and relevant research will be sum-
marized.

Pseudo code is used to explain most of the algorithms introduced in this book.
Implementations, which are presented to help in clarifying the algorithms to an exe-
cutable level, are included for those algorithms which are suitable to be imple-
mented in Prolog. These implementations are grouped together and placed at the
end of this book for easy reference.

1.8 Bibliographical Remarks

The CSP was first formalized in line labelling in vision research. The problem is
tackled in Huffman [1971], Clowes [1971] and Waltz [1975]. Mackworth [1992]
defines CSPs with finite domains as finite constraint satisfaction problems, and
gives an overview to such problems. Haralick & Shapiro [1979, 1980] discuss dif-
ferent aspects of the CSP — from problem formalization, applications to algo-
rithms. Meseguer [1989] and Kumar [1992] both give concise and comprehensive
overviews to CSP solving. Apart from studying the basic CSP and its general char-
acteristics, Guesgen & Hertzberg [1992] introduce the concept of dynamic con-
straints, which are constraints that are themselves subject to constraints. The
usefulness of this idea is demonstrated in spatial reasoning.

Mittal & Falkenhainer [1990] extend the standard CSP to dynamic CSPs (CSPs in
which constraints can be added and relaxed), and proposed the use of assumption-

30 Introduction

This version is prepared for University of New Hampshire January 1997

based TMS (ATMS) to solve them (see de Kleer, 1986a,b,c, 1989). Definitions on
graphs and networks are mainly due to Carré [1979].

The N-queens problem has been used to illustrate much CSP research, e.g. see
Mackworth [1977] and Haralick & Elliott [1980]. Abramson & Yung [1989] and
Bernhardsson [1991] independently present solutions to the N-queens problem
which exploit the properties of the problem (and require no searching at all). The
map colouring problem is a simplified version of the graph colouring problem,
which is discussed extensively by Nelson & Wilson [1990]. Tsang [1987b, 1988]
points out the CSP in temporal reasoning under Allen’s [1983] interval-based for-
malism. Dechter et al. [1991] look at the CSPs under point-based temporal reason-
ing. Kautz & Selman [1992] and Yang [1992] see constraint satisfaction as a crucial
part of AI planning. Tsang [1988c], Tsang & Wilby [1988b], Zweben & Eskey
[1989], Minton & Philips [1990] and Prosser [1990] all propose to formalize sched-
uling problems as CSPs, and demonstrate favourable consequences of doing so.
Other examples of CSPs are abundant. Rich & Knight [1991] and Haddock [1991]
both cast part of the natural language parsing problem as CSPs. Haddock [1992]
sees semantic evaluation as constraint satisfaction. Dechter & Pearl [1988b] point
out the relationship between query optimization in database research and CSP solv-
ing. Cros & Martin-Clouair [1991] apply CSP techniques to greenhouse manage-
ment and du Verdier & Tsang [1991] apply CSP techniques to spatial reasoning.

For constraint logic programming (CLP), see van Hentenryck et al. [1989a, 1992]
and Cohen [1990] for general overviews. Jaffar et al. [1987], Heintze et al. [1987]
and Lassez et al. [1987] summarize CLP, and Colmerauer [1990] summarizes Pro-
log III. Applications of CHIP are reported in Simonis & Dincbas [1987], Dincbas et
al. [DiSiVa88a,b] [DVSAG88a], van Hentenryck [1989b] and Perrett [1991].
[Charme90] gives an overview of Charme. A general purpose constraint language
called Bernard is described by Leler [1988].

