Artificial Intelligence Review (2021) 54:5055-5093
https://doi.org/10.1007/s10462-021-10012-4

®

Check for
updates

Adaptive constraint propagation in constraint satisfaction:
review and evaluation

Kostas Stergiou’

Published online: 11 May 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract

Several methods for dynamically adapting the local consistency property applied by a CP
solver during search have been put forward in recent and older literature. We propose the
classification of such methods in three categories depending on the level of granularity
where decisions about which local consistency property to apply are taken: node, varia-
ble, and value oriented. We then present a detailed review of existing methods from each
category, and evaluate them theoretically according to several criteria. Taking one recent
representative method from each class, we then perform an experimental study. Results
show that simple variable and value oriented methods are quite efficient when the older
dom/ddeg heuristic is used for variable ordering, while a carefully tuned node oriented
method does not seem to offer notable improvement compared to standard arc consistency
propagation. In contrast, under the more realistic setting of dom/wdeg, the variable and
value oriented methods cannot compete with standard propagation, while the node oriented
method is very efficient. Finally, we obtain a new adaptive propagation method by integrat-
ing the variable and value oriented approaches and adding an amount of randomization
The resulting method is simple, competitive, and almost parameter-free.

Keywords Constraint propagation - Adaptive propagation - Experimental evaluation

1 Introduction

Constraint propagation is a cornerstone of Constraint Programming (CP) and a major rea-
son for its success in dealing with difficult combinatorial problems. CP solvers typically
propagate constraints using algorithms that achieve (generalized) arc consistency (GAC).
Properties stronger than GAC have received a fair bit of attention because their application
can cut down the size of the search tree by orders of magnitude in many cases, but they are
rarely used within solvers because they are considered too expensive to be maintained dur-
ing search.

The classes of strong local consistencies that have been the most widely studied and
evaluated are triangle based consistencies for binary constraints, e.g. path consistency and

< Kostas Stergiou
kstergiou@uowm.gr

1 University of Western Macedonia, Kozani, Greece

@ Springer

http://orcid.org/0000-0002-5702-9096
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-021-10012-4&domain=pdf

5056 K. Stergiou

its variants, relation based consistencies for non-binary constraints, such as pairwise con-
sistency, relational k-consistency and their variants, and singleton consistencies for both
binary and non-binary constraints.

The latter class has received the most attention, with singleton arc consistency (SAC)
(Debruyne and Bessiere 2001) being its prime member, because such local consistencies
are independent of the constraints’ arity and they are quite simple, both conceptually and
in terms of implementation within CP solvers. Although several variants of SAC have been
proposed that are either weaker (NSAC Wallace 2015; RNSAC Paparrizou and Stergiou
2017) or stronger (POAC Bennaceur and Affane 2001), but in any case, more efficient in
practice than SAC, still none of these variants, or any other strong local consistency, has
proved to be competitive with GAC over a wide range of problems. This is because the
overhead of maintaining such properties throughout search usually outweighs the benefits
of the reduction in the size of the search tree.

The main problem with the application of strong local consistencies during search is
that their repeated, and costly, invocation is often fruitless, i.e. it does not achieve any
extra pruning compared to standard GAC propagation, or it achieves little extra pruning.
Because of this, an avenue of research that has attracted considerable interest, initially in
the 90s and then in the last decade or so, is that of adaptive propagation. Such works have
proposed various heuristic methods that exploit dynamic features of the problem at hand
to selectively apply strong propagation algorithms during search, at points where it will
hopefully pay off. This is implemented typically by switching between strong and standard
propagation when certain conditions are met (Stergiou 2008; Balafrej et al. 2013, 2014,
2015; Woodward et al. 2018). In this way, the cost of maintaining a strong local consist-
ency throughout search is avoided, while much of its pruning power is kept.

Although quite a few adaptive propagation methods have been proposed, the relevant
literature is rather fragmented and there is considerable diversity in the ideas behind the
various methods. In addition, there exists only one research work where an experimental
evaluation of some adaptive propagation methods is presented (Woodward et al. 2018). In
this paper we attempt to clarify and organize the state-of-the-art in adaptive propagation by
proposing a classification of existing methods into three categories depending on the level
of granularity where decisions about the local consistency to be applied are taken.

We identify a class of methods that make a decision on how to perform constraint prop-
agation after each branching decision, i.e. at each node of the search tree. We call such
methods node oriented. Another class of methods makes such decisions at a lower level
of granularity. Namely, such methods use heuristics to decide which local consistency to
apply on individual variables. We call such methods variable oriented. Finally, the third
class of methods that we identify operates on a even lower level of granularity. Such meth-
ods check the consistency of specific values from the domains of some variables using a
stronger than standard local consistency property. We call such methods value oriented.

We review the existing adapting propagation methods of all three categories and dis-
cuss their properties according to certain criteria, such as their generality, e.g. the extent of
their applicability on constraints of different types and different solver settings, and their
dependency on the fine tuning of parameters. Taking one outstanding representative from
each class, we then perform an experimental evaluation on benchmark problems, albeit
limited to binary constraints.

The results depend heavily on the variable ordering heuristic used. Under dom/ddeg, an
older heuristic that does not interfere too much with propagation, the simple variable and
value oriented methods of Stergiou (2008) and Balafrej et al. (2013) achieve a good bal-
ance between a standard solver that maintains arc consistency (MAC) and algorithms that

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5057

maintain singleton consistencies throughout search. On the other hand, the performance of
PrePeak, the carefully tuned node oriented method of Woodward et al. (2018), is very close
to that of MAC, making it very inefficient on some problems. However, under the state-
of-the-art dom/wdeg heuristic, results are quite different. The variable and value oriented
methods offer an advantage over MAC on only a few problems, but are heavily outper-
formed on the majority, while PrePeak at least matches MAC on problems where MAC
excels, but manages to notably improve on its performance on the few problems where
MAC is less efficient.

As a final contribution, we propose a simple variant of the variable-oriented method of
Stergiou (2008) that probabilistically decides whether to perform singleton tests or not dur-
ing search. The main idea is to monitor, through very simple book-keeping, the effect that
the revision of each variable has on its domain. But instead of relying on a user-defined
threshold to decide whether to apply a strong propagator on a variable x or not, as in Ster-
giou (2008), the decision is taken using a probability distribution that depends on the dis-
tance between the current revision of x and the most recent singleton test on x that resulted
in a domain wipe-out.

Experimental results demonstrate that the randomized technique significantly improves
the performance of the heavily parameter-dependant method it originates from, and when
integrated with the value-oriented method of Balafrej et al. (2013), it gives a simple and
nearly parameter-free adaptive technique that is very competitive with PrePeak.

The paper is organized as follows: Sect. 2 gives the necessary background. In Sect. 3
we describe the framework of a CP solver, highlighting where decisions about which local
consistency to apply can be taken. Section 4 proposes the classification of adaptive propa-
gation methods into three categories and presents a detailed review of the existing litera-
ture. In Sect. 5 we present the experimental evaluation of three selected adaptive methods,
while in Sect. 6 we discuss our enhancement of an existing variable oriented method and
evaluate it experimentally. Section 7 makes some generic observations based on our study
and points to future work. Finally, in Sect. 8§ we conclude.

2 Background

A finite domain Constraint Satisfaction Problem (CSP) P is defined as a triplet
<X D&C= where:

X={x,...,x,} is a set of n variables,
D = {D(x)), ...,D(x,)} is a set of finite domains, one for each variable in X,

e C={cy,....c,}is a set of e constraints. Each constraint ¢; € C is a pair (sc(c,), rel(c;,)),
where sc(c;) € X is the set of k variables {x; , ... x; } involved in the constraint, known

as the scope of the constraint, and rel(c;) C D(xil) X oo X D(xik) is a relation giving the
allowed tuples of the constraint.

The relation of a constraint can be defined by explicitly listing its allowed tuples, in which
case it is called a table constraint or implicitly through a predicate or function, as is the
case with global constraints. The cardinality k of sc(c;) is the arity of the constraint.

A binary CSP P is typically depicted as a constraint graph G, where variables corre-
spond to nodes and constraints to edges. Sometimes, the constraint graph is considered to
be directed, in which case an arc is a directed constraint. That is, each binary constraint

@ Springer

5058 K. Stergiou

between two variables x; and x; corresponds to two arcs in the graph. In the following, we
will consider constraints to be undirected, unless otherwise stated, and a binary constraint
between variables x; and x; will be denoted by c;;.

A variable x; is a nezghbour of a variable x; 1ff c; € C. Let N; C X denote the set of vari-
ables that are ne1 ighbours of x;. The nezghbourhood N(x;) of variable x; is the sub-graph of
G that is induced by N; U {x;}. To put it in words, N(x;) includes x;, all neighbours of x;, any
constraint between x; and one of its neighbours, and any constraint between two neighbours
of x;.

Complete algorithms for CSPs are based on exhaustive backtracking depth-first search
interleaved with constraint propagation, which typically involves enforcing a local con-
sistency property on the constraints of the problems. Search is guided by variable and
value ordering heuristics. After a branching decision (i.e. a variable assignment or a value
removal from a domain) propagation kicks off. If this results in an empty domain, in which
case we have a domain wipe-out (DWO), the search algorithm rejects the most recent
branching decision and moves on to the next one.

A solution to a CSP is a complete assignment, i.e. an assignment involving all vari-
ables, that satisfies all constraints in C. A consistent partial assignment is an assignment to
a set § C X of variables that satisfies all constraints among the variables in S. The search
process can be visualized by a traversal of a search tree where the root corresponds to the
empty assignment (no variable has been assigned yet) and the rest of the nodes correspond
to consistent partial assignments.

2.1 Local consistencies

The local consistency (LC) that is predominantly used during propagation is arc consist-
ency Mackworth (1977). For binary problems, a value a; € D(x;) is Arc Consistent (AC) iff
for every constraint c; there exists a value a; € D(x)) s.t. the pair of values (q;, a;) satisfies
c;- In this case g, is a support for a; on c;. The extension of AC to non-binary constraints
is known as Generalized Arc Consistency (GAC). A value a € D(x;) is GAC iff for every
constraint ¢; with arity k, s.t. x; € sc(c;), there exists a k-tuple in rel(c;) that includes the
assignment of a to x;. Such a tuple is a support for @ on c;. A variable is (G)AC iff all its
values are (G)AC. A problem is (G)AC iff there is no empty domain in D and all the vari-
ables in X" are (G)AC.

Forward checking (FC) is a restricted form of AC that was widely used in the past for
constraint propagation during search (Haralick and Elliot 1980). After each assignment of
a variable x;, FC enforces AC only on constraints involving x;.

A variable-oriented propagation scheme utilizes a queue of variables to perform propa-
gation. When a variable x; is removed from the queue then for each constraint ¢ having
x; in its scope, all the other variables in the scope of ¢ are revised, i.e. the values in their
domains are checked for consistency. If (G)AC is the LC used then for any x; € sc(c), this
involves searching for a supporting tuple for the values of x; in rel(c). If the constraint is
binary then this essentially means searching for support in D(x;). In such a case, the first
support for a value a; € D(x;) found in D(x;) will be denoted as sup(a;, x;). If no support is
found then g; is removed from D(x;) and x; is inserted in the queue to further propagate the
effects of the value deletions. If all values are removed from a domain, we have a DWO.

A constraint-oriented propagation scheme uses a queue of constraints instead. In this
case, when a constraint is removed from the queue, we say that the constraint is revised,
meaning that all of the variables in its scope are revised. Modern CP solvers use one or

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5059

more queues which may hold variables, constraints, or propagators (i.e. filtering algorithms
for specific constraints triggered by value removals).

2.2 Strong local consistencies

Local consistencies that achieve stronger domain pruning than (G)AC have also been con-
sidered. We call such consistencies strong local consistencies (SLCs) hereafter. One class
of SLCs that has received attention in the case of binary constraints is the class of trian-
gle based consistencies which consider triplets of variables when checking the consistency
of a value, instead of pairs as AC does. Members of this class include the well known
Path Consistency (PC) (Montanari 1974) and its variants: Restricted Path Consistency
(RPC) (Berlandier 1995), Path Inverse Consistency (PIC) (Freuder and Elfe 1996) and max
Restricted Path Consistency (maxRPC) (Debruyne and Bessiere 1997).

In the case of non-binary constraints, SLCs have been mainly proposed for table con-
straints, either as extensions of binary SLCs such as RPC and maxRPC (Bessiére et al.
2008; Stergiou (2008), or as variants of pairwise (Janssen et al. 1989) and relational con-
sistency (Dechter and van Beek 1997) (e.g. Karakashian et al. 2010; Woodward et al. 2011,
Lecoutre et al. 2012). Other notable works include a method that adds new (factor) vari-
ables to achieve SLC reasoning through GAC (Likitvivatanavong et al. 2014) and the intro-
duction of SLCs based on bounds consistency (Bessiere et al. 2015).

However, the class of SLCs that has been predominantly studied is that of singleton
consistencies (Prosser et al. 2000), which is also the most interesting class in the context of
adaptive propagation, as we will shortly explain. The most well known singleton consist-
ency is of course Singleton Arc Consistency (SAC) (Debruyne and Bessiere 2001). For any
variable x; and value a; € D(x;), let AC(P, _,) be the resulting problem after restricting
D(x;) to a; and applying AC to P (in a process called a singleton test). Value g; is SAC iff
AC(P, _,) has no empty domain. A problem is SAC iff all values in all domains are SAC.
SAC is géneralized to non-binary constraints in a straightforward way.

Several variants of SAC, that achieve either weaker or stronger pruning, have been pro-
posed and studied since its introduction to CP. Neighbourhood SAC (NSAC) is a weaker
variant of SAC which, after restricting D(x;) to a;, applies AC only to N(x;) (Wallace 2015).
Restricted NSAC (RNSAC) makes a singleton test on a value a; of x; (again applying AC to
N(x;)) only if a; has a single support in the domain of at least one variable in N(x;) (Papar-
rizou and Stergiou 2017).

Whereas SAC can only remove values from the domain of the variable that is being sin-
gleton tested, a stronger variant of SAC, called Partition-One AC (POAC) can also remove
values from other domains (Bennaceur and Affane 2001). A value a; € D(x;) is POAC iff it
is SAC and Vx; € X, there exists a; € D(x;) s.t. a; belongs to a domain in AC(PX/_(_%_).
Hence, if all the singleton tests on the values in a domain D(x;) result in the removal of a
value g; € D(x;) then POAC will remove a; from D(x;). In the spirit of NSAC, a neighbour-
hood variant of POAC (called NPOAC) has also been defined (Woodward et al. 2017). And
we can easily define Restricted NPOAC following the definition of RNSAC.

SAC and its variants have certain advantages and disadvantages. Their main advantages
are that they are conceptually simple, they can be quite easily integrated into solvers, and
that they can be applied on problems including constraints of any arity. On the other hand,
despite the progress in SAC algorithms (Bessiere et al. 2011; Balafrej et al. 2014), they
are typically very expensive to maintain during search. (R)NSAC and POAC are promis-
ing in that respect, as the experiments carried out so far demonstrate that they are more

@ Springer

5060 K. Stergiou

efficient than SAC and can potentially be successfully applied before or during search on
some problems (Wallace 2015, 2016; Paparrizou and Stergiou 2017; Bennaceur and Affane
2001).

Importantly, singleton consistencies are particularly suitable for use within adaptive
propagation methods. This is because they are easily implementable “on top” of the stand-
ard propagation technique of the solver, something that is not the case with triangle or rela-
tion based consistencies. Hence, as we will explain, many of the recent adaptive methods
have been proposed specifically as means to harness the pruning effects of singleton con-
sistencies without paying the cost of maintaining them throughout search.

Following Debruyne and Bessiere (2001), a consistency property A is stronger than B
iff in any problem in which A holds then B holds, and strictly stronger iff there is at least
one problem in which B holds but A does not. A local consistency property A is incompara-
ble with B iff A is not stronger than B nor vice versa. For example, according to these defi-
nitions, POAC is strictly stronger than SAC which in turn is strictly stronger than NSAC.
On the other hand, NPOAC is incomparable to SAC.

2.3 Heuristics and branching schemes

Variable ordering heuristics play a very important role in CP. A variable ordering heuris-
tic that was widely used in the past is dom/ddeg (i.e. domain size over dynamic degree)
(Bessiere and Régin 1996). The degree of a variable is the number of constraints it partici-
pates in. The dynamic degree is the number of constraints it participates in, such that for
each constraint, at least one other variable involved in the constraint has not been assigned
yet. The heuristic dom/ddeg chooses to assign the variable having minimum ratio of cur-
rent domain size over dynamic degree.

A considerably more effective variable ordering heuristic is dom/wdeg, which is one of
the most efficient general-purpose heuristics for CSPs (Boussemart et al. 2004). This heu-
ristic assigns a weight to each constraint, initially set to one. Each time a constraint causes
a DWO, its weight is incremented by one. Each variable is associated with a weighted
degree (wdeg), which is the sum of the weights over all constraints involving the variable
and at least another (unassigned) variable. The dom/wdeg heuristic chooses the variable
with minimum ratio of current domain size to weighted degree.

Apart from the variable ordering heuristic, another factor that determines how the
search tree is explored is the branching scheme of the solver'. The two most widely used
branching schemes are binary (also called 2-way) and d-way branching. In binary branch-
ing, after a variable x; is chosen and a value a; € D(x;) is selected, two branches are created
(Sabin and Freuder 1997). In the left branch g; is assigned to x; and then propagation is
triggered. In the right branch a; is removed from D(x;) and again propagation is triggered.
If the propagation of a,’s assignment fails and the propagation of a@;’s removal succeeds
then any variable can be selected next (not necessarily x;). If both branches fail then the
algorithm backtracks.

In d-way branching, after variable x; is selected, d branches are built, each one corre-
sponding to one of the d possible value assignments of x;. If the branch corresponding to
the assignment of a value q; to x; fails, the next available value assignment to x; is tried
(next branch), and so on. If all d branches fail then the algorithm backtracks. Although

! Of course, value ordering also plays a part, but to a much lesser degree than variable ordering.

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5061

2-way branching is considered more efficient than d-way, this is not always true, especially
in the case of binary problems.

3 Basic search and propagation framework

Before we start our review of the literature, we describe the framework of a basic CP
solver, highlighting the points where decisions about which LC to apply can be taken. This
allows for the identification of three categories of adaptive propagation methods, as we
explain below.

We consider as adaptive propagation method any technique that can decide at certain
points during the search and propagation process to apply a propagation technique differ-
ent than the standard one, either on the entire problem or on parts of it. These decisions are
taken by exploiting information that becomes available dynamically during search. And
typically, such a decision involves the application of a SLC algorithm instead of (G)AC,
but other approaches have also been considered, especially in early works.

We make certain assumptions regarding the operation of the solver:

e Our description follows a typical setting where constraint propagation involves running
an (G)AC3-like algorithm that seeks a support for each value of a variable on a con-
straint. In the context of non-binary constraints, including global ones, propagation is
implemented in this way only for specific cases, as most constraints come with their
own specialized filtering algorithm. Such algorithms do not seek for supports for indi-
vidual values but exploit the semantics of the constraint to filter inconsistent values “as
they discover them”. Below we will explain if and how the existing adaptive methods
are applicable to the case of non-binary constraints with specific semantics.

e Our description of the solver’s framework follows a standard d-way branching scheme.
This allows for the easier identification and description of the components where adap-
tive propagation can be used. However, almost all of the adaptive methods in the lit-
erature are applicable independent of the branching scheme. If a method is tied to a
specific branching scheme then this will be clarified in its description below.

e We assume that propagation is variable oriented. That is, the main data structure at the
center of the propagation mechanism is a queue of variables. Once a variable has its
domain pruned, it is inserted in the queue. Variables are iteratively removed from the
queue and their domain pruning is propagated through the constraints involving them,
possibly resulting in new domain reductions and queue insertions. This process contin-
ues until the queue becomes empty or a domain is wiped out.

e We assume that the standard local consistency used to propagate all the constraints is
(G)AC. This is not a restrictive assumption as modern adaptive propagation methods
typically alternate between the standard local consistency, which indeed is (G)AC in all
solvers, and stronger local consistencies.

3.1 Search

Algorithm 1 gives the basic framework of a backtracking-based CP solver. In line 1 all
constraints are propagated with the initial variable domains (a process known as preproc-
essing). If no DWO occurs, search commences by heuristically selecting the variable at
depth 1. While there is no backtrack to level 0, signalling that the search space had been

@ Springer

5062 K. Stergiou

exhaustively explored and no solution has been found, the solver traverses the space of par-
tial variable assignments until a complete one (a solution) has been found.

Algorithm 1 Search(X,D,C)

1: if Propagate(X, D,C,null) = FALSE then
2: return FALSE;

3: depth + 1;

4: select an unassigned variable xqeptn;

5: while depth > 1 do

6: if all values in D(%4eptp) have been tried then
7 depth < depth-1;

8: else

9: select a value a € D(xgeptn) that has not been tried;
10: D(xdepth) — {CL};

11: if Propagate(X,D,C,xqepth) = FALSE then
12: restore domains;

13: else

14: depth < depth+1;

15: if depth = n + 1 then

16: return TRUE;

17: select an unassigned variable Zgcptn;

18: return FALSE;

At each iteration of the while loop a value a is selected and assigned to the current
variable x,,,,, (lines 9-10). If all values in D(x,,,,;) have been tried then a chronological
backtrack is triggered (lines 6-7). Otherwise, the assignment of a is propagated, typically
by applying (G)AC on the resulting problem. This is the first point where a decision about
the local consistency to be used during propagation can be taken. That is, before calling
function Propagate, an adaptive propagation method may apply some heuristic to decide
whether the propagation of the assignment at this node of the search tree will be performed
using the standard technique of the solver or some other (stronger) local consistency. We
call such a method node oriented.

If propagation fails (i.e. a DWO occurs) then the affected domains are restored to their
previous state and the solver moves on to try the next value of x,,,,, if one is available, at
the next iteration of the loop. Otherwise, search moves on to the next level of the search
tree by increasing the depth, and a new variable is selected for instantiation, unless we have
reached a complete assignment.

An advantage of node oriented adaptive propagation methods is that they are independ-
ent of the constraints’ arity and type. This makes them, at least in principle, generic and
applicable within a wide range of CP solvers. On the other hand, as the decision about how
to propagate constraints is taken at a high level (i.e. after a branching decision), this deci-
sion is uniform, in the sense that all constraints will be propagated using the chosen LC,
and therefore there is less flexibility. This will be elaborated further when we discuss the
existing node oriented methods from the literature.

3.2 Propagation

Algorithm 2 gives the basic framework of variable oriented propagation. It is called with
the currently assigned variable x; as parameter. Q denotes the queue where variables

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5063

pending propagation are inserted. It is initialized by inserting x; into it, unless we are at the
preprocessing phase, in which case all variables are inserted into Q.

Algorithm 2 Propagate(X,D,C, ;)

1: if z; = null then

2: Q «+ X

3: else

4 Q< {aiks

5: while Q # () do

6: remove variable z; from Q;

7: for each c € C, s.t. zj € sc(c) do

8: for each xj € sc(c), with k # j do
9: deletion + FALSE;

10: if Revise(zy, c,deletion) = FALSE then
11: return FALSE;

12: if deletion = TRUE then

13: Q «+ QU {z};

14: return TRUE;

The main loop picks a variable x; from the queue (line 6) and for each constraint ¢ that
includes x; in its scope, it revises the domains of the other variables that are involved in the
constraint by filtering values that are now inconsistent (i.e. have no support on ¢) (lines
7-13). This is the second place where a decision about the LC to be used during propa-
gation can be taken. That is, an adaptive propagation method may apply some heuristic
to decide whether the revisions of the constraints involving a variable x; picked from the
queue will be performed using the standard technique of the solver or some other (stronger)
local consistency.

Depending on the method, this decision may be taken for each constraint ¢ involving
X, which means that it is taken after line 7 and before line 8 and it is uniform for all the
variables in the scope of ¢, or it may be taken for each individual variable in the scope of
¢, which means that it is taken after line 8. For the case of binary constraints where each
constraint ¢ involves only one variable apart from x;, these two approaches are of course
identical. We collectively call such methods variable oriented.

For each variable x; appearing in a constraint together with x;, the revision of its domain
is carried out by the Revise function. This function returns FALSE if the domain of x, is
wiped out. Otherwise, if there is at least one deletion from the domain, it sets the flag dele-
tion to TRUE to signal that x, must be inserted into Q to continue propagation.

Variable oriented adaptive propagation methods take decisions at a lower level of granu-
larity in the search/propagation process than node oriented ones. This offers greater flex-
ibility because in contrast to node oriented methods that propagate everything using the
same local consistency at each node of search, variable oriented methods may choose to
propagate constraints for any individual variable removed from Q using either the standard
technique or a stronger one.

Variable oriented methods are also independent of the branching scheme and the arity
of the constraints. However, they may require to be modified or they may not even be appli-
cable within solvers that do not use a queue of variables to implement propagation. More
on this when we discuss the individual methods below. Also, variable oriented methods
may need alterations in their implementation depending on the SLC used as the alternative
to GAC. Again, this is further explained below.

@ Springer

5064 K. Stergiou

3.3 Revision

Algorithm 3 gives the basic framework of the revision process for a variable x, and
a constraint ¢ involving this variable. It checks the consistency for all values in D(x;)
and removes inconsistent ones. This is done through function Consistent which may
be implemented in different ways depending on the type of constraint and the LC used
to check the consistency. For example, for a binary constraint and AC, for any value
a € D(x,) it simply searches for a support in D(x;). This is the third point where a deci-
sion about the LC to be used during propagation can be taken. That is, an adaptive prop-
agation method may apply some heuristic to decide whether the test for the consistency
of a value a € D(x;) will be performed using the standard technique of the solver or
some other (stronger) local consistency. We call such a method value oriented.

Algorithm 3 Revise(xy, ¢,deletion)

1: for each a € D(zy) do

2: if Consistent(zy,a,c) = FALSE then
3 D(zy) < D(zx) \ {a};

4: deletion < TRUE;

5: if D(z) = 0 then
6
7

return FALSE;
return TRUE;

Value oriented adaptive propagation methods take decisions at an even lower level
of granularity in the search/propagation process than variable oriented ones. This offers
even greater flexibility because in contrast to variable oriented methods that use the
same LC to check the consistency of all values in a domain, value oriented methods may
choose to do this check using the standard method for some values or a SLC for other
values. On the other hand, when a value oriented method chooses values to apply a SLC
on, it needs to be quite precise so as to utilize the pruning strength of the SLC.

4 Review of adaptive constraint propagation methods

The idea of adapting the level of local consistency applied during search was introduced
in the 90s in various contexts. At that time, the focus of research was mainly on binary
constraints, and AC was considered the strongest practical local consistency, as very
few stronger properties had been introduced. Hence, adaptive methods from the 90s pro-
posed heuristics for either switching propagation between AC and a restricted form of
AC (like forward checking) or for limiting propagation to certain parts of the problem.
In the past decade or so there is rekindled interest in adaptive propagation, following the
emergence of various strong propagation methods for both binary and non-binary con-
straints. They focus on heuristics for switching propagation between the solver’s stand-
ard scheme and SLCs such as SAC and POAC.

Having identified three different categories of adaptive propagation methods (node,
variable, and value oriented), we now review the literature and apply this classification
to the existing methods.

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5065

4.1 Evaluation criteria

In the following, besides reviewing the existing methods of each category, we will also
evaluate them according to the following criteria:

constraint type dependency Is the method applicable on constraints of any arity or is it
limited to binary constraints? Can the method be applied in the presence of global con-
straints or other constraints with specific structure?

LC dependency Is the method tied to a specific local consistency (e.g. a specific SLC) or
can it be used, as is or modified, in tandem with any SLC and any algorithm for apply-
ing it?

solver dependency Is the method applicable within the context of a specific solver archi-
tecture or is it generic? For example, does it require a variable-oriented propagation
scheme? Does it work only with a specific branching scheme?

parameter dependency Is the method fully automated? Is it parameter-free? If not, does
it require parameter tuning from the user’s part?

For each category, before we move to discuss the specific methods that belong to it, we
will make general remarks regarding the criteria so as to avoid repeating them for each
individual method.

4.2 Node oriented methods

As discussed above, node oriented methods choose to enforce a specific LC at certain
search tree nodes according to some heuristic. A node may correspond to a variable assign-
ment, as is always the case in d-way branching, or to a value removal (in binary branching),
or to some other branching decision (e.g. adding a constraint to the problem). As we will
explain, some node oriented methods are better suited to d-way branching, but others are
indifferent to the specific branching decision, and therefore in principle they can be applied
to solvers of different architectures. In general, as node oriented methods take the decision
about how to propagate at a high level of the solving process, other decisions taken at this
level (e.g. branching scheme or variable ordering) may place restrictions on the applicabil-
ity of the adaptive propagation method. For example, certain methods may only fit d-way
branching or may only be applicable in tandem with specific variable ordering heuristics.

On the other hand, node oriented methods are quite powerful, in the sense that they can
exploit the pruning power of SLCs to a high degree, given that SLCs are employed during
entire rounds of propagation at specific nodes. As a downside, this means that the propaga-
tion technique of choice must be implemented for all the constraints in the problem. This
is not an issue with the standard method applied by the solver because typically (G)AC
algorithms are available for all the constraints that are supported by a solver. Even if this is
not the case for some constraint, for which only, say, a bounds consistency filtering algo-
rithm is available, the choice to propagate “in the standard way” at some node will imply to
propagate this specific constraint with its available algorithm.

However, it is not realistic to assume that any given SLC will be implemented for all
the available constraints, given that, as we discussed, SLCs for non-binary constraints
have almost exclusively been proposed for table constraints. But importantly, this is not
a problem with singleton consistencies which operate on top of the standard propagation

@ Springer

5066 K. Stergiou

mechanism. Hence, node oriented methods are better suited for use in tandem with SAC or
its variants.

4.2.1 Reduced exceptional behaviour algorithm

In one of the early works on adaptive constraint solving, Borrett et al. proposed a method
called REBA (Reduced Exceptional Behaviour Algorithm) that can dynamically switch
between different search algorithms, including FC and MAC (Borrett et al. 1996).
Although REBA cannot be exactly cast as an adaptive propagation technique (and that was
not its goal in the first place), we include it in our review because it is an early example of a
method that can adapt its propagation scheme at different nodes of the search tree.

Specifically, REBA uses a predefined chain of algorithms, starting from a very simple
one and advancing to FC and then MAC, and a prediction mechanism for the early detec-
tion of thrashing behaviour (i.e., the repeated exploration of similar subtrees in the search
tree caused by decisions taken further up the search tree). Search commences with the first
algorithm in the chain and when the predictor, which depends on a combination of problem
features, such as domain sizes, number of variables, and backtracks, decides so, the next
algorithm in the chain is invoked. The interesting bit in terms of adaptive propagation, is
that on the harder instances if at a certain point during search it is deemed that the limited
pruning of FC does not cut down the search space enough then a switch to MAC will auto-
matically occur.

4.2.2 Discussion

REBA is suited to d-way branching because FC is a technique that better works within
such a setting. The performance of REBA depends on the value of a user-defined thresh-
old that is used by the predictor module, but its main disadvantage, when evaluated under
today’s standards, is that the switch from one local consistency to another (i.e. FC to AC)
occurs only once during search. However, the ideas put forward had an influence on later
works.

4.2.3 Learning propagation policies

Epstein et al. used the ACE (Adaptive Constraint Learning) mechanism (Epstein et al.
2002) to learn a “policy” for propagation in a given problem class (Epstein et al. 2005).
A policy includes decisions on how to perform preprocessing, on whether to use FC or
AC or intermediate methods, such as the ones proposed in Freuder and Wallace (1991)
that are discussed later, and importantly from the point of view of adaptive propagation,
on whether to switch between different propagation techniques during search. If switch-
ing between methods was part of a policy then the depths in the search tree where this was
done were also learned.

The work of Epstein et al. has some similarities with the REBA approach to adaptive
propagation, especially in the motivation behind the switch between FC and AC, but it
is a more modern and enhanced approach. It relies on machine learning to identify the
levels of the search tree where the switch should be best employed, instead of relying on

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5067

user-defined thresholds. Also, it utilizes an array of different propagation techniques that
include FC, AC and a number of intermediate methods.

4.2.4 Discussion

Evaluated by today’s standards it is rather limited as an adaptive technique because it
does not allow for arbitrary switches between the different propagation methods during
search. Also, it requires the training of ACE, which means that a substantial number of
instances of the target problem class must be available and solvable in reasonable time.
However, the use of machine learning to learn how to perform adaptive propagation is
quite interesting and has not been explored much within CP. Also, the ideas put forward
are not limited to AC and FC, but are independent of specific LCs and solver settings.
Therefore, they could potentially be used in the context of switching between (G)AC
and SLCs, as is the norm in more recent works on adaptive propagation.

4.2.5 Adaptive POAC

Moving on to more recently proposed methods, Adaptive POAC (APOAC) is a node
oriented technique that tries to harness the pruning power of POAC without paying the
high CPU cost of fully maintaining it during search (Balafrej et al. 2014). The main idea
is that singleton consistencies like POAC are worth applying while they achieve a high
number of value deletions. As algorithms for such consistencies iteratively make single-
ton tests on all variables until reaching a fix point, it could be advantageous to somehow
restrict this iteration once the value deletion rate of the algorithm drops.

To implement this idea, APOAC focuses on the number of times that all the values
in the domain of a variable are singleton tested during one call to the POAC algorithm.
A series of singleton tests on all values of a variable is performed through a procedure
called varPOAC. APOAC tries to learn a value k for the maximum times that varPOAC
will be called for each variable, by alternating between a learning and an exploitation
phase during search. During the learning phase POAC is run to completion at each
node, and its effects in terms of pruning on individual variables are monitored. As a
result, the value of a parameter, indicating after how many varPOAC calls the algorithm
starts being ineffective, is learned. During the exploitation phase, the method applies a
weaker version of POAC that calls procedure varPOAC on each variable only until the
learned number of calls.

Starting with a learning phase, one of the two phases is executed on a sequence of
nodes before switching to the other phase for another sequence of nodes. The total
length of a pair of sequences learning + exploitation is fixed to a parameter LE. APOAC
uses an approximation of the search space size, called the volume of the CSP, which is
the log, of the Cartesian product of the domains, to measure the search space reduction
achieved during the learning phases. The ith learning phase is applied to a sequence of
1/10 X LE consecutive nodes. During that phase, a cut-off value k; is learned, which is
the maximum number of calls to the procedure varPOAC that each node of the next (ith)
exploitation phase will be allowed to perform.

The value of k; is learned based on the cut-off value k;_; of the previous learning
phase and the reduction in the volume of the problem observed during propagation at
this phase. To be more specific, for each node explored during the learning phase, a cut-
off value k;(j), with j=1...1/10 X LE, is learned, and these values are then aggregated

@ Springer

5068 K. Stergiou

(e.g. by taking their mean) to produce k;. Each k;(j) represents the number of calls to
varPOAC during which the reduction in volume was deemed sufficient during propa-
gation at that specific node. Different criteria as to what constitutes sufficient volume
reduction were proposed (e.g. if there was at least one value deletion).

4.2.6 Discussion

APOAC was proposed as a specific technique tied to POAC, but its main idea could eas-
ily be used in tandem with other singleton consistencies. Being an adaptive technique for
singleton consistencies, it is independent of the constraints’ arity or type, and can be used
with any branching scheme. However, APOAC is quite complex compared to other adap-
tive propagation methods, and crucially, it is heavily dependant on various parameters for
determining, for instance, how the effort between learning and exploration will be divided,
or what constitutes a significant reduction of the search space volume.

4.2.7 Multi-armed bandits

An adaptive propagation method based on the reinforcement learning technique known as
Multi-Armed Bandits (MAB) was proposed by Balafrej et al. (2015). This is one of the few
methods that use machine learning to guide the decisions about what propagation method
to use, and it is interesting in several respects. The main idea is to attach a ML component,
called a MAB selector, to each level of the search tree. The MAB selector at some level
decides which LC to apply whenever propagation is triggered at that level. The selector is
based on a model defined over:

1. Asetof karms {LC,,...,LC,}. Each arm corresponds to an algorithm that enforces a
specific LC.

2. A et of rewards R,(j), with 1 <i <k, j > 1, where R;(j) is the reward delivered when
an arm LC; has been chosen at time j.

The reward function can be any measure that reflects the performance or a criterion that
indicates the appropriate arm. The implementation described used the CPU time as meas-
ure of performance (Balafrej et al. 2015). Specifically, if a LC i is selected to be applied at
some node at time j then the reward R,(j) is computed based on the performance of LC i at
time j compared to the performance of all consistencies at previous visits at this depth, as
follows:

()

R()=1-
& maxi:l.“k,mzlu.jTi(m)

where T;(m) is the CPU time needed to enforce LC i at the mth visit of a node at the given
depth plus the time to explore the sub-tree rooted at that node.

The policy used to choose the LC to apply at any node takes into account the previous
rewards obtained by the LCs, the number of times each LC was selected, and the current
total number of calls to the available LCs. Specifically, the policy selects the LC i that
maximizes:

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5069

2Inm

p(i) =R; +

i
where I_Ql- is the mean of the past rewards of the i LC, m; is the number of times LC i was
called and m is the current number of calls to any LC. The reward term R; encourages the
exploitation of successful LCs, i.e. ones with higher-rewards, while the term ,/ %nﬂ pro-

motes the exploration of the less selected LCs so as to avoid constantly selecting the same
LC.

The LCs used by the MAB approach for the experiments presented in Balafrej et al.
(2015) were AC, maxRPC, and POAC. The results obtained demonstrated that MAB man-
ages to select the “right” LC for most problems, achieving a very good overall performance
and outperforming APOAC on hard instances. However, these results were obtained under
the older dom/deg variable ordering heuristic, and may be considerably different under
modern heuristics, as we detail in Sect. 5.

4.2.8 Discussion

The MAB method has some strong points compared to other methods of any category.
First, it is not limited to choosing the propagation method among two options (a weak and
a strong one), as most methods typically do. The allocation of one bandit to one LC allows
the MAB method to exploit an array of different LCs with different pruning power and
cost. Second, the method is fully automated, as it does not require any parameter tuning.
And although it is based on machine learning, it does not require training (as does the
method of Epstein et al. 2005 for example). Another advantage of the method is that it can
be modified to be used as a variable oriented adaptive technique. This is because MABs
could be attached to individual variables instead of search tree levels, as noted in Balafrej
et al. (2015).

However, the MAB method also has an important weakness. Given that each MAB
operates at a fixed level of the search tree, its performance is largely affected by high level
settings of the CP solver, such as the branching scheme and the variable ordering heuristic
of choice. The MAB method is tailored to d-way branching where each level of the search
tree corresponds to a variable and the entire set of its variable assignments, while it is not
suitable (at least in its original form) to binary branching where each level corresponds to
one variable assignment and its refutation. Also, the MAB method does not interact well
with highly dynamic variable ordering heuristics (e.g. dom/wdeg) because such heuristics
affect the effectiveness and stability of a bandit’s learning.

4.2.9 PrePeak

PrePeak is a node oriented method that, by monitoring the backtracks that occur during
search, can activate a SLC algorithm once thrashing starts to be noticed. Then, depending
on the effects of this algorithm, propagation sooner or later reverts to the standard choice,
until thrashing is detected again, and so on Woodward et al. (2018).

Specifically, the number of times each level of the search tree was backtracked to is
stored in a vector brcounts[] indexed by the corresponding level. When an entry in this
vector reaches a threshold value 6, then the corresponding tree level is considered as the
“peak” depth of thrashing, and is stored in a global variable peak,;. Once search backtracks

@ Springer

5070 K. Stergiou

to a shallower level than peak,, propagation switches from the standard method to the
SLC and continues using the SLC as long as it is effective. Once it starts being deemed
as ineffective, propagation switches back to the standard method, and all the counters in
btcounts[] are reset to 0. The main idea is that through peak, a level of search where inten-
sive thrashing (i.e. a peak) occurs is identified. Then after backtracking above this level, the
use of the SLC as search moves forward again will hopefully help alleviate the thrashing at
the peak level.

PrePeak commences search using the standard propagation method, and as soon as n
nodes have been counted (with n being the number of variables) then 6 is initialized to the
maximum value of the entries in btcounts[]. Thereafter, the switching mechanism is acti-
vated. Whenever propagation is performed using the SLC, 6 is updated to reflect the effects
of propagation. This update is done by multiplying its value with a factor or r,,, ry, or r,,,
depending on whether propagation has resulted in a DWO, in the filtering of some values
but no DWO, or in no filtering at all, respectively. The three factors are set to appropri-
ate values (1.27', 1.2%, 1.23, respectively) to reflect that in the first case where a DWO is
caused, the SLC should continue to be applied, while in the other two it is better to prevent
it from triggering again too soon.

A variant of PrePeak, named PrePeak+, was also proposed. PrePeak+ uses a mecha-
nism to enforce the early termination of the SLC when this is being applied, so as to keep
most of its pruning power while reducing the cost of its application. This is similar to the
idea behind APOAC but it is implemented in a much simpler way. The termination is con-
trolled either by the size of the propagation queue or by the run time of the SLC algorithm.
The former allows only a fraction of the propagation queue to be processed, while the latter
imposes a bound on the duration of any call to the SLC.

Experimental results with PrePeak+, using POAC as the SLC, were very promising,
showing that it is clearly superior to MAC under the dom/ddeg heuristic, and quite compet-
itive under dom/wdeg, beating MAC on some problem classes. Also, in the only existing
experimental comparison of different adaptive propagation methods, experiments showed
that PrePeak+ is clearly superior to the other two recent node-oriented methods, APOAC
and MAB (Woodward et al. 2018).

2

4.2.10 Discussion

PrePeak is a sophisticated adaptive propagation method that tries to precisely focus the
application of a SLC on parts of search where thrashing occurs, by monitoring the back-
tracks that take place. Given the experimental results achieved, it is clear that PrePeak is
the state-of-the-art in node oriented methods.

As a downside, PrePeak is not fully automated, as it requires tuning the initialization
and update policies of the threshold 6 that determines when the SLC will be activated.
Also, there are other switches that need to be set to control how long the SLC algorithm
will be allowed to run if the PrePeak+ variant is used. Finally, but importantly, PrePeak is
suited to d-way rather than 2-way branching because, like the MAB method, its methodol-
ogy is tied to levels of the search tree that correspond to variables.

4.3 Variable oriented methods

Variable oriented adaptive propagation methods make a choice about which LC to enforce
every time a variable is removed from the propagation queue. This requires the use of a

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5071

solver that employs variable oriented propagation, which is often the case but not always.
The branching scheme of the solver does not make any difference as the decision about
propagation is taken at a lower level of granularity. The dependency on parameter settings
varies from method to method as we detail below.

Again, the use of singleton consistencies as alternatives to standard propagation results
in a method with wider applicability compared to other SLCs. This is because in the for-
mer case, once a variable under revision is chosen for propagation with the SLC, a sin-
gleton consistency algorithm can test the values in the domain of the variable by simply
temporarily assigning them and calling the standard propagation mechanism of the solver.
In contrast, a different SLC, e.g. a relation based one, needs to be implemented for con-
straints of many different types, given that a variable may be involved in many different
constraints. But this is not feasible, especially in the case of global constraints.

4.3.1 Selective relaxation

The idea of adaptive propagation was first put forward by Freuder and Wallace (1991).
They proposed a technique, called selective relaxation which can be used to restrict AC
propagation on certain variables based on two local criteria, and they incorporated this
technique in the standard arc consistency algorithm AC3 accordingly.

The first criterion is the distance in the constraint graph of any variable from the cur-
rently instantiated one where propagation is initiated. Hence, the so called distance-
bounded relaxation confines propagation to variables within a fixed distance from the first
variable processed. In the context of the framework described in the previous section, this
can be implemented by calling function Revise only for variables whose distance from the
first one is within the given bound. The second heuristic stops propagation along a path
of the constraint graph as soon as the amount of value pruning from a variable’s domain
falls between a certain threshold. This is called response-bounded relaxation and can be
implemented within our framework by not allowing the insertion of a variable into Q if the
percentage of values that were pruned from its domain during a call to Revise falls below
the threshold.

4.3.2 Discussion

Although selective relaxation was proposed within the context of AC, it can be generalized
to other LCs, especially for the case of binary constraints. The response-bounded variant
is applicable to constraints of any arity, whereas the distance-bounded one may require
modification because the notion of distance between variables could be misleading as a
means to restrict propagation in a hyper-graph, because of the large differences in the prop-
agation cost of different types of non-binary constraints. For instance, two variables may
be in close distance, but the cost of propagation for the (non-binary) constraints that con-
nect them could be quite high (as is the case for table constraints, for example). While in
another case, two variables may be quite far apart, but the cost of propagating the connect-
ing constraints could be low (e.g. if they are connected through a sequence of binary con-
straints). Selective relaxation is easy to implement but depends heavily on the parameters
used for the distance or the response bound.

Although the idea of stopping propagation altogether to avoid potential overheads is
rather outdated, a modification of selective relaxation so that different local consistencies
are used for propagation according to the distance or the response may be worth exploring.

@ Springer

5072 K. Stergiou

For instance, propagation could kick off with a SLC and switch to a weaker LC once the
distance between the first variable inserted in the queue and the currently removed one
goes beyond a certain bound. Similarly for the response-bounded case. As we explain
below, these ideas have influenced certain techniques that were more recently proposed.

4.3.3 Adaptive constraint propagation

In the work where the term “adaptive constraint propagation” was first introduced, El Sak-
kout et al. proposed a scheme aptly called Adaptive Arc Propagation (AAP) for dynami-
cally deciding whether to process any individual constraint c; using AC or FC-like propa-
gation (EI Sakkout et al. 1996). That is, whether to revise x; whenever there is a value
removal from D(x;) (AC propagation) or only when D(x;) is reduced to a singleton (FC-like
propagation).

To achieve this, for any constraint ¢; and any value a € D(x;) AAP calculates AC-supe-
riority(x;, a), which represents the probability that AC revision will remove a, whereas FC
will not. These probabilities are calculated by taking into account the number of supports
that the values of x; have in D(x;), and can be then aggregated to indicate whether it is
worth making a revision using AC or FC. The authors do not specify how the probabilities
can be aggregated, except for the specific case of anti-functional constraints, but roughly
speaking, if the values of x; have a small average number of supports in D(x;) then it is
more likely that AC will prune extra values compared to FC.

The instantiation of the general schema to the case of anti-functional constraints is fur-
ther analyzed and evaluated. In an anti-functional constraint c;, for any value in D(x;), all
values in D(x;), except one, support it (e.g. # is anti-functional). In this case, AC propaga-
tion can achieve no more pruning than FC-like propagation.

Although AAP best fits a constraint oriented propagation mechanism, it can be easily
incorporated within a variable oriented one such as the one we describe in Sect. 3. Spe-
cifically, in function Revise (Algorithm 3), for each variable x, we can determine if the
consistency of its values will be checked using the standard propagation method or a SLC
based on the scheme of AAP, assuming that the aggregation of the AC-superiority prob-
abilities has been defined.

4.3.4 Discussion

AAP is rather outdated by today’s standards, given that it is based on support counting,
which is a prohibitively expensive procedure for non-binary constraints. Support counting
also means that it is very specific to AC and weaker variants of AC, like FC. On the other
hand, the idea of using some probabilistic procedure to determine how constraints will be
propagated is very interesting and has not been explored much in CP.

4.3.5 Monitoring the effects of revisions

A more recent method which rekindled interest on adaptive constraint propagation was
proposed by Stergiou (2008, 2009). This method is a heuristic, coming in various flavours,
which allows the solver to switch between a SLC and AC by monitoring the effect of con-
straint revisions (the AAP method of ElStergiou 2008, 2009). Although it was originally
proposed following a constraint oriented propagation scheme, it was later modified to fit
variable oriented propagation (Paparrizou and Stergiou 2012).

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5073

The motivation behind the proposed method comes from observations based on experi-
mental results. Namely, that in structured problems constraint revisions that cause domain
reductions or even DWOs closely follow one another. That is, if the revision of a constraint
¢ at some point during search causes domain reductions then it is likely that the revisions
of ¢ that immediately follow will also cause domain reductions. Hence, the main heuristic
proposed by Stergiou works as follows: all constraints are revised using the standard propa-
gation method, but once the revision of a constraint causes a DWO then this constraint is
revised using the SLC for its [following revisions, where [is a parameter set by the user.
Given that these revisions are likely to cause pruning, the use of the SLC may boost the
pruning achieved, possibly resulting in early backtracks.

A number of variants of the basic heuristics were also proposed. For example, instead
of monitoring DWOs and switching the propagation method based on their occurrence,
an alternative heuristic monitors and reacts to value deletions. This results in more often
invocations of the SLC. Disjunctive combinations of the DWO and deletion monitoring
heuristics were also considered.

In a subsequent work, the heuristics were described in a variable-oriented scheme,
where the revisions of variables instead of constraints are monitored (Paparrizou and Ster-
giou 2012). Also, a variant of the method that does not require parameter setting was pro-
posed. However, this variant is too restrictive, in the sense that it only applies the strong
propagator in the revision that immediately follows a DWO (or a deletion).

4.3.6 Discussion

The revision monitoring approach is very simple, it is independent of the constraints’ arity
and the branching scheme, and can be incorporated in solvers with different architectures.
Also, it can work with SLCs of different types, be it singleton consistencies [as in Papar-
rizou and Stergiou (2012), triangle based (Stergiou 2008) or relation based (Paparrizou
and Stergiou 2012)]. However, a major drawback of this approach is that the best heuristics
proposed rely on the parameter /, whose value needs to be set through experimentation.

4.4 Value oriented methods

As explained, these methods selectively apply a strong propagation technique on specific
values when certain conditions are met. As in the other categories, and perhaps even more
so, such methods are particularly suited to SAC-like SLCs because after the specific values
have been selected, a singleton consistency will simply assign them temporarily and call
the standard propagation mechanism to test consistency.

4.4.1 Probabilistic arc consistency

Probabilistic Arc Consistency (PAC) is a method proposed by Mehta and van Dongen that
bears resemblance to the AAP method of (El Sakkout et al. 1996) in the sense that it also
uses probabilistic reasoning about supports (Mehta and van Dongen 2007). PAC tries to
avoid checking the consistency of some values that are unlikely to be pruned by AC, using
probabilities about the existence of supports. As in AAP, the scheme is based on infor-
mation gathered by examining the supports of values in constraints. However, this costly
operation is only performed once, before search commences. Also, the reasoning is first

@ Springer

5074 K. Stergiou

applied at the level of values (hence we cast it as a value oriented method), but can also be
applied at the level of variables as with AAP.

Specifically, when a support for a value a € D(x;) is sought in a domain D(x;), PAC
computes a probability that support exists based on the number of supports that a had in
the initial domain of X, the current domain size of X, and the number of values that have
been removed from D(x)). If this probability is greater or equal to a threshold then the
search is not executed. This is called a probabilistic support condition and could be incor-
porated right before function Consistent is called in function Revise (Algorithm 3) of our
solver framework from the previous section.

This can also be applied at the level of variables in what is called a probabilistic revi-
sion condition in Mehta and van Dongen (2007). Specifically, if for all values in D(x;), the
probabilities that they have support in D(x;) are computed and the minimum value of these
probabilities is greater or equal to the threshold then the revision of x; with respect to x; can
be avoided, as it is likely that no pruning will be achieved. Mehta and van Dongen also pro-
posed to use the reasoning behind PAC within a SAC algorithm, and specifically when AC
is being enforced within singleton tests.

4.4.2 Discussion

Although support counting is only done once in a preprocessing step, PAC’s reliance on
such a process means that it is only applicable on binary constraints, or very specific non-
binary ones. Also, it is difficult to generalize it to other LCs apart from AC because it is
based on the notion of support for a value in a domain. However, the main idea of some-
how computing the likelihood that a value is consistent and acting accordingly during
propagation is certainly interesting.

4.4.3 (Quick) shaving

The selective application of SAC on certain values is known as Shaving. This technique
originates from scheduling and numeric CSPs but has also been explored in the context of
finite domain CSPs. Lhomme proposed a heuristic method, called quick shaving that can
be used to select values to test for SAC based on the likelihood that they are “’shavable”,
i.e. they will be removed by SAC (Lhomme 2005). Quick shaving makes a singleton check
on a value a € D(x;) at level k of the search tree only if it was shavable at level k+1, and
such decisions are taken only after a backtrack to level k has occurred.

Initial information about shavable values at level k + 1 is cheap to obtain because it
comes from tried and failed instantiations. That is, if search assigns a to x; at level k+1 and
propagation of the assignment fails then a will be singleton tested when the solver back-
tracks to level k. Apart from the values that are selected for singleton testing, propagation
runs in the standard way, and therefore quick shaving can be viewed as a value oriented
adaptive propagation method.

Szymanek and Lecoutre studied ways to selectively apply shaving using the semantics
of the global constraints alldifferent and sum to suggest the values that are most likely to
be removed by a singleton test (Szymanek and Lecoutre 2008). According to the proposed
heuristic, each global constraint “’proposes” one value to singleton test. The choice of
value is made in such a way so that the pruning power of the constraint is maximized if
the value is deleted. Information about the success of failure of past singleton tests is also
exploited to fine-tune the heuristic.

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5075

Zanarini and Pesant performed an experimental evaluation of quick shaving across sev-
eral benchmarks and in tandem with various variable ordering heuristics (Zanarini and
Pesant 2009). The obtained results allowed them to identify a threshold in the success ratio
of shaving, i.e. the number of times it achieves pruning over the number of singleton tests,
below which quick shaving becomes an overhead. Based on this they proposed a simple
adaptive method that dynamically switches off quick shaving once its success ratio falls
below the threshold. This is reminiscent of the response-bounded relaxation heuristic from
Freuder and Wallace (1991).

4.4.4 Discussion

Quick shaving is easy to incorporate into solvers, it works with constraints of any arity or
type and is largely independent of the internal mechanics of solvers (e.g. it works with any
branching scheme). In the context of our framework, we can incorporate such a method
by simply testing the consistency of the selected values through a singleton test within
function Revise. As a downside, adaptive methods based on shaving are specific to SAC-
like SLCs. Also, quick shaving is narrow in its application of singleton tests as it only
applies them on specific values, only after a backtrack. But importantly, it does not depend
on parameters that the user needs to set, except for the variant of quick shaving given in
Zanarini and Pesant (2009).

4.4.5 Adaptive parameterized consistency

Adaptive parameterized consistency is a value oriented adaptive method that decides
whether to enforce AC or a stronger consistency on a value, based on its stability, which
is an estimate of the difficulty to find support for this value (Balafrej et al. 2013). Two
variants of the method are described. The first one uses a parameter that needs to be set
through experimentation or experience, while the second one, on which we focus, does not
require any parameter setting, and is thus fully automated.

Assuming ordered domains, for any variable x; and value a € D(x;), the distance to end
of a in D(x;), denoted A(x;, a), is the normalized distance between a and the end of D(x;),
defined as follows:

A(x,"a) = (|D0(xi)| — rank(a, D()(x,‘)))/|D()(x,‘)|

where D(x;) is the initial domain of x; and rank(a, Dy(x;)) is the position of value a in the
ordered set of values Dy(x;).

Given a value a; € D(x;) and a binary constraint ¢y, g, is stable for AC on ¢;; if it has a
support sup(a;, x;) in D(x)) s.t. the distance to end of sup(a;, x;) in D(x;) is greater or equal
to a parameter p(x;). A value a; € D(x;) is stable if it is stable on all constraints where x;
participates. If the stability of value a; falls under the threshold p(x;) on a constraint c;
then, assuming that the value of p(x;) is suitably small, it is unlikely that a; will have a lot
of supports (if any) in D(x;), apart from sup(a;, x;). Therefore, it is likely that the applica-
tion of a SLC on g; will result in its pruning. Hence, the main idea is that if it is difficult to
find a support for a value then a SLC may prune this value.

Adaptive parameterized consistency has two important properties. First, the threshold
p(x;) for each variable can be adjusted automatically during search using the weighted
degrees of the variables, as we will explain in the next section. Second, there is no need to

@ Springer

5076 K. Stergiou

compute all the supports for any value, as is the case for other methods that reason about
supports such as AAP and PAC.

Adaptive parameterized consistency was extended to non-binary table constraints utiliz-
ing Simple Tabular Reduction algorithms (Ullmann 2007; Lecoutre 2011) that offer infor-
mation about the number of supporting tuples that a value has on a constraint (Woodward
et al. 2014). This means that the decision about which LC to apply is taken using the exact
number of supporting tuples that a value has on a constraint at any time, instead of an
approximation of support, as does the original method for binary constraints. The proposed
method switches between GAC and pairwise consistency, selecting the latter when the
number of supports for some value is below a threshold.

4.4.6 Discussion

An important advantage of adaptive parameterized consistency is that it is fully automated,
as the setting of its parameters does not require any user involvement. Also, it can be com-
bined with various SLCs, be it triangle-based [as in Balafrej et al. (2013)], relation-based
[as in Woodward et al. (2014)], or SAC-like (as we demonstrate in the next section). On the
other hand, the applicability of adaptive parameterized consistency is essentially limited to
binary constraints and to non-binary table constraints because of the way it reasons about
supports. This reasoning is difficult, and in most cases impractical, to generalize to global
constraints.

4.5 Summary

Table 1 summarizes our critical evaluation of the existing adaptive propagation methods
based on the criteria given in Sect. 4.1. Let us explain the information given in the columns
of the table:

Method The name and main reference for each method is given.

Cons Type (eval) We specify whether a method is applicable to constraints of any arity
or just to binary ones. If a method that works with constraint of arbitrary arity was only
evaluated on binary problems in the paper where it was proposed, we write “bin” in
brackets.

SLC type - #SLCs “SLC type” specifies the type of SLC that a method can work with.
FC/AC means that the corresponding method was proposed as a heuristic for switch-
ing between FC and AC. For node-oriented methods we specify that the chosen SLC is
applied uniformly on all variables/constraints of the problem. #SLCs specifies whether a
method can switch between standard propagation and only one specific SLC or if it can
choose among more than one SLCs.

switches This piece of information refers to the switching between the standard propa-
gation and the SLC(s) during search. Most methods allow for multiple switches at heu-
ristically chosen points in time. But some place restrictions (Quick Shaving switches
only after a backtrack, while ACE allows switching at certain levels of the search tree).
solver Here we highlight the dependence of a method on solver settings. Specifically,
we refer to possible dependence on the branching scheme (e.g. d-way means that the
method is tailored for d-way branching), on the variable ordering heuristic (voh), and
the propagation scheme (variable or constraint oriented). Also, some methods may be

@ Springer

5077

Adaptive constraint propagation in constraint satisfaction:...

(‘wone) suo yo1eas j1oddns odnnu 1 - Auew J[qeI+uIq (€102) ‘Te 1° fogereg "suo) ‘wered py
ouou Juapuadopur (3q) ordnnu 1 - Paseq-DVS Kue (5007) swwoy T SurAeys YoInd)

(10sn) QUO yoreos 110ddns ordnnuw I - DVS/OV uiq (L007) ueSuo(q uea pue eIyoN DVd
PaIUaLIO-aNIDA

Juou POIUSLIO-TRA ordnnuw I - Aue Kue (z107) no18191§ pue nozirreded Suriojiuowr A9y

(19sn) Juo P9IUILIO-SUOD ordnnuw I - Aue (u1q) Aue (8007) no1319)g SuLIoyIUOW ASY
(19sn) SuO yoreas 1oddns ordnnu 1-2V/Dd uq (9661) T8 19 MOXNES [dVV
(19sn) dUO juapuadopur ordnnu I - Aue (u1q) Aue (1661) 298[[BA\ PUB JOPNAL] UONEXE[AI [9S
PaIUILIO-2]qDLIDA

(1osn) oWIOS Kem-p ordnnu 1 - (wroyrun) Kue Kue (8107) 'Te 30 PIeMPOOA edJoId
(‘wolne) awos yoa/Aem-p ordnnu 1< - (w1ojiun) Aue (u1q) Aue (S102) 'Te 10 foxyereg gVIN
(19sn) Qwos juapuadopur ordnnu I - Paseq-QVS Aue #102) T8 10 foryereg DVO4V
(‘uren) swos juopuadopur (1A9]) ordnnux [< - (wiojiun) Aue (u1q) Aue (S002) T8 10 urasdg qOv
(19sn) ouo Kem-p Qouo 1 -0V/0d (u1q) Aue (9661) 'Te 12 nauog VA
PaIUILIO-IPON

s1o)oweIRd I3A]OS SYINIMS SOIS# - 2dK1 OIS (TeA?) 2dAKy suo) PO

spoyjow uonededord sandepe jJo uonenyeas [eoNLId Y} Jo Arewwung | d|qel

pringer

As

5078 K. Stergiou

applicable only in tandem with propagation algorithms that operate by searching for
support for values in domains.

parameters This refers to the dependence of a method on parameter settings. A method
may use only one parameter that is either set by the user or automatically. Alternatively,
it may require the setting of several parameters, which is done by the user or automati-
cally or through training on CSP instances. There are also cases where no parameters
are required.

5 Experimental evaluation

As mentioned above, the only existing experimental comparison of adaptive propagation
methods was carried out between the three recently proposed node oriented techniques
(APOAC, MAB, PrePeak) (Woodward et al. 2018). But no comparison between meth-
ods operating at different levels of granularity has been made. We address this by running
experiments on three representative methods, one from each class. Specifically, we com-
pare PrePeak, one of the best heuristics from Stergiou (2008) (called H, in Stergiou 2008
and VarAdapt hereafter), and the adaptive parameterized consistency method of Balafrej
et al. (2013) (called ValAdapt hereafter).

In the following, we will refer to an algorithm that maintains a LC, by the name of that
LC. Hence, MAC will be referred to as AC. Following our analysis in the previous sec-
tions, we concluded that singleton consistencies are better suited for use within adaptive
propagation methods than other SLCs. Hence, we focused on recently proposed low-cost
singleton consistencies like NSAC, NPOAC, RNPOAC and RNSAC.

To decide which is the best choice of SLC among them, we first experimented with
algorithms that maintain such singleton consistencies during search. The results revealed
that NSAC is the worst option being clearly less efficient than the other three. Among
RNPOAC and NPOAC, the latter is usually slightly faster, while there were negligible
differences between RNSAC and RNPOAC. Hence, we decided to focus on RNSAC and
NPOAC which, in terms of pruning, are the weakest and strongest SLCs among the four
considered. We now discuss the implementation of the three adaptive methods.

5.1 PrePeak

PrePeak was implemented as described in Woodward et al. (2018) regarding the main part
of the method, including the initialization and updates of the triggering threshold. How-
ever, the mechanism to control the early termination of the SLC algorithm was not imple-
mented. The reason for this is twofold:

e For a fair comparison we would have to implement the same mechanism in the methods
that are compared to PrePeak, but this would introduce extra parameters to these meth-
ods.

e The SLCs considered in this paper are neighbourhood variants of SAC and POAC,
whose algorithms typically have much shorter runs than SAC and POAC algorithms,
especially on sparse networks. This is of course because at any singleton test of a value
a; € D(x;), the neighbourhood variants only propagate the assignment of g; to x; in N(x;)

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5079

instead of the whole network. As a result, forcing early termination is largely unneces-
sary.

POAC is a better option than SAC when used within node oriented methods such as Pre-
Peak Balafrej et al. (2014), Woodward et al. (2018). But in our experiments we noticed
very small, essentially negligible, differences between PrePeak variants that use any of
the four neighbourhood singleton consistencies that we considered. This is because, as
we detail below, PrePeak makes very few singleton tests compared to the other adaptive
methods. Hence, the difference in pruning power between the four SLCs has a very small
impact.

5.2 VarAdapt

Function Revise-VarAdapt (Algorithm 4) gives a detailed description of the Revise func-
tion from Sect. 3 (Algorithm 3), as we have implemented it within method VarAdapt. It
differs from the corresponding description in Stergiou (2008) in two features:

1. We use here a variable-oriented propagation scheme, whereas a constraint-oriented
propagation scheme was used Stergiou (2008).

2. The original description was specifically tailored for heuristics that use maxRPC as the
SLC. Here, the description fits the use of a singleton consistency as the SLC.

As in Algorithm 3, Revise-ValAdapt takes as arguments the variable to be revised, the con-
straint that it will be revised against, and the flag deletion. But in addition, it takes a param-
eter / that controls the amount of times that the SLC will be applied.

Algorithm 4 Revise-VarAdapt(zy, ¢,deletion,l)

1: revision[k] < revision[k]+1;

2: for each a € D(xy) do

3 consistent < Consistent(zy, a, ¢);
4 if consistent = TRUE then

5: if revision|k] - dwo[k] < | then
6 D(zx) « {a};

7 consistent < SLC-Consistent(P);
8 if consistent = FALSE then

9: deletion <~ TRUE;

10: D(ax) « D(ax)\ {ah

11: if D(zg) = 0 then

12: dwolk] < revision[k];

13: return FALSE;
14: return TRUE;

Assuming that a variable x, is to be revised against a constraint ¢, Revise-VarAdapt is
called to enforce a local consistency on the values of x,. VarAdapt uses two global vectors
revision[] and dwol] of size n, which are initialized to O for every variable. At each revi-
sion of a variable x;, revision[k] is incremented by one (line 1), meaning that it counts the
revisions of x,. If the revision of x, results in a DWO, dwolk] is set to revision[k] (line 12),
meaning that at any point, and for every variable x;, revision[k] records the most recent
revision that resulted in the variable’s DWO.

@ Springer

5080 K. Stergiou

We first check the consistency of each value a € D(x;) using the standard Consistent
function of the solver. For binary constraints, where AC is used for propagation, this func-
tion simply seeks support for a on ¢ (i.e. in D(x;), where x; is the other variable involved
in ¢ - see Function Propagate in Sect. 3). If a is consistent then, depending on a condition,
it may be checked for consistency again, using the SLC this time. The consistency of a
value is first checked using the standard LC to quickly locate inconsistencies that are prov-
able through the weaker LC. This is typical in SAC and SAC-like algorithms where AC is
enforced before applying the singleton consistency.

The condition we consider here concerns the DWOs suffered by x;. If the distance, in
terms of consecutive revisions, between the current revision of x; and the most recent revi-
sion that resulted in a DWO, is less or equal to [then all values of D(x,) are tested using
the given SLC. The idea is that revisions that cause DWOs frequently appear in clusters, so
focusing a SLC on them may result in early backtracks (Stergiou 2008).

A crucial factor that affects the performance of VarAdapt is the value of the parameter
[. Unfortunately, there is no “optimal” value for all problem classes and it is quite likely
that the value needs to be readjusted to maximize performance, not only when considering
different problem classes but also when considering different SL.Cs. In our experiments we
set [to 100, which has been shown to achieve a good overall performance (Stergiou 2008).

5.3 ValAdapt

Function Revise-ValAdapt (Algorithm 5) gives a detailed description of the Revise function
from Sect. 3 (Algorithm 3), as we have implemented it within method ValAdapt. As in the
case of VarAdapt, our description differs slightly from the original one which was focused
on constraint-oriented propagation and the use of maxRPC as the SLC, while we focus on
variable-oriented propagation and singleton consistencies.

Algorithm 5 Revise-ValAdapt(zy, cxj,deletion)

1: p(zg) + (wdeg(z) - minge x (wdeg(x))) / (maxgex(wdeg(z)) - mingex (wdeg(z)));

2: for each a € D(zy) do

consistent < Consistent(xy, a, cx;);

if consistent = TRUE then

if A(zj,sup(a,z;)) < p(x) then

Diwk) « {a};
consistent <— SLC-Consistent(P);

if consistent = FALSE then

9: deletion <— TRUE;

10: D(zy) < D(wr) \ {a};

11: if D(zy) = 0 then

12: return FALSE;

13: return TRUE;

As in Algorithm 3, Revise-VarAdapt takes as arguments the variable to be revised, the
constraint that it will revised against, and the flag deletion. As this method is specific to
binary constraints, we specify that the constraint involves two variables x; and x;.

A strong advantage of ValAdapt is that it is fully automated. The value of the thresh-
old p(x,) is automatically computed for each variable x, based on the weighted degree of
x;, and the maximum and minimum weighted degrees of all variables (line 1). The idea
is that variables with high weighted degree are associated with very active constraints

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5081

and therefore applying a SLC on their values may cause extra pruning. Information about
weighted degrees is available if dom/wdeg is used for variable ordering, which is a reason-
able assumption given that dom/wdeg is probably the most efficient heuristic for binary
CSPs. But even if some other heuristic is used, it is easy and cheap to maintain information
about weighted degrees.

As we are dealing with binary constraints, AC will naturally be the standard propaga-
tion method. After a value a € D(x,) is checked for AC, if it is verified that the normalized
distance A(x;,sup(a, x;)) between its located support sup(a, x;) and the end of D(x;), is less
than p(x;), then a is checked for consistency using the SLC.

Note that ValAdapt cannot be combined with (N)POAC. This is because when a vari-
able x, is revised, some of its values may not be singleton tested because the condition in
line 5 may prevent it. But in order for (N)POAC to delete a value ¢’ from the domain of
some other variable, ' must not be present in any AC(P;,), i.e. all the singleton tests of
the values in D(x;) must remove it. Hence if some values in D(x,) are not singleton tested
then a’ cannot be deleted. Given this, we used RNSAC as the SLC within ValAdapt.

5.4 Experimental results

We experimented with 59 benchmarks from 17 classes that include 1398 instances in total,
available from C. Lecoutre’s website”. For a fair comparison between ValAdapt and VarA-
dapt, we used RNSAC as the SLC in both methods. For the case of PrePeak we report
results from its use with NPOAC as the SLC, but as mentioned, the results are very similar
when RNSAC is used. We also report results from AC, RNSAC, and NPOAC as baseline
methods. We first ran experiments with dom/ddeg to evaluate the methods under a vari-
able ordering heuristic that does not interfere too much with propagation. Then we experi-
mented with dom/wdeg, which interacts heavily with the propagation mechanism because
of constraint weighting, but is much more efficient in practice.

5.4.1 Dom/ddeg

Table 2 presents results from various benchmarks comparing the methods under the dom/
ddeg variable ordering heuristic. The benchmarks are selected to demonstrate cases where
AC is clearly worse or clearly better than the SLCs, so that the performance of the adap-
tive methods is highlighted. For each method we give the sum of the CPU times for all the
instances in the benchmark, and the number of solved instances. A cut-off limit of 3600 s
was set. If a method X was cut off on an instance that was solved by at least one method
then we count 3600 s towards the total CPU time of method X. Hence, if there is at least
one cut-off for a method on instances solved by other methods, the sum gives a lower
bound on it’s total run time.

Confirming what is already known, results given in Table 2 show that AC is generally
more efficient than stronger methods but there exist classes of problems (e.g. ehi-85 and
bgwh-18) where it is exponentially slower than SLCs. Comparing RNSAC to NPOAC, the
former is usually better on classes where the extra pruning of SLCs does not pay off and
AC excels (with the exception of driver), while the stronger pruning of the latter makes it a
better option on problems where AC fails.

2 http://www.cril.univ-artois.fr/~lecoutre/research/benchmarks/benchmarks.html.

@ Springer

http://www.cril.univ-artois.fr/~lecoutre/research/benchmarks/benchmarks.html

5082 K. Stergiou

Table 2 Experimental results with dom/ddeg

Benchmark AC RNSAC NPOAC PrePeak VarAdapt ValAdapt
qwh-20 Ycpu > 14,098 1196 826 > 13,764 6058 3851
10 Solved 9 10 10 9 10 10
bqwh-18 Ycpu 4758 232 164 4409 818 1120
50 Solved 50 50 50 50 50 50
Pigeons Ycpu 1294 > 3908 > 4258 1234 2577 > 3855
19 Solved 9 8 8 9 9 8
qcp-10,15 Yecpu > 16,799 2884 2666 > 16,447 4990 4387
30 Solved 27 30 30 27 30 30
Driver Ycpu 33 1719 113 59 132 107

7 Solved 7 7 7 7 7 7
comp25-10 Ycpu > 18,047 > 3601 2 > 7514 > 3683 > 3627
10 Solved 5 9 10 9 9 8
rand-23 Ycpu 277 1289 5575 283 1,295 886

10 Solved 10 10 10 10 10 10
Geometric Ycpu 501 2819 8003 501 2423 1.461
20 Solved 20 20 20 20 20 20

sgb Ycpu 1249 5052 > 8991 1,180 1517 1542
50 solved 23 23 21 23 23 23
¢hi-85 Ycpu 1805 4 7 1742 8 355

20 Solved 20 20 20 20 20 20

Below each benchmark’s name we give the number of instances. Cpu times are in secs and the best is high-
lighted with bold

VarAdapt and ValAdapt achieve a balance between the two extremes, being faster than
AC on problems where it fails, and faster than the SLCs on problems where AC dominates.
Comparing the two of them, it is interesting that their relative performance is quite diverse,
as there can be large differences between them, even on an instance to instance basis within
the same benchmark. However, there is no clear overall winner, with ValAdapt being more
robust, except for the ehi-85 class where the propagation technique of VarAdapt makes the
instances trivially solvable.

On the other hand, PrePeak is not able to notably improve upon the performance of
AC, except for the composed class. This does not seem to agree with results given in
Woodward et al. (2018) where notable differences in favour of PrePeak were observed.
This may be due to the different sets of benchmarks [we ran a subset of the instances
run in Woodward et al. (2018)] and to the different SLC used [NPOAC used here and
the truncated variant of POAC used in Woodward et al. (2018) are related but still
different].

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5083

Table 3 Experimental results with dom/wdeg

Benchmark AC RNSAC NPOAC PrePeak VarAdapt ValAdapt
qwh-20 Ycpu 414 327 291 261 243 301

10 Solved 10 10 10 10 10 10
rifap Ycpu 915 > 10,344 > 10,063 915 > 8806 > 8751
24 Solved 19 18 18 19 18 18
Pigeons >cpu 1360 > 3929 > 4130 1443 3149 > 3893
19 Solved 9 8 8 9 9 8
qcp-15,20 Ycpu 1942 1521 1187 2205 1569 3888
30 Solved 23 23 23 23 23 23
Driver Ycpu 4 433 106 4 67 78

7 Solved 7 7 7 7 7 7
rand-23 Ycpu 274 1442 6061 294 1856 2074
10 Solved 10 10 10 10 10 10
Geometric Yepu 358 1965 5684 353 1890 1309
20 Solved 20 20 20 20 20 20

sgb Ycpu 1669 > 9230 > 13,081 1653 1458 2287
50 Solved 31 29 28 31 31 31
Insertion Yepu 356 > 4091 > 4955 353 363 1400
24 Solved 20 19 19 20 20 20

Cpu times are in secs and the best is highlighted with bold

5.4.2 Dom/wdeg

Table 3 presents results from various benchmarks comparing the methods under the
dom/wdeg variable ordering heuristic. The set of benchmarks is not the same as in
Table 2 because, as it is known, dom/wdeg makes some problems very easy while it
allows solving some problems that are out of reach for dom/ddeg. Examples of the for-
mer are bgwh-18, comp25-10 and ehi-18. That is, the advantage of strong propagation
over AC on these problems, displayed in Table 3, is wiped out by dom/wdeg.

Also, on problems that are still hard and the SLCs were dominant under dom/ddeg,
the differences between them and AC are much smaller. In contrast, on the majority of
problems AC is much more efficient than the SLCs. Hence, it is clear that maintaining
a SLC is not a viable option when dom/wdeg is used. The same conjecture can be made
about the adaptive methods VarAdapt and ValAdapt. On the few benchmarks where they
outperform AC (e.g. gcp®, gwh), the difference in efficiency is not important enough to
outweigh their poor performance on the rest of the problems (especially for ValAdapt).
Hence, there is no convincing evidence to support their use with dom/wdeg.

In contrast, PrePeak fares much better when coupled with dom/wdeg. It manages to at
least match AC on most problems, but in contrast to its use with dom/ddeg, it is able to
notably improve on the performance of AC on benchmarks where the SLCs are efficient.
Note that, as in the case of ValAdapt, PrePeak is quite faster than AC on all the solved

3 ValAdapt displays high total cpu time on gcp because of one instance where the interaction between
propagation and dom/wdeg seems to mislead search. It is faster than AC on the rest of the instances.

@ Springer

5084 K. Stergiou

Table 4 The number and success ratio of singleton tests on 4 instances

Instance AC PrePeak VarAdapt ValAdapt RVarAdapt RVarVal
qep15-120-9 ST 515 952 K 1.1 M 572K 363 K
(qep) sr 0.24 0.06 0.10 0.22 0.33
Nodes 503 K 339K 44K 24K 236 K 272K
cpu 42 16 10 11 14 14
qwh20-166-5 ST 334 1.2M 1.5M 405 K 256 K
(qwh) ST 0.07 0.05 0.09 0.19 0.30
Nodes 371K 309K 51K 20K 162K 230 K
cpu 41 21 21 23 17 19
miles750-10 ST 2.1K 91 M 171 M 12M 6M
(sgb) ST 0.08 0.04 0.03 0.27 0.47
Nodes 6.2M 6.2M 26 M 26M 33M 3.6 M
cpu 727 706 725 1,263 504 484
2e050-20-75-1 ST 74K ™ 48M 1M 593K
(geometric) st 0.17 0.06 0.13 0.29 0.42
Nodes 180 K 179K 103K 71K 118K 133K
cpu 22 23 99 88 31 25

instances of gcp, except for one hard instance, which is the culprit for the high total cpu
time. If this instance is excluded then the CPU times for AC and PrePeak are 1074 and 677
s mber and success ratio of sin respectively.

Hence, PrePeak is by far the most efficient adaptive method under dom/wdeg, at least
among the ones evaluated here. But as detailed, PrePeak is a carefully tuned method that
relies on the setting of parameters. We have used the same parameter settings as in Wood-
ward et al. (2018) and obtained good results, but not as good as in Woodward et al. (2018),
despite the close relationship between the SLC used here (NPOAC) and the one in Wood-
ward et al. (2018) (truncated POAC). It is not unlikely that different parameter settings may
be required to obtain optimal performance if a quite different SLC is used.

Table 4 takes a closer look at the operation of the adaptive methods, revealing the rea-
sons for the failure of VarAdapt and ValAdapt, and the success of PrePeak. We focus on
four instances, each from a different benchmark. The first two are instances where all adap-
tive methods are successful, while the last two are instances where VarAdapt and ValAdapt
fail to compete with AC, while PrePeak succeeds. Let us ignore the last two columns for
now. For each adaptive method we give the number of singleton tests performed (ST) and
the success ratio (sr) of the singleton tests. That is, the number of tests that resulted in
domain reduction over ST. We also give the number of search tree nodes and cpu time in
secs.

There is a huge difference in the number of singleton tests performed by VarAdapt and
ValAdapt compared to PrePeak. In the first two instances the former methods succeed in
cutting down the number of node visits made by AC by an order of magnitude, and as a
result manage to speed up search, after making a million or so singleton tests with a low
success ratio. On the other hand, PrePeak achieves similar speed-ups with only a few hun-
dreds of tests, which are not all successful but evidently are very precisely targeted to cut
down thrashing by detecting failures early.

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5085

In the third instance, VarAdapt makes many millions of tests with low success ratio
to achieve a moderate reduction in the number of nodes compared to AC, resulting in a
similar run time. ValAdapt slows down search by making even more tests with a lower
success ratio, while PrePeak is the winner with only a couple of thousand tests. In the last
instance, despite the millions of tests made by VarAdapt and ValAdapt, the search tree is
not pruned by much compared to AC, and as a result, the overhead of the tests is reflected
on cpu times. On the other hand, the much fewer tests made by PrePeak do not manage to
cut down the search tree, but nevertheless avoid slowing down search.

To the defence of SLCs and the adaptive methods, it is important to note that dom/wdeg
is designed for use with AC-like propagation, and it is not well suited to singleton-based
SLCs. When AC results in a DWO, the constraint that resulted in the last value removal
and will have its weight increased is easy to locate. In contrast, when a singleton consist-
ency results in the DWO of a variable x;, focusing on the constraint responsible is not as
straightforward. Assuming that a; was the last value removed from D(x;), we have used
a naive scheme that during the singleton test of g; finds the constraint that resulted in an
empty domain by removing the last value from some domain in P, _,, and only increases
the weight of this constraint. It is quite likely that alternative schemes may give better
results.

6 Randomization in adaptive propagation

Aiming at obtaining a simple adaptive propagation technique that is competitive when
dom/wdeg is used, we now explore the use of randomization in the context of adaptive
propagation. It is well known that the search process can greatly benefit from stochastic
choices, that are usually associated with the variable and value ordering heuristics (Gomes
et al. 1998). For example, when considering which variable to assign next, ties in the heu-
ristic score of the variables are very often broken randomly. In contrast, the exploitation
of randomness in the context of constraint propagation has received very little attention
(Katriel and Van Hentenryck 2006; Mehta and van Dongen 2007).

We argue that incorporating an amount of randomness in the propagation process may
actually be quite useful, especially when non-standard (strong) propagation is considered.
Hence, we now describe one way to incorporate randomness in the VarAdapt method.

6.1 Incorporating randomness in VarAdapt

We propose a simple scheme that probabilistically decides whether to perform single-
ton tests or not during search by modifying the decision making process of the VarAdapt
method. Instead of relying on the user-defined threshold / to decide whether to apply a SLC
on the value of a variable x; or not, the decision is taken based on a probability distribution
that depends on the distance, in terms of consecutive revisions, between the current revi-
sion of x; and its most recent revision that resulted in a DWO.

Specifically, to obtain the randomized variant of VarAdapt, which we call RVarAdapt
hereafter, we replace the condition in line 5 of Algorithm 4. We now execute lines 6,7 (i.e.
call the SLC algorithm) with probability e e Hence, RVarAdapt assigns a higher
probability to invoke the SLC algorithm to revisions that are “close” to the most recent
revision that caused the DWO of D(x;), and this probability fades for more distant revi-
sions. The reasoning is that close revisions are more likely to cause a DWO, or at least

@ Springer

5086 K. Stergiou

Table 5 Experimental results of randomized methods with dom/wdeg

Benchmar K AC PrePeak RVarAdapt (SD) RVarVal (SD) (%)
qwh-20 Yepu 414 261 230 86% 172 52
10 solved 10 10 10 10

rifap Yepu 915 915 1873 7% 1019 5
24 solved 19 19 19 19

Pigeons >cpu 1360 1443 2048 1.5% 1510 1
19 solved 9 9 9 9

qep-15,20 Ycpu 1941 2205 > 4712 - 897 83
30 solved 23 23 23 23

Driver >cpu 4 4 9 5% 4 3
7 solved 7 7 7 7

rand-23 Ycpu 274 294 499 1% 361 1
10 solved 10 10 10 10

Geometric Ycpu 358 353 473 1% 392 1
20 solved 20 20 20 20

sgb Ycpu 1669 1653 1134 2% 1061 1
50 solved 31 31 31 31

Insertion Ycpu 356 353 271 2% 335 1
24 solved 20 20 20 20

value deletions, compared to distant ones, under the assumption that, especially in struc-
tured problems, successful revisions are often clustered (Stergiou 2008).

Note that although the probability distribution considered is quite “natural”, alterna-
tive distributions could also be considered. For example, the probability that the SLC will
be invoked could fade faster (or slower) as the distance between revision[i] and dwoli]
increases. Hence, the probability distribution constitutes a kind of parameter for RVarA-
dapt, albeit one that does not require detailed tuning from the user’s part. This is why we
refer to this method as “almost” parameter-free.

Table 5 presents results from various benchmarks showing the performance of RVarA-
dapt under the dom/wdeg variable ordering heuristic. We include results from AC and Pre-
Peak as reference. The CPU times of RVarAdapt are computed by taking the mean over 50
runs for each instance. Let us ignore the (SD) columns for the time being.

As can be seen, randomization not only lifts the requirement for parameter setting from
the user’s part, but also significantly improves on the performance of VarAdapt on almost
all benchmarks, and especially the ones where the SLCs are not competitive (e.g. driver).
The only exception among all the tested benchmarks is gcp, and the reason for this is
explained shortly. As can be seen in the corresponding column in Table 4, RVarAdapt not
only cuts down the number of singleton tests, as expected, but achieves a much higher suc-
cess ratio than the other adaptive methods, and this largely explains its good performance.
But despite this, there are two problems:

e RVarAdapt is still notably inferior to PrePeak and to AC on some problems.

e There exist a few instances, belonging to gcp and to a lesser extent to gwh, where differ-
ent runs of RVarAdapt display very large variance.

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5087

Table 6 The variance of randomized adaptive propagation on 5 instances

Instance AC RVarAdapt RVarVal
Nodes cpu Nodes cpu Nodes cpu
scen11-f9 Min 101 K 23.0 ISK 27.0 29K 21.1
(rlfap) Max 17K 33.0 35K 25.6
Mean 16 K 30.6 31K 22.6
SD 1,036 2.1 1,851 1.2
games120-8 Min 32 M 29.3 1.7M 19.5 1.8 M 20.5
(sgb) Max 1.7M 20.6 1.8 M 21.5
Mean 1.7M 20.0 1.8M 21.0
SD 34K 0.3 855 0.2
ge050-20-75-1 Min 180 K 23.0 118K 304 133K 26.1
(geometric) Max 119K 319 135K 27.2
Mean 118K 31.0 134 K 26.5
SD 564 0.4 546 0.3
qcp20-187-8 Min 1.2 M 190 337K 43 404 K 40
(qep) Max 14M 1590 48M 451
Mean 23M 291 1.2M 118
SD 4.1M 467 1.3M 124
qwh20-166-3 Min 437 K 50.1 39K 4.1 64 K 5.6
(qwh) Max 413K 41.1 317K 28.7
Mean 176 K 17.9 191 K 16.6
SD 155K 15.4 101 K 8.6

Regarding the second problem, Table 6 gives the mean, min, max, and standard deviation
of the CPU time and the number of nodes from 50 runs of RVarAdapt on representative
instances of five classes. We include results from AC as a reference point. In the first three
instances there is small variance, as displayed by the small difference between the mini-
mum and maximum values and the value of the standard deviation. This stable behaviour
of RVarAdapt is characteristic across all instances of these classes, and is the norm in all
the tried classes, except for gcp (mainly) and gwh.

This can be verified by observing the SD column for RVarAdapt in Table 5, where we
give the mean standard deviation over the instances of each class, as a percentage of the
mean run time. That is, for each instance in a class we compute the standard deviation as a
percentage of the mean cpu time (taken over the 50 runs for this particular instance), and
then we compute and report the average of these percentages over all the instances of the
class. Note that there is no value for the mean standard deviation in the gcp-15,20 class.
This is due to time-outs that occured on one specific instance, as we shortly explain.

Going back to Table 6, we can observe that on gcp-20-187-8 we have a very large vari-
ance, as the shortest among the 50 runs took 43 secs and the longest 1590, while the stand-
ard deviation is also very high. A similar, but milder, picture is given by the instance from
the gwh class. However, the most extreme case was gcp-20-187-11 which was solved by all
other methods in less than 10 sbut two out of the 50 runs of RVarAdapt reached the cut-off
limit, while the rest took less than 1 s. This accounts for the high cpu time total of RVarA-
dapt in gcp given in Table 5 (we counted 3600 secs for this instance), while on average

@ Springer

5088 K. Stergiou

Table 7 Cpu run times (in s)

S . Instance AC PrePeak ~ RVarAdapt RVarVal

from specific instances with

dom/wdeg qwh-20-2 98 64 28 20
qwh-20-3 50 29 17 15
rlfap-11-f8 40 40 59 44
rlfap-11-f7 383 381 801 430
pigeons-12 102 109 139 115
pigeons-13 1248 1324 1895 1383
qcp-15-120-10 107 40 7 7
qcp-20-187-0 280 95 72 34
qcp-20-187-9 237 310 245 451
rand-23-47 35 35 58 45
rand-23-51 36 39 62 48
geometric-50-20-12 52 52 69 57
geometric-50-20-94 40 38 50 42
homer-10 585 586 335 315
miles750-10 727 706 504 484
queenl1-11-8 10 10 6 6

Cpu times are in secs and the best is highlighted with bold

RVarAdapt is considerably faster than AC and VarAdapt in this class of problems. This is
also the reason for the empty entry in the SD column.

6.2 A combined method

As the results obtained so far suggest that in order for an adaptive method to be successful
it it necessary that the number of singleton tests is kept as low as possible, the success ratio
of the tests as high as possible, and crucially, the tests are performed “at the right moment”,
we consider the integration of methods RVarAdapt and ValAdapt. This method, called
RVarVal, applies the SLC on a value g; € D(x;) at line 7 of Algorithm 4 when both the
probability] is verified and the condition of ValAdapt regarding the distance of
a;’s supports from the domain ends holds. In this way we hope to avoid singleton checks
that are unlikely to result in value removals.

Tables 4 and 5 show that indeed RVarVal is successful in its goal. As the last column
in Table 4 demonstrates, RVarVal manages to cut down the number of singleton tests even
more compared to RVarAdapt, and importantly, the success ratio gets close to 50% in some
cases, which is significantly higher than the other adaptive methods. In Table 5 we can
see that this is reflected on the cpu times, as RVarVal is very competitive with both AC
and PrePeak in mean run times, and it not only beats them on problems where the SLCs
perform well (gcp and gwh), but also on some problems where the SLCs are heavily out-
performed (sgb and insertion). But equally importantly, RVarVal is not significantly slower
than AC or PrePeak on problems where they excel, including random ones such as rand-23.

As Tables 5 and 6demonstrate, the large variance displayed by RVarAdapt on gcp and
gwh is alleviated to a certain degree, but not completely resolved. As in the case of RVarA-
dapt, these are the only classes where significant variance among different runs appears, but
this perhaps is an inherent drawback of randomization techniques that cannot be avoided.

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5089

Finally, in Table 7 we give CPU times for the compared methods on specific instances
from various problems classes. We include this table to demonstrate that there can be sub-
stantial differences in favour of RVarVal (in most cases), because cumulative CPU times
sometimes tend to flatten things out, especially when there exist many instance on which
the methods perform similarly, as is the case here. Table 7 shows that RVarVal can be many
times faster than both AC and PrePeak (from 5 up to 15 times on gcp and qwh instances).
At the same time, it was never slower than AC by more than 25% on the whole range of
instances that we tried, except for gcp-20-187-9 where AC is around two times fastery*.

7 Discussion and future work

We can make two general observations based on the analysis and the experimental results
presented in this paper:

1. Although the choice of SLC is important, it is not the most crucial factor that determines
the performance of adaptive methods, provided that a reasonable choice is made (i.e.
a relatively low-cost SLC is used). Based on the correlation between the success ratio
of calls to the SLC and the performance of the methods, as demonstrated by the results
obtained by RVarVal, and also by the success of PrePeak with very few singleton tests,
we conjecture that the most important factor is the precise targeting of the SLC’s invo-
cation. Hence, the goal of an adaptive method should be to keep the number of invoca-
tions low, but to execute them “at the right time”. Towards this, it would be interesting
to investigate the possibility of developing a method that integrates variable and value
oriented approaches with node oriented ones.

2. For the case of binary constraints, where this paper focuses in terms of the experimental
evaluation, the obtained results (from this paper and the existing literature) indicate that
very few adaptive methods are really competitive with an optimized implementation
of MAC with dom/wdeg. Specifically, PrePeak and the method proposed in this paper.
Cases where these two methods are heavily ouperformed by a standard solver seem very
rare, while there exist quite a few instances where they can be an order of magnitude
faster. However, there do not seem to be entire classes of problems where the adaptive
methods (even the best ones) heavily outperform the standard approach. But further
experimentation is required to validate this, especially with non-binary problems.

The experimental evaluation that we have presented is limited to binary problems, as is our
final proposed method RVarVal. However, method RVarAdapt, which incorporates rand-
omization into VarAdapt, can be applied to non-binary problems. To extend RVarVal to
table constraints, one can integrate RVarAdapt with the technique described in Woodward
et al. (2014). But for the case of global constraints things are not as straightforward. One
idea could be to exploit solution counting algorithms, for cases of constraints where such
algorithms exist (Pesant et al. 2012).

In any case, it is necessary to evaluate existing methods, as well as the ones proposed
here, on non-binary problems, so that a clearer picture of the usefulness of adaptive

4 This is due to the interplay between the propagation mechanism and dom/wdeg. RVarVal takes 4.7 mil-
lion nodes to solve this instance while AC takes 2.7 million.

@ Springer

5090 K. Stergiou

propagation is obtained and the conjectures outlined above are validated. Apart from this
obvious line of work, other avenues can also be explored in the future:

There is potential to integrate randomization within node and value oriented methods.
In fact, we have tried one such technique for the ValAdapt method. Specifically, we
experimented with a method where the application of the SLC, in relation to the dis-
tance of the first support discovered from the end of the domain, was not determined
simply by checking if the threshold was exceeded or not. But it depended on a prob-
ability distribution. However, the results were not good. This method was worse than
the standard ValAdapt method. So, we did not include any reference to this experiment
in the paper. However, there are other relevant avenues to explore, and we intend to do
this in the future.

As detailed in our review of the literature on adaptive propagation, existing methods
focus on switching between standard (G)AC propagation and a non-standard SLC
like SAC. In all cases, the LCs considered are applied on all values in the variables’
domains. However, (G)AC is not always the standard propagation method for all types
of constraints in CP solvers. The weaker property of bounds consistency is also widely
used on some constraints (e.g. arithmetic constraints). We are not aware of any adaptive
propagation method that considers bounds consistency as an option when deciding to
switch between different levels of consistency during search. This would be interesting
to explore in the future for at least two reasons:

1. Bounds consistency can offer a third option that is cheaper than (G)AC when con-
sidering which LC to apply. In order for this idea to work, we would have to use an
adaptive technique that supports switching between more than two LCs, e.g. the
MAB method, or to modify methods such as PrePeak and VarAdapt that have been
proposed specifically for switching between two LCs.

2. The SLC that is chosen by the given adaptive method during search could itself be
based on bounds consistency [i.e. an extension of bounds consistency that achieves
stronger pruning, such as the method of Bessiere et al. (2015)]. The advantage of
such an approach is that bounds consistency, and therefore also its extensions to
stronger consistencies, are typically quite cheap compared to LCs that reason over
the entire domain, such as GAC and its extensions. Hence, the cost of applying the
stronger property would be even lower.

Another line of work that needs to be followed concerns the development of general-
purpose variable ordering heuristics that are better suited to SLCs. A relevant study on
dom/wdeg can be found in Woodward and Choueiry (2017), but different heuristics
can also be considered. One promising candidate is the Activity heuristic of Michel and
Van Hentenryck (2012) which like VarAdapt monitors the activity of the variables dur-
ing search, and makes branching decisions based on this activity.

Finally, the potential of machine learning in guiding the selection of propagation tech-
niques has not been explored enough. Specific reinforcement learning techniques have
been used to build node-oriented adaptive methods [learning of propagation policies
Epstein et al. (2005) and MAB Balafrej et al. (2015)], but no ML methods have been
exploited at other levels of granularity. Also, alternative reinforcement learning meth-
ods (e.g. deep reinforcement learning), as well as unsupervised learning techniques,
have not been tried at all.

@ Springer

Adaptive constraint propagation in constraint satisfaction:... 5091

8 Conclusion

We have proposed a classification of adaptive constraint propagation methods accord-
ing to the level of granularity where the decisions about which local consistency to apply
are taken. Having identified node, variable, and value oriented methods, we classified the
existing approaches from the literature, reviewed and evaluated them using several criteria.

We also presented an experimental evaluation that includes one representative method
from each category. Results showed that although simple variable and value oriented tech-
niques can be quite useful when the older dom/ddeg variable ordering heuristic is used,
their advantages are diminished when the state-of-the-art dom/wdeg is used. In contrast,
the more sophisticated node oriented technique PrePeak is quite efficient under dom/wdeg.
However, an integration of the variable and value oriented methods, boosted by a simple
randomization scheme, results in an adaptive propagation technique that is very competi-
tive, simple, and (almost) parameter-free.

References

Balafrej A, Bessiere C, Bouyakh E, Trombettoni G (2014) Adaptive singleton-based consistencies. In: Pro-
ceedings of the twenty-eighth AAAI conference on artificial intelligence, pp 2601-2607

Balafrej A, Bessiere C, Coletta R, Bouyakh E (2013) Adaptive parameterized consistency. In: Proceedings
of the CP-2013, pp 143-158

Balafrej A, Bessiere C, Paparrizou A (2015) Multi-armed bandits for adaptive constraint propagation. In:
Proceedings of the twenty-fourth international joint conference on artificial intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pp 290-296

Bennaceur H, Affane M (2001) Partition-k-AC: an efficient filtering technique combining domain partition
and arc consistency. In: Principles and practice of constraint programming—CP 2001, 7th international
conference, CP 2001, Paphos, Cyprus, November 26-December 1, 2001, Proceedings, pp 560-564

Berlandier P (1995) Improving domain filtering using restricted path consistency. In: Proceedings of IEEE
CAIA’95, pp 32-37

Bessiere C, Cardon S, Debruyne R, Lecoutre C (2011) Efficient algorithms for singleton ARC consistency.
Constraints 16:25-53

Bessiere C, Régin J (1996) MAC and combined heuristics: two reasons to forsake FC (and CBJ?). In: Pro-
ceedings of CP’96. Cambridge MA, pp 61-75

Bessiere C, Stergiou K, Walsh T (2008) Domain filtering consistencies for non-binary constraints. Artif
Intell 172(6-7):800-822

Bessiere C, Paparrizou A, Stergiou K (2015) Strong bounds consistencies and their application to linear
constraints. Proc AAAI 2015:3717-3723

Borrett J, Tsang E, Walsh N (1996) Adaptive constraint satisfaction: the quickest first principle. In: Proceed-
ings of ECAI’96, pp 160-164

Boussemart F, Heremy F, Lecoutre C, Sais L (2004) Boosting systematic search by weighting constraints.
In: Proceedings of ECAI’04, pp 482-486

Debruyne R, Bessiere C (1997) From restricted path consistency to max-restricted path consistency. In:
Proceedings of CP-97, pp 312-326

Debruyne R, Bessiere C (2001) Domain filtering consistencies. JAIR 14:205-230

Dechter R, van Beek P (1997) Local and global relational consistency. Theoret Comput Sci 173:283-308

El Sakkout H, Wallace M, Richards B (1996) An instance of adaptive constraint propagation. In: Proceed-
ings of CP’96, pp 164-178

Epstein S, Freuder EC, Wallace R, Morozov A, Samuels B (2002) The adaptive constraint engine. In: Pro-
ceedings of CP-2002, pp 525-540

Epstein S, Freuder E, Wallace R, Li X (2005) Learning propagation policies. In: Proceedings of the interna-
tional workshop on constraint propagation and implementation, pp 1-15

Freuder E, Elfe C (1996) Neighborhood inverse consistency preprocessing. In: Proceedings of AAAI’96, pp
202-208

Freuder E, Wallace R (1991) Selective relaxation for constraint satisfaction problems. In: Proceedings of
ICTAI'91

@ Springer

5092 K. Stergiou

Gomes C, Selman B, Kautz H (1998) Boosting combinatorial search through randomization. In: Proceed-
ings of AAAI-98, pp 431-437

Haralick R, Elliot G (1980) Increasing tree search efficiency for constraint satisfaction problems. Artif Intell
14:263-313

Janssen P, Jégou P, Nouguier B, Vilarem M (1989) A filtering process for general constraint satisfaction
problems: achieving pairwise consistency using an associated binary representation. In: Proceedings of
the IEEE workshop on tools for artificial intelligence, pp 420-427

Karakashian S, Woodward R, Reeson C, Choueiry B, Bessiére C (2010) A first practical algorithm for high
levels of relational consistency. In: Proceedings of AAAI’10, pp 101-107

Katriel I, Van Hentenryck P (2006) Randomized filtering algorithms. Technical report CS-06-09, Brown
University

Lecoutre C (2011) Str2: optimized simple tabular reduction for table constraints. Constraints 16(4):341-371

Lecoutre C, Paparrizou A, Stergiou K (2012) Extending STR to a higher-order consistency. In: Proceedings
of AAAT’13

Lhomme O (2005) Quick shaving. In: Proceedings of AAAI’05, pp 411415

Likitvivatanavong C, Wei X, Yap RHC (2014) Higher-order consistencies through GAC on factor variables.
In: Principles and practice of constraint programming—20th international conference, CP 2014. Pro-
ceedings, pp 497-513

Mehta D, van Dongen M (2007) Probabilistic consistency boosts MAC and SAC. In: Proceedings of
IICAT’ 07, pp 143-148

Michel L, Van Hentenryck P (2012) Activity-based search for black-box constraint programming solvers.
In: Integration of AI and OR techniques in contraint programming for combinatorial optimzation prob-
lems—9th international conference, CPAIOR 2012, Nantes, France, May 28-June 1, 2012. Proceed-
ings, pp 228-243

Mackworth AK (1977) Consistency in networks of relations. Artif Intell 8(1):99-118

Montanari U (1974) Network of constraints: fundamental properties and applications to picture processing.
Inf Sci 7:95-132

Paparrizou A, Stergiou K (2012) Evaluating simple fully automated heuristics for adaptive constraint propa-
gation. In: IEEE 24th international conference on tools with artificial intelligence, ICTAI 2012, Ath-
ens, Greece, November 7-9, 2012, pp 880-885

Paparrizou A, Stergiou K (2017) On neighborhood singleton consistencies. In: Proceedings of the twenty-
sixth international joint conference on artificial intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, pp 736-742

Pesant G, Quimper C, Zanarini A (2012) Counting-based search: branching heuristics for constraint satis-
faction problems. J Artif Intell Res 43:173-210

Prosser P, Stergiou K, Walsh T (2000) Singleton consistencies. In: Proceedings of CP-2000, Melbourne, pp
353-368

Sabin K,Freuder EC (1997) Understanding and improving the MAC algorithm. In: Proceedings of CP-1997,
pp 167-181

Stergiou K (2008) Heuristics for dynamically adapting propagation. In: Proceedings of ECAI’08, pp
485-489

Stergiou K (2008) Strong domain filtering consistencies for non-binary constraint satisfaction problems. Int
J Artif Intell Tools 17(5):781-802

Stergiou K (2009) Heuristics for dynamically adapting propagation in constraint satisfaction problems. Al
Commun 22(3):125-141

Szymanek R, Lecoutre C (2008) Constraint-level advice for shaving. In: Proceedings of ICLP’08, pp
636-650

Ullmann JR (2007) Partition search for non-binary constraint satisfaction. Inf Sci 177(18):3639-3678

Wallace R (2015) SAC and neighbourhood SAC. AI Commun 28(2):345-364

Wallace R (2016) Neighbourhood SAC: extensions and new algorithms. Al Commun 29(2):249-268

Woodward R, Choueiry B (2017) Weight-based variable ordering in the context of high-level consistencies.
CoRR arXiv:abs/1711.00909

Woodward R, Choueiry B, Bessiere C (2017) Cycle-based singleton local consistencies. In: Proceedings of
the Thirty-First AAAI conference on artificial intelligence, February 4-9, 2017, San Francisco, Cali-
fornia, USA, pp 5005-5006

Woodward R, Choueiry B, Bessiere C (2018) A reactive strategy for high-level consistency during search.
In: Proceedings of the twenty-seventh international joint conference on artificial intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden, pp 1390-1397

@ Springer

http://arxiv.org/abs/abs/1711.00909

Adaptive constraint propagation in constraint satisfaction:... 5093

Woodward R, Schneider A, Choueiry B, Bessiere B (2014) Adaptive parameterized consistency for non-
binary CSPS by counting supports. In: Principles and practice of constraint programming—20th inter-
national conference, CP 2014, Lyon, France, September 8§—12, 2014. Proceedings, pp 755-764

Woodward RJ, Karakashian S, Choueiry BY, Bessiere C (2011) Solving difficult CSPS with relational
neighborhood inverse consistency. In: Proceedings of AAAIL pp 112-119

Zanarini A, Pesant G (2009) Where can I get a quick shave?. In: Proceedings of the CP-09 workshop on
constraint modelling and reformulation, pp 186-200

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

	Adaptive constraint propagation in constraint satisfaction: review and evaluation
	Abstract
	1 Introduction
	2 Background
	2.1 Local consistencies
	2.2 Strong local consistencies
	2.3 Heuristics and branching schemes

	3 Basic search and propagation framework
	3.1 Search
	3.2 Propagation
	3.3 Revision

	4 Review of adaptive constraint propagation methods
	4.1 Evaluation criteria
	4.2 Node oriented methods
	4.2.1 Reduced exceptional behaviour algorithm
	4.2.2 Discussion
	4.2.3 Learning propagation policies
	4.2.4 Discussion
	4.2.5 Adaptive POAC
	4.2.6 Discussion
	4.2.7 Multi-armed bandits
	4.2.8 Discussion
	4.2.9 PrePeak
	4.2.10 Discussion

	4.3 Variable oriented methods
	4.3.1 Selective relaxation
	4.3.2 Discussion
	4.3.3 Adaptive constraint propagation
	4.3.4 Discussion
	4.3.5 Monitoring the effects of revisions
	4.3.6 Discussion

	4.4 Value oriented methods
	4.4.1 Probabilistic arc consistency
	4.4.2 Discussion
	4.4.3 (Quick) shaving
	4.4.4 Discussion
	4.4.5 Adaptive parameterized consistency
	4.4.6 Discussion

	4.5 Summary

	5 Experimental evaluation
	5.1 PrePeak
	5.2 VarAdapt
	5.3 ValAdapt
	5.4 Experimental results
	5.4.1 Domddeg
	5.4.2 Domwdeg

	6 Randomization in adaptive propagation
	6.1 Incorporating randomness in VarAdapt
	6.2 A combined method

	7 Discussion and future work
	8 Conclusion
	References

