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Domain filtering local consistencies, such as inverse consistencies, that only delete values and do not
add new constraints are particularly useful in Constraint Programming. Although many such consis-
tencies for binary constraints have been proposed and evaluated, the situation with non-binary con-
straints is quite different. Only very recently have domain filtering consistencies stronger than GAC
started to attract interest. Following this line of research, we define a number of strong domain filtering
consistencies for non-binary constraints and theoretically compare their pruning power. We prove that
three of these consistencies are equivalent to maxRPC in binary CSPs while another is equivalent to
PIC. We also describe a generic algorithm for domain filtering consistencies in non-binary CSPs. We
show how this algorithm can be instantiated to enforce some of the proposed consistencies and ana-
lyze the worst-case complexities of the resulting algorithms. Finally, we make a preliminary empirical
study.

1. Introduction

One of the great strengths of Constraint Programming is the exploitation of local consis-
tency techniques to prune inconsistent values from the domains of variables and thus avoid
fruitless exploration of the search tree. The most widely studied and used local consis-
tency is generalized arc consistency (GAC). It is widely accepted that “relation filtering”
consistencies which alter the structure of the constraint graph or the constraints’ relations
(e.g. path consistency) tend to be less practical than “domain filtering” consistencies which
only remove values from the domains of the variables. As a result, many strong domain
filtering consistencies for binary constraints have been proposed and evaluated. For ex-
ample, inverse and singleton consistencies.8,5,16 In contrast, little work had been done on
such consistencies for non-binary constraints until very recently, whereas a number of con-
sistencies that are stronger than GAC, but not domain filtering, have been developed. For
example, pairwise consistency,10 hyper-m-consistency,12 relational consistency,15 and ω-
consistency.13 However, these consistencies are rarely used in practice, mainly because
they have a high space complexity.

Very recently, three domain filtering consistencies for non-binary CSPs were in-
troduced and evaluated theoretically and empirically. These are relational path inverse
consistency (rPIC), restricted pairwise consistency (RPWC), and max restricted pairwise
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consistency (maxRPWC).14,3,a All these are stronger than GAC and display promising
performance on certain non-binary problems with maxRPWC being the most efficient of
the three.

Continuing along the same lines of work, we propose a number of strong domain fil-
tering consistencies for non-binary constraints and study them theoretically and empiri-
cally. These new consistencies are the following: max restricted 3-wise consistency and
the parametrized max restricted k-wise consistency, relational neighborhood inverse con-
sistency, inverse ω-consistency and extended inverse ω-consistency. To derive these con-
sistencies we are mainly inspired by known relation-filtering consistencies for non-binary
problems. In our theoretical study we compare the pruning power of these consistencies,
most of which are stronger than maxRPWC, and show what they correspond to when re-
stricted to binary constraints. We prove that three of these consistencies are equivalent to
max restricted path consistency (maxRPC) in binary CSPs while another is equivalent to
path inverse consistency (PIC). We also describe a generic algorithm that can be used to ap-
ply any of the proposed domain filtering consistencies. We show how this algorithm can be
instantiated to enforce some of these consistencies and analyze the worst-case complexities
of the resulting algorithms. Finally, we give some preliminary experimental results.

2. Background

A Constraint Satisfaction Problem (CSP) P is defined as a tuple (X, D, C) where:
X = {x1, . . . , xn} is a finite set of n variables, D = {D(x1), . . . , D(xn)} is a set of
domains, and C = {c1, . . . , ce} is a set of e constraints. For each variable xi ∈ X , D(xi)

is the finite domain of its possible values. Each constraint ci ∈ C is defined as a pair
(var(ci), rel(ci)), where var(ci) = {xj1 , . . . , xjk

} is an ordered subset of X called the
scope of ci, and rel(ci) is a subset of the Cartesian product D(xj1 )x . . . xD(xjk

) that spec-
ifies the allowed combinations of values for the variables in var(ci). Each tuple τ ∈ rel(ci)

is an ordered list of values (a1, . . . , ak). A tuple is valid iff none of the values in the tuple
has been removed from the domain of the corresponding variable. A constraint ci can be
either defined extensionally by explicitly giving relation rel(ci), or (usually) intensionally
by implicitly specifying rel(ci) through a predicate or arithmetic function. For any two
constraints ci and cj , the set of variables that are involved in both constraints is denoted
by var(ci) ∩ var(cj). If this set is not empty, the constraints intersect. We denote by p

the maximum number of variables involved in two constraints that intersect. Also, for all
triangles of constraints (i.e. sets of three constraints such that any of the three intersects
with any other) we denote by p′ the maximum number of variables that are involved in one
constraint but are not involved in any of the other two.

A binary CSP can be represented by a graph (called constraint graph) where nodes
correspond to variables and edges correspond to constraints. A non-binary CSP can be
represented by a constraint hypergraph where the constraints correspond to hyperedges
connecting two or more nodes.

amaxRPWC was called pairwise inverse consistency in Ref. 14.
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The assignment of value a to variable xi is denoted by (xi, a). Any tu-
ple τ = (a1, . . . , ak) can be viewed as a set of value to variable assignments
{(x1, a1), . . . , (xk , ak)}. In this way, an assignment of values to a set of variables X ′ ⊆ X

is a tuple over X ′. The set of variables over which a tuple τ is defined is var(τ). For any
subset var′ of var(τ), τ [var′] is the sub-tuple of τ that includes only assignments to the
variables in var′. Any two tuples τ and τ ′ of rel(ci) can be ordered by the lexicographic
ordering <l. In this ordering, τ <l τ ′ iff there a exists a subset {x1, . . . , xj} of ci such that
τ [x1, . . . , xj ] = τ ′[x1, . . . , xj ] and τ [xj+1 ] <l τ ′[xj+1]. A tuple τ is consistent, iff it is
valid and for all constraints ci, where var(ci) ⊆ var(τ), τ [var(ci)] ∈ rel(ci). A solution
to a CSP (X, D, C) is a consistent tuple assigning all variables in X .

A value a ∈ D(xi) is consistent with a constraint cj , where xi ∈ var(cj), iff ∃τ ∈

rel(cj) such that τ [xi] = a and τ is valid. In this case, we say that τ is a GAC-support
of (xi, a) in cj . A constraint cj is Generalized Arc Consistent (GAC) iff ∀ xi ∈ var(cj),
∀ a ∈ D(xi), there exists a GAC-support for a in cj . A problem is GAC iff there is no
empty domain in D and all the constraints in C are GAC. In binary CSPs, GAC is referred
to as arc consistency (AC).

Since the allowed tuples of constraints are defined as relations, standard relational op-
erators can be used. The projection Πvar′τ of a tuple τ ∈ rel(ci) on var′ is the subtuple
τ [var′]. Accordingly, the projection of a constraint ci on a set of variables var′, where
var′ ⊆ var(ci) is a new constraint c′ where var(c′) = var′ and rel(c′) = Πvar′rel(ci).
The join of two constraints ci and cj is a new constraint, denoted by ci on cj , where
var(ci on cj) = var(ci) ∪ var(cj) and rel(ci on cj) = rel(ci) on rel(cj). Accordingly,
the join of two tuples τ ∈ rel(ci) and τ ′ ∈ rel(cj), denoted by τ on τ ′, is a tuple such that
(τ on τ ′)[var(ci)] = τ and (τ on τ ′)[var(cj )] = τ ′.

2.1. Local consistencies

We now briefly review the most common local consistencies for binary and non-binary
CSPs. We assume that any given CSP is normalized. That is, multiple constraints on the
same variables are combined into one.

2.1.1. Binary constraints

A binary problem is (i, j) consistent iff it has non-empty domains and any consistent
instantiation of i variables can be extended to a consistent instantiation involving j ad-
ditional variables.7 A problem is strong (i, j)-consistent iff it is (k, j) consistent for all
k ≤ i. Following the definition of (i, j)-consistency, arc consistency is equivalent to (1, 1)-
consistency. A problem is path consistent (PC) iff it is (2, 1)-consistent. A problem is k-
consistent iff it is (k, 1)-consistent. A problem is path inverse consistent (PIC) iff it is
(1, 2)-consistent.8 A problem is max restricted path consistent (maxRPC) iff it is (1, 1)-
consistent and for each value (xi, a) and variable xj constrained with xi, there exists a
value b ∈ D(xj) that is an AC-support of (xi, a) and this pair of values is path consis-
tent (i.e. it can be consistently extended to any third variable).4 A problem is inverse m-
consistent iff it is (1, m) consistent. A problem is neighborhood inverse consistent (NIC)
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iff any consistent instantiation of a variable xi can be extended to a consistent instantia-
tion of all the variables in xi’s neighborhood.8,b A problem P is singleton arc consistent
(SAC)5 iff it has non-empty domains and for any instantiation (xi, a) of a variable xi ∈ X ,
the resulting subproblem can be made AC.

2.1.2. Non-binary constraints

Some local consistencies for binary CSPs can be easily extended to non-binary prob-
lems. For example, SAC has been extended to SGAC. However, for other consisten-
cies (e.g. PIC and maxRPC) this extension is not straightforward. In the case of NIC
there are two alternative extensions to non-binary constraints. To determine if a value
a ∈ D(xi) is NIC, we can consider the subproblem consisting of the set of variables
neigh(xi) = {xi1 , . . . , xim

} involved in a constraint with xi and the constraints that only
include variables from neigh(xi). Alternatively, we can consider the subproblem consist-
ing of variables neigh(xi) and all the constraints that include any of these variables (and
possibly other variables as well). In the rest of this paper we follow the first definition of
NIC for non-binary constraints.

A problem is relationally arc consistent (rel AC) iff any consistent instantiation for all
but one of the variables in a constraint can be extended to the final variable so as to sat-
isfy the constraint.15,6 A problem is relationally path-consistent (rel PC) iff any consistent
instantiation for all but one of the variables in a pair of constraints can be extended to the
final variable so as to satisfy both constraints. A problem is relationally m-consistent iff
any consistent instantiation for all but one of the variables in a set of m distinct constraints
can be extended to the final variable so as to satisfy all m constraints. A problem is rela-
tionally (i, m)-consistent iff any consistent instantiation for i of the variables in a set of m

constraints can be extended to all the variables in the set. A problem is strongly relationally
(i, m)-consistent iff is relationally (j, m)-consistent for every j ≤ i.

A non-binary problem is pairwise consistent (PWC)12) iff it has non-empty relations
and any consistent tuple in a constraint ci can be consistently extended to any other con-
straint.10 As shown in Ref. 10, applying PWC in a non-binary CSP is equivalent to ap-
plying AC in the dual encoding of the problem. PWC has been generalized to k-wise con-
sistency9,11 and hyper-m-consistency.12 A problem is k-wise consistent iff any consistent
tuple for a constraint can be consistently extended to any k−1 other constraints. A problem
is hyper-m-consistent iff any consistent combination of tuples for m-1 constraints can be
consistently extended to any mth constraint. As noted in Ref. 12, hyper-m-consistency on
a non-binary problem is equivalent to m-consistency on the dual encoding of the problem.

A problem is ω-consistent iff any tuple in a constraint ci can be consistently extended
to any other constraint cj and to all constraints ck such that var(ck) ⊆ var(ci)∪var(cj ).13

A problem is generalized dual arc consistent (GDAC) iff any tuple in a constraint ci can be
consistently extended to any other constraint cj and at the same time satisfy all constraints
ck such that var(ck) ∩ (var(ci) ∪ var(cj)) 6= ∅.13

bThe neighborhood of a variable consists of all variables that are constrained with it.
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Following,5 we call a consistency property A stronger than B iff in any problem in
which A holds then B holds, and strictly stronger (written A → B) iff it is stronger and
there is at least one problem in which B holds but A does not. We call a local consistency
property A incomparable with B (written A ⊗ B) iff A is not stronger than B nor vice
versa. Finally, we call a local consistency property A equivalent to B (written A ↔ B) iff
A is stronger than B and vice versa. Note that relationships → and ↔ are transitive.

3. Strong Domain Filtering Consistencies

In practice, most of the strong local consistency techniques discussed in the previous sec-
tion have prohibitive space and time complexities. Freuder proposed inverse consistencies
as a way to overcome the space problem.8 Such consistencies require limited space as they
only prune domains. When an inverse local consistency is enforced, it removes from the
domain of a variable the values that cannot be consistently extended to some additional
variables. For example, when enforcing PIC we remove values that cannot be consistently
extended to any set of two other variables.

Until the very recent introduction of rPIC, RPWC, and maxRPWC, the study of domain
filtering consistencies had been restricted to binary constraints, with the exception of GAC.
Experimental results demonstrated that maxRPWC, which is the strongest, is also the most
efficient among these three consistencies.14,3 We will now define a number of new domain
filtering consistencies for non-binary problems. These are all strictly stronger than GAC.
That is, if applied, they will remove any value that is not GAC. Also, each consistency may
remove some additional values according to the property it enforces. For any consistency
IC, we say that a variable xi is IC iff any value a ∈ D(xi) is IC. A CSP is IC iff there is
no empty domain and all variables are IC. The following definitions specify when a value
is IC for a number of different domain filtering consistencies. We first recall the definitions
of rPIC and maxRPWC.

Definition 3.1.15,14 A value a ∈ D(xi) is relational Path Inverse Consistent (rPIC) iff
∀cj ∈ C, where xi ∈ var(cj), and for each ck ∈ C, there exists a GAC-support τ

of (xi, a) in rel(cj) and a valid tuple τ ′ ∈ rel(ck) such that τ [var(cj) ∩ var(ck)] =

τ ′[var(cj) ∩ var(ck)].

If rPIC is applied on a variable xi it will remove any value a ∈ D(xi) such that for some
constraint cj where xi participates, no GAC-support of (xi, a) can be extended to a valid
tuple in some other constraint ck that intersects with cj . Note that if the two constraints do
not intersect then any valid tuple in rel(cj) can be extended to any valid tuple in rel(ck).
Apart from rPIC we can consider other, stronger, inverse relational consistencies such as
relational (1, 3)-consistency and relational NIC which are defined further below.

Definition 3.2.3 A value a ∈ D(xi) is max Restricted Pairwise Consistent (maxRPWC)
iff ∀cj ∈ C, where xi ∈ var(cj), there exists a GAC-support τ of (xi, a) in rel(cj) s.t.
∀ck ∈ C, there exists a PW-support τ ′ of τ in rel(ck). A tuple τ ′ is a PW-support of τ iff
it is valid and τ [var(cj ) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)].
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If maxRPWC is applied on a variable xi it will remove any value a ∈ D(xi) such that
for some constraint cj where xi participates, no GAC-support of (xi, a) can be extended
to a valid tuple in every other constraint (intersecting cj).

3.1. Extending rPIC and maxRPWC

The definition of both rPIC and maxRPWC can be generalized to derive domain filter-
ing consistencies by considering the extensions of a constraint cj to sets of constraints of
various size. To illustrate this we first define relational (1, 3) consistency, as proposed by
van Beek and Dechter, and the new consistency maxR3WC. Then we present two gen-
eral parameterized definitions. The former is the definition of relational (1, k) consistency
given in Ref. 6 while the latter introduces a family of domain filtering consistencies for
non-binary constraints inspired by the concept of k-wise consistency.

Definition 3.3.15 A value a ∈ D(xi) is relational (1, 3)-Consistent (r(1, 3)C) iff ∀cj ∈ C,
where xi ∈ var(cj), and for each pair of constraints ck, cl ∈ C, there exists a GAC-
support τ of (xi, a) in rel(cj) and valid tuples τ ′ ∈ rel(ck), τ ′′ ∈ rel(cl) s.t. τ [var(cj) ∩

var(ck)] = τ ′[var(cj) ∩ var(ck)], τ [var(cj) ∩ var(cl)] = τ ′′[var(cj) ∩ var(cl)],
τ ′[var(ck) ∩ var(cl)] = τ ′′[var(ck) ∩ var(cl)].

If r(1, 3)C is applied on a variable xi it will remove any value a ∈ D(xi) such that for
some constraint cj where xi participates, no GAC-support of (xi, a) can be extended to
valid tuples in some pair of extra constraints.

Definition 3.4. A value a ∈ D(xi) is max Restricted 3-wise Consistent (maxR3WC)
iff ∀cj ∈ C, where xi ∈ var(cj), there exists a GAC-support τ of (xi, a) in rel(cj)

s.t. ∀ck, cl ∈ C there exist valid tuples τ ′ ∈ rel(ck), τ ′′ ∈ rel(cl) s.t. τ [var(cj) ∩

var(ck)] = τ ′[var(cj) ∩ var(ck)], τ [var(cj) ∩ var(cl)] = τ ′′[var(cj) ∩ var(cl)],
τ ′[var(ck) ∩ var(cl)] = τ ′′[var(ck) ∩ var(cl)].

If maxR3WC is applied on a variable xi it will remove any value a ∈ D(xi) such that
for some constraint cj where xi participates, no GAC-support of (xi, a) can be extended
to valid tuples in every pair of other constraints.

Definition 3.5.15 A value a ∈ D(xi) is relational (1, m)-Consistent (r(1, m)C) iff ∀cj ∈

C, where xi ∈ var(cj), and for each set of additional k− 1 constraints c1, . . . , ck−1, there
exists a GAC-support τ of (xi, a) in rel(cj) s.t. τ can be extended to a valid instantiation
on variables

⋃k−1
m=1 var(cm) that satisfies each cm for m = 1, . . . , k − 1.

If r(1, k)C is applied on a variable xi it will remove any value a ∈ D(xi) such that
for some constraint cj where xi participates, no GAC-support of (xi, a) can be extended
to valid tuples in some set of k − 1 extra constraints.

Definition 3.6. A value a ∈ D(xi) is max Restricted k-wise Consistent (maxRkWC) iff
∀cj ∈ C, where xi ∈ var(cj), there exists a GAC-support τ of (xi, a) in rel(cj) that is
k-wise consistent. That is, iff for any set of additional k−1 constraints c1, . . . , ck−1, τ can
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be extended to a valid instantiation on variables
⋃k−1

m=1 var(cm) that satisfies each cm for
m = 1, . . . , k − 1.

If maxRkWC is applied on a variable xi it will remove any value a ∈ D(xi) such that
for some constraint cj where xi participates, no GAC-support of (xi, a) can be extended
to valid tuples in every set of k − 1 extra constraints.

3.2. Other domain filtering consistencies

We now introduce three new domain filtering consistencies which are inspired by NIC and
ω-consistency.

Definition 3.7. A value a ∈ D(xi) is relational Neighborhood Inverse Consistent (rNIC)
iff ∀cj ∈ C, where xi ∈ var(cj), there exists a GAC-support τ of (xi, a) in rel(cj)

that can be extended to a solution of the subproblem consisting of the set of variables
Xj = {var(cj) ∪ var(cj1 ) ∪ . . . ∪ var(cjm

)}, where cj1 , . . . , cjm
are the constraints that

intersect with cj .

If rNIC is applied on a variable xi it will remove any value a ∈ D(xi) such that for
some constraint cj where xi participates, no GAC-support of (xi, a) can be extended to a
consistent instantiation of all variables involved in a constraint that intersects with cj so
that all constraints between these variables are satisfied.

Definition 3.8. A value a ∈ D(xi) is inverse ω-consistent (IωC) iff ∀cj ∈ C, where
xi ∈ var(cj), there exists a GAC-support τ of (xi, a) in rel(cj) s.t. ∀ck ∈ C, there exists
an ω-support τ ′ of τ in rel(ck). A tuple τ ′ is an ω-support of τ iff it is a PW-support of τ

and ∀cl ∈ C, where var(cl) ⊆ var(cj) ∪ var(ck), (τ on τ ′)[var(cl)] ∈ rel(cl).

If IωC is applied on a variable xi it will remove any value a ∈ D(xi) such that for some
constraint cj where xi participates, no GAC-support of (xi, a) can be extended to a valid
tuple in every constraint ck that intersects with cj and, at the same time, satisfy all con-
straints defined on variables var(cj) ∪ var(ck).

Definition 3.9. A value a ∈ D(xi) is extended inverse ω-consistent (EIωC) iff ∀cj ∈ C,
where xi ∈ var(cj), there exists a GAC-support τ of (xi, a) in rel(cj) s.t. ∀ck ∈ C, there
exists an extended ω-support τ ′ of τ in rel(ck). A tuple τ ′ is an extended ω-support of
τ iff it is a PW-support of τ and ∀cl ∈ C, where var(cj) ∩ var(cl) 6= ∅ and var(ck) ∩

var(cl) 6= ∅, Πvar(cl)∩(var(cj)∪var(ck))(τ on τ ′) ∈ Πvar(cl)∩(var(cj)∪var(ck))rel(cl) and
can be extended to a valid tuple in rel(cl).

If EIωC is applied on a variable xi it will remove any value a ∈ D(xi) such that for
some constraint cj where xi participates, no GAC-support of (xi, a) can be extended to
a valid tuple in each constraint ck that intersects with cj and, at the same time, satisfy all
constraints that intersect with both cj and ck. The difference between IωC and EIωC is that
the former considers a constraint cl only if it includes variables among var(cj)∪ var(ck),
while the latter also considers some constraints that include variables among var(cj) ∪

var(ck) and other variables as well.
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a)

b)

c1
c2 c3

x1 x2 x3 x4 x5 x6

c1

c2

c3

x1x2x3x4

x5x6

c4

c1: x1,x2,x3

      0    0    0

      1    0    1

      1    1    0

c2: x2,x3,x4,x5

       0    0    0    0

       0    1    1    0

       1    0    0    1

c3: x4,x5,x6

        0   1   0

        1   0   0

c1 : x1,x2,x3,x4

         0   0   0   0

         0   0   0   1

         1   1   0   0

         2   0   0   0

c2 : x1,x2,x5

         0   1   0

         1   1   0

         2   0   1

c3 : x3,x5,x6

         0   0   0

         1   1   0

         1   1   1

c4 : x4,x5

        0   1

        1   0

Fig. 1. Applying domain filtering consistencies on non-binary problems.

4. Theoretical Study

To clarify the definitions of the above domain filtering consistencies, we we first give an
example that demonstrates which values are deleted by the application of these consisten-
cies. We then compare the pruning power of the various consistencies. Finally, we consider
the special case where the problem consists of binary constraints.

Example 4.1. Figure 1a shows a problem with 6 variables and 4 constraints with the given
allowed tuples. All domains are {0, 1} except D(x1) which is {0, 1, 2}. Assume that we
are trying to apply a given domain filtering consistency on variable x1. All values of x1

are GAC as they are GAC-supported in both c1 and c2. Value 0 is not rPIC (and thus not
maxRPWC) as none of its GAC-supports in c1 can be consistently extended to c2. Values 1
and 2 are maxRPWC as their GAC supports take the same values in the variables shared by
c1 and c2. But value 1 is not IωC as its GAC supports in c1 and c2 do not satisfy constraint
c4. Value 2 is IωC but it is not EIωC as its GAC-supports satisfy c4 but do not satisfy
constraint c3. No value of x1 is rNIC as in this problem where c1 intersects with all other
constraints, rNIC requires that these values participate in a solution.

Now consider the problem depicted in Figure 1b with five 0-1 variables and one vari-
able (x6) with domain {0}. Value 0 of x1 has tuple (0, 0, 0) as GAC-support in c1. This
tuple can be extended to tuple (0, 0, 0, 0) in c2 and there are no constraints that intersect
with both c1 and c2. Therefore (x1, 0) is EIωC. However, the GAC support of 0 cannot be
consistently extended to the pair of constraints c2, c3 since tuple (0, 0, 0, 0) of c2 has no
PW-support in c3. Hence, (x1, 0) is not maxR3WC (or r(1, 3)C).

Theorem 4.1. On problems with non-binary constraints the following relationships hold:

(1) EIωC → IωC → maxRPWC → rPIC → GAC
(2) maxR3WC → maxRPWC and EIω ⊗ maxR3WC ⊗ IωC
(3) r(1, 3)C is incomparable to maxRPWC, IωC, EIωC, and maxR3WC → r(1, 3)C →

rPIC
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(4) NIC is incomparable to rPIC, r(1, 3)C, maxRPWC, IωC, EIωC, maxR3WC and rNIC
→ NIC

(5) rNIC → EIωC and maxR3WC ⊗ rNIC ⊗ r(1, 3)C

Proof. (1) By definition, the “stronger than” relationship holds between EIωC, IωC,
maxRPWC, and rPIC. To show EIωC → IωC → maxRPWC, consider the problems in
Example 4.1. The relationship between maxRPC, rPIC and GAC was proved in Ref. 14.

(2) By definition, maxR3WC is stronger than maxRPWC. For strictness consider the
problem in Example 4.1b which is maxRPWC but not maxR3WC. To show that maxR3WC
is incomparable to EIωC and IωC first consider the same problem which is EIωC (and
IωC). Now consider the problem of Figure 2a with 5 0-1 variables. This is maxR3WC but
not IωC.

(3) To show that r(1, 3)C is incomparable to EIωC, IωC and maxRPWC, it suffices to
show that r(1, 3)C can be stronger than EIωC and weaker than maxRPWC. First consider
the second problem in Example 4.1. This problem is EIωC but it is not r(1, 3)C. Now con-
sider the problem in Figure 2b with 6 variables and 4 constraints intersecting on variables
x2 and x3. Value 0 of x2 is r(1, 3)C but it is not maxRPWC. By definition, maxR3WC is
stronger than r(1, 3)C. To show strictness consider the example of Figure 2b where value
0 of x2 is r(1, 3)C but it is not maxR3WC. By definition, r(1, 3)C is stronger than rPIC. To
show strictness consider the second problem in Example 4.1. This problem is rPIC but it is
not r(1, 3)C.

(4) To prove that NIC is incomparable to rPIC, r(1, 3)C, maxRPWC, IωC, EIωC,
and maxR3WC it suffices to show that NIC can be weaker than rPIC and stronger
than maxR3WC. To show the former, consider a problem with two constraints c1, c2,
where var(c1) = {x1, x2, x3} and rel(c1) = {(0, 0, 0), (1, 1, 0), (0, 1, 1)}, var(c2) =

{x1, x2, x4} and rel(c2) = {(0, 0, 0), (1, 1, 0), (1, 0, 1)}. This problem is NIC but it is not

c 1

c 2

c 3

c 4

x1 x 2 x3

x 4

x 5

c1 : x1,x2,x3

         0   0   0

         0   1   1

c2 : x1,x4,x5

         0   0   0

         0   1   1

c3 : x2,x4

         0   0

         1   1

c4 : x3,x5

        0   1

        1   0

c1:{ x1 ,x2 ,x3 }

       0    0    0

       0    0    1

       0    0    2

c2: { x2 ,x3 ,x4 }

         0    0    0

         0    1    0

c3: { x2 ,x3 ,x5 }

          0   0   0

          0   2   0

c4: { x2 ,x3 ,x6 }

          0   1   0

          0   2   0

c1

c 2

c3

x1 x 2 x 3

x 4

x5

x6

c 4

a)

b)

Fig. 2. A problem that is maxR3WC but not IωC (a). A problem that is r(1, 3)C but not maxRPWC (b).
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rPIC. To show the latter, consider a clique of six variables where all constraints are binary
6= constraints and all domains are {0, . . . , 4}. This problem is maxR3WC but not NIC.

To prove that rNIC → NIC consider a problem that is rNIC. Any assignment of a
variable xi has a GAC-support τ in each constraint cj which involves xi that can be con-
sistently extended to all variables involved in constraints intersecting with cj . Therefore,
τ can be consistently extended to all variables involved in a constraint with xi, as these
constraints intersect (on at least xi) with cj . Hence, the problem is NIC. To show strict-
ness, consider the previous example with the two constraints c1 and c2. This is NIC but not
rNIC.

(5) To prove that rNIC is incomparable to maxR3WC and r(1, 3)C first consider again
the binary problem with a clique of six variables. This is maxR3WC but not rNIC. Now
consider the second problem in Example 4.1. This is rNIC but not r(1, 3)C.

To prove rNIC → EIωC consider a problem that is rNIC. Any assignment of a variable
xi has a GAC-support τ in each constraint cj which involves xi that can be consistently
extended to all variables involved in constraints intersecting with cj . Therefore, τ can be
extended to any constraint ck intersecting with cj s.t. all constraints that intersect with both
cj and ck are satisfied. Hence, the problem is EIωC. To show strictness, consider again the
binary problem with a clique of six variables. This is EIωC but not rNIC.

Figure 3 summarizes the relationships between the various consistencies. For clarity of
presentation, the relationships between r(1, 3)C and NIC, rNIC are not shown.

rPICmaxRPWC

r(1,3)C

IwCEIwC

maxR3WC

NICrNIC

Fig. 3. Relationships between domain filtering consistencies for non-binary CSPs.

4.1. Binary constraints

A natural question is what the aforementioned domain filtering consistencies correspond
to in binary CSPs. In Ref. 14 it was shown that rPIC and maxRPWC are equivalent to
GAC when all constraints intersect on at most one variable. Since we deal with normalized
constraints, as it is usually assumed, then this is the case with binary constraints. Therefore,
in normalized binary problems rPIC and maxRPWC reduce to AC. We now show that when
restricted to normalized binary constraints, maxR3WC, IωC and EIωC are equivalent to
maxRPC while r(1, 3)C is equivalent to PIC.
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Theorem 4.2. On binary CSPs we have maxR3WC ↔ EIωC ↔ IωC ↔ maxRPC and
r(1, 3)C ↔ PIC.

Proof. To show IωC ↔ maxRPC it suffices to show that if a value is deleted by maxRPC
then it is also deleted by IωC, and vice versa. Consider a value a ∈ D(xi) that is removed
by maxRPC. Value a is removed because it is either not AC or because there exists a
variable xj constrained with xi for which there is no value b ∈ D(xj) such that the pair
〈a, b〉 is path consistent. In the former case, a will be removed by IωC since IωC is stronger
than GAC (i.e. AC in binary CSPs). In the latter case, take any AC-support b ∈ D(xj) of
(xi, a). Since the pair 〈a, b〉 is not path consistent there must be a variable xl such that no
value in D(xl) is compatible with both (xi, a) and (xj , b). Assume that c is the constraint
between xi and xj and c′ is the constraint between xi and xl. We cannot find AC-supports
for a in D(xj) and D(xl) so that these supports satisfy the constraints on var(c)∪var(c′),
i.e. the constraint between xj and xl. Hence, value a is not IωC.

Now consider a value a ∈ D(xi) that is deleted by IωC. If a is deleted because it is not
AC then maxRPC will obviously delete it. Otherwise, there must be a constraint c involving
xi and a variable xj such that no AC-support of (xi, a) in D(xj) can be consistently
extended to any constraint c′ that intersects with c so that the constraints on var(c) ∪

var(c′) are satisfied. Take such a constraint c′ and, without loss of generality, assume that
var(c′) = {xj , xl}. As we only have binary constraints, the only other constraint that can
exist among variables var(c) ∪ var(c′) is the one between xi and xl. Value (xi, a) cannot
be be consistently extended to xj and xl so that all constraints between the three variables
are satisfied. Hence, a is not maxRPC.

We now show that in binary problems EIωC and maxR3WC are equivalent to IωC.
Assume that a binary problem is IωC. Then any assignment (xi, a) can be consistently
extended to any constraint c that includes xi and any other constraint c′ that intersects
with c so that all constraints between variables var(c) ∪ var(c′) are satisfied. Since there
is no constraint that intersects with both c and c′ and includes additional variables (as all
constraints are binary), (xi, a) is also EIωC. Now consider any third constraint c′′. If this
intersects with both c and c′ then, since (xi, a) is IωC, there exists an AC-support of (xi, a)

in c that can be consistently extended to both c′ and c′′. If c′′ intersects only with one of
c,c′ (say c′) then any valid tuple of c′ can be consistently extended to c′′ since the problem
is IωC, and hence AC. Therefore, in any case, (xi, a) is maxR3WC.

We now show that r(1, 3)C is equivalent to PIC. Consider a value a ∈ D(xi) that is
removed by PIC. It is removed either because it is not AC or because it cannot be extended
to some pair of variables xj and xl so that the constraints between all three variables are
satisfied. In the former case, a will be removed by r(1, 3)C since r(1, 3)C is stronger than
GAC. In the latter case no AC-support of a in D(xj) can be consistently extended to a
value in D(xl) so that the constraint between xi and xl is satisfied. Hence, value a is
not r(1, 3)C. Now consider a value a ∈ D(xi) that is deleted by r(1, 3)C. There must be
a constraint c involving xi and some other variable xj such that no AC-support of a in
D(xj) can be consistently extended to some pair of constraints c′ and c′′. There are two
cases depending on whether the three constraints form a triangle (i.e. they are the three
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constraints involving xi, xj and a third variable xl). If they do not form a triangle then a

is removed because it is not AC, in which case PIC will also remove it. If the constraints
form a triangle then a cannot be be consistently extended to xj and a third variable xl so
that all constraints between the three variables are satisfied. Hence, a is not PIC.

5. An Algorithm for Domain Filtering Consistencies

A generic AC-7 based algorithm for inverse local consistencies in binary CSPs was pro-
posed in Ref. 16. This algorithm can be relatively easily adapted to apply certain do-
main filtering consistencies in non-binary problems (e.g. rPIC), but for other consistencies
(e.g. maxRPWC) this is much more involved. A generic GAC-3 based algorithm for do-
main filtering consistencies in non-binary CSPs was given in Refs. 14 and 3. Also, instan-
tiations of this algorithm that can be used to apply maxRPWC, rPIC and RPWC were pre-
sented. Here we recall the generic algorithm using a slightly different description (Figure 4)
and show how it can be instantiated to apply maxRPWC, IωC, EIωC, and maxR3WC. Sim-
ilar algorithms can be used to apply rPIC (see Ref. 3) and r(1, 3)C. Algorithms for NIC
and rNIC in general require search, as the neighborhood of a variable or a constraint can
be very large.

function DFCons(P,DFC)
1: put all constraints in Q;
2: while Q is not empty
3: pop constraint cj from Q;
4: for each variable xi ∈ var(cj)

5: if Revise(xi,cj,DFC)> 0 then
6: if D(xi) is empty then return INCONSISTENCY;
8: Enqueue(xi, cj );
10: return CONSISTENCY;

function Revise(xi,cj ,DFC)
1: for each value a ∈ D(xi)

2: PW← FALSE;
3: for each valid τ (∈ rel(cj)) ≥l lastGACxi,a,cj , s.t. τ [xi] = a

4: if Seek Support(xi,cj ,τ ,DFC) then
5: lastGACxi,a,cj ← τ ;
6: PW← TRUE; break;
7: if ¬PW then remove a from D(xi);
8: return number of deleted values;

procedure Enqueue(xj , ci)
1: for each cm such that xj ∈ var(cm)

2: put in Q each cl (6= ci) such that |var(cl) ∩ var(cm)| > 1;
3: if cm 6= ci put cm in Q;

Fig. 4. A generic algorithm for domain filtering consistencies.
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Algorithm DFCons takes as input a (non-binary) CSP P and a specified domain filter-
ing consistency DFC, and enforces DFC on P. DFCons uses a list Q of constraints to prop-
agate value deletions, and works as follows. Initially, all constraints are added to Q. Then
constraints are sequentially removed from Q and the domains of the variables involved in
these constraints are revised. For each such constraint cj and variable xi, the revision is
performed using function Revise(xi,cj,DFC). If after the revision the domain of xi

becomes empty then the algorithm detects the inconsistency and terminates. Otherwise, if
the domain of xi is pruned then each constraint ck involving xi and each constraint in-
tersecting with ck will be put in Q. Note that in the case of maxRPWC the intersection
must be on more than one variable. If Q becomes empty, the algorithm terminates having
successfully enforced DFC on P.

In function Revise, for each value a in D(xi), we first look for a GAC-support in
rel(cj) (line 3). Following GAC2001/3.1,2 for each constraint cj and each a ∈ D(xi),
where xi ∈ var(cj), we keep a pointer lastGACxi,a,cj

(initialized to the first tuple in
rel(cj)). This is now the most recently discovered tuple in rel(cj) that GAC-supports
(xi, a) and, depending on DFC, has some extra property. For instance, if DFC is maxR-
PWC (resp. IωC) then lastGACxi,a,cj

must have PW-supports (resp. ω-supports) in all
constraints that intersect with cj . If lastGACxi,a,cj

is valid then we know that a is GAC-
supported. Otherwise, we look for a new GAC-support starting from the tuple immediately
after lastGACxi,a,cj

in the lexicographic order. If lastGACxi,a,cj
is valid or a new GAC-

support is found then function Seek Support is called to check if this GAC-support
(tuple τ ) satisfies the extra property of DFC.

5.1. maxRPWC, IωC, EIωC

The implementation of Seek Support depends on the consistency being enforced. For
maxRPWC (Figure 5), IωC (Figure 6), and EIωC (Figure 7), Seek Support iterates
over each constraint ck that intersects with cj .c For each such constraint it searches for a
tuple τ ′ that is a PW-support, IωC-support, or extended IωC-support, respectively, of τ .
This is explained in more detail below. If such tuples are found for all intersecting con-
straints then Seek Support returns TRUE and lastGACxi,a,cj

is updated. If no DFC-
support τ ′ is found on some intersecting constraint, indicated by τ ′ becoming NIL, then
Seek Support returns FALSE and the algorithm looks for a new GAC-support in func-
tion Revise. If no GAC-support that satisfies the property of DFC is found, a is removed
from D(xi).

The implementation of line 6 for IωC involves three operations:

• A join of the two tuples τ and τ ′.
• A projection of the joined tuple over the variables in var(cl).
• And a constraint check to determine if the derived tuple satisfies constraint cl.

cIn the case of maxRPWC only constraints intersecting on more than one variable are considered, since for
constraints intersecting on one variable maxRPWC offers no more pruning than GAC.
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function Seek Support(xi,cj ,τ ,maxRPWC)
1: for each ck ∈ C s.t. |var(cj) ∩ var(ck)| > 1

2: for each τ ′(∈ rel(ck))

3: if τ ′ is valid and τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)]

4: then break;
5: if τ ′ = NIL then return FALSE;
6: return TRUE;

Fig. 5. Function Seek Support for maxRPWC.

function Seek Support(xi,cj ,τ ,IωC)
1: for each ck ∈ C s.t. |var(cj) ∩ var(ck)| > 0

2: for each τ ′(∈ rel(ck))

3: if τ ′ is valid and τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)]

4: ωC← TRUE;
5: for each cl ∈ C, s.t. var(cl) ⊆ var(cj) ∪ var(ck)

6: if (τ on τ ′)[var(cl)] /∈ rel(cl)

7: then ωC← FALSE; break;
8: if ωC then break;
9: if τ ′ = NIL then return FALSE;
10: return TRUE;

Fig. 6. Function Seek Support for IωC.

function Seek Support(xi,cj ,τ ,EIωC)
1: for each ck ∈ C s.t. |var(cj) ∩ var(ck)| > 0

2: for each τ ′(∈ rel(ck))

3: if τ ′ is valid and τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)]

4: EωC← TRUE;
5: for each cl ∈ C, s.t. var(cj) ∩ var(cl) 6= ∅ ∧ var(ck) ∩ var(cl) 6= ∅

6: if Πvar(cl)∩(var(cj)∪var(ck))(τ on τ ′)

cannot be extended to a valid tuple in rel(cl)

7: then EωC← FALSE; break;
8: if EωC then break;
9: if τ ′ = NIL then return FALSE;
10: return TRUE;

Fig. 7. Function Seek Support for EIωC.

In contrast, the implementation of line 6 for EIωC is more complex and expensive as it
involves searching in rel(cl). To be precise, the following operations take place:

• A join of the two tuples τ and τ ′.
• A projection over the variables in var(cj) ∪ var(ck) that also appear in var(cl).
• A search in rel(cl) to determine if the derived sub-tuple can be extended to a valid

tuple.
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function Seek Support(xi,cj ,τ ,maxR3WC)
1: for each ck ∈ C s.t. |var(cj) ∩ var(ck)| > 0

2: for each valid τ ′(∈ rel(ck))

s.t. τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)]

3: 3W← TRUE;
4: for each cl ∈ C, s.t. |var(cj) ∩ var(cl)| > 0 ∨ |var(ck) ∩ var(cl)| > 0

5: if @ valid τ ′′(∈ rel(cl)) such that
τ [var(cj) ∩ var(cl)] = τ ′′[var(cj) ∩ var(cl)] and
τ ′[var(ck) ∩ var(cl)] = τ ′′[var(ck) ∩ var(cl)]

6: then
7: if |var(ck) ∩ var(cl)| = 0 then return FALSE;
8: else 3W← FALSE; break;
9: if 3W then break;
10: if τ ′ = NIL then return FALSE;
11: return TRUE;

Fig. 8. Function Seek Support for maxR3WC.

5.2. maxR3WC

In the case of maxR3WC (Figure 8), Seek Support iterates over each constraint ck that
intersects with cj and searches for a PW-support of τ in rel(ck). If such a tuple τ ′ is found,
the algorithm iterates over each constraint cl that intersects with cj or ck (or both) and
searches for a tuple τ ′′ ∈ rel(cl) that is a PW-support of both τ and τ ′. This is explained in
more detail below. In case cl does not intersect with cj (resp. ck) then obviously any valid
τ ′′ ∈ rel(cl) is a PW-support of τ (resp. τ ′). If such a pair of tuples is found for all pairs of
constraints ck and cl then Seek Support returns TRUE and lastGACxi,a,cj

is updated.
Otherwise Seek Support returns FALSE and a new GAC-support is seeked in function
Revise.

Depending on how the three constraints intersect, the search for tuple τ ′′ (line 5) is
executed as follows:

• If cl intersects with cj but not with ck then we simply look for a PW-support of τ in
rel(cl) without considering constraint ck. If no such support is found, Seek Support
returns FALSE (line 7) so that new GAC-support for (xi, a) in rel(cj) is seeked in
Revise. Note that in this case a constraint cl is considered only if it intersects with
cj on more than one variable since, for constraints intersecting on one variable, the
propagation achieved cannot be greater than that achieved by GAC.

• If cl intersects with ck but not with cj then we look for a PW-support of τ ′′ in rel(cl)

without considering constraint cj . If no such support is found, then the algorithm im-
mediately (line 8) moves to look for a new PW-support τ ′ of τ in rel(ck). As in the
previous case, a constraint cl is considered only if it intersects with ck on more than one
variable.

• Finally, if cl intersects with both cj and ck then we look for a tuple τ ′′ in rel(cl) that is
a PW-support of both τ and τ ′. This is done as in Seek Support for IωC or EIωC,
depending on whether all variables in var(cl) appear also in var(cj) ∪ var(ck) or not.
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If no such support is found, then the algorithm moves to look for a new PW-support τ ′

of τ in rel(ck).

5.3. Complexities

We now analyze the worst-case time and space complexity of algorithm DFConswhen in-
stantiated to apply IωC, EIωC, and maxR3WC. The worst-case complexity of an algorithm
for rNIC is exponential in n as any constraint may intersect with all other constraints. In
such an extreme case applying rNIC is essentially at least as hard as solving the problem.

First, we recall the complexities of DFCons when instantiated to apply maxRPWC or
rPIC. The resulting algorithms are called maxRPWC-1 and rPIC-1 in Ref. 3. Following
this naming convention, we denote algorithm DFCons(P,DFC) as DFC-1.

Proposition 5.1.3 The worst-case time complexity of algorithms maxRPWC-1 and rPIC-
1 is O(e2k2dp), where p is the maximum number of variables involved in two constraints
that share at least two variables.

As discussed in Ref. 3, the space complexity of maxRPWC-1 is O(ekd) for exten-
sional constraints and O(ek2d) for intensional ones. Accordingly, the space complexity of
rPIC-1 is O(e2kd) for extensional constraints and O(e2k2d) for intensional ones.

Proposition 5.2. The worst-case time complexity of algorithm IωC-1 is O(e3k3dp).

Proof. Let us denote by kj the number of variables involved in cj and by pjk the total num-
ber of variables involved in the two constraints cj and ck. The complexity is determined
by the number of constraint checks performed in total, in all calls to function Revise and
Seek Support.

We first analyze the cost of Seek Support(xi,cj ,τ ,IωC). The inner loop of
Seek Support (lines 5-7) iterates through the, at most e−2, constraints cl, s.t. var(cl) ⊆

var(cj) ∪ var(ck). For any such constraint it verifies if the projection over var(cl) of the
join of tuples τ and τ ′ satisfies constraint cl. This costs O(k), assuming that the cost of
a constraint check is linear to the arity of the constraint. Therefore the cost of the inner
loop is O(ek). In the outer loop of Seek Support the algorithm iterates through the
constraints that intersect cj . For each such constraint ck, the second loop searches for a
tuple τ ′ that is an ω-support of lastGACxi,a,cj

(i.e. τ ). There are at most dpkj−kj tuples
to be searched, i.e. those that take the same values in variables var(cj) ∩ var(ck) as in τ .
The cost of each such check is O(k). If a tuple τ ′ that is valid and takes the same values
as τ on the intersecting constraints is found then the inner loop is executed to verify if τ ′

is an ω-support of τ . Therefore, the cost of the second loop is O(k × dpkj−kj × ek). As
there are at most e− 1 constraints intersecting cj , the cost of Seek Support is bounded
above by Kija =

∑
ck∈C\{cj}

ek2dpjk−kj .
Now let us consider the number of calls to Seek Support in function Revise.

Given a variable xi and a constraint cj , Seek Support is called for each value a ∈

D(xi) each time function Revise(xi, cj , IωC) is called or each time a new GAC-support
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lastGACxi,a,cj
is found (line 3 of Revise). Revise(xj , ci, IωC) can be called at most

nd times. This is because every one of the n variables may either belong to var(cj) or
participate in a constraint that intersects with cj . In this case every deletion of a value from
a variable will force Enqueue to add cj to Q and subsequently cause a call to Revise.
lastGACxi,a,cj

cannot change more than dkj−1 times because IωC-1 only checks the
tuples that contain the assignment (xi, a) and it only checks tuples that have not been
checked before. So, Seek Support is called at most Lija = nd + dkj−1 times for each
variable xi, value a, and constraint cj . Lija is also the number of times a tuple can be
checked as GAC-support for (xi, a) on cj at a cost O(k) (line 3 of Revise). Thus, for
a variable xj , value a, and constraint ci, the complexity is bounded above by Mjia =

Lija × (k + Kija) = (nd + dkj−1) × (k +
∑

ck∈C\{cj}
ek2dpjk−kj ). Assuming that

dk−1 > nd, this gives a complexity in O(e2k2dp−1). Since there are at most d values
in D(xi), k variables in var(cj ), and e constraints in C, the total complexity is bounded
above by ekd × e2k2dp−1. This gives a time complexity in O(e3k3dp).

The space complexity of IωC-1 is determined by the space required for the lastGAC

data structure. If the constraints are given in extension, in which case we can use pointers
of constant size, then the size of lastGAC is O(ekd). If the constraints are intensionally
specified then the size of lastGAC is O(ek2d), since in this case each pointer is of size k.

Proposition 5.3. The worst-case time complexity of algorithm EIωC-1 is O(e3k3dp+p′

).

Proof. The proof is similar to that for IωC-1 given above. Note that the two algorithms
only differ in the implementation of the inner loop in function Seek Support. The inner
loop of Seek Support for EIωC-1 iterates through the, at most e − 2, constraints cl,
s.t. var(cj) ∩ var(cl) 6= ∅ and var(ck) ∩ var(cl) 6= ∅. Let us denote by pljk the number
of variables involved in cl but not in cj or ck. For each constraint cl the algorithm searches
for a valid tuple in rel(cl) that takes the same values as τ on variables var(cj) ∩ var(cl)

and the same values as τ ′ on variables var(ck) ∩ var(cl). There are at most dpljk such
tuples to be searched and the cost of each check is in O(k). Therefore, the cost of the inner
loop is bounded above by Kjk =

∑
cl∈C\{cj ,ck}

kdpljk . As the rest of algorithm EIωC-1
is identical to IωC-1, following the analysis of Proposition 5.2 we can conclude that the
the cost of Seek Support is bounded above by Kija =

∑
ck∈C\{cj}

(kdpjk−kj ×Kjk).
Therefore, for a variable xj , value a, and constraint ci, the complexity is bounded above
by (nd + dkj−1) × (k +

∑
ck∈C\{cj}

(kdpjk−kj ×
∑

cl∈C\{cj ,ck}
kdpljk ). Assuming that

dk−1 > nd, this gives a complexity in O(dkj−1 × ekdp−kj × ekdp′

) = O(e2k2dp+p′−1)

Therefore, the complexity of EIωC-1 is in O(e3k3dp+p′

).

The space complexity of EIωC-1 is the same as IωC-1 since they use the same data
structures (i.e. lastGAC).

Proposition 5.4. The worst-case time complexity of algorithm maxR3WC-1 is
O(e3k3dp+p′

).
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Proof. The proof is similar to that for IωC-1 and EIωC-1. Note that maxR3WC-1 only
differs from the other two algorithms in the implementation of the inner loop in function
Seek Support. The inner loop of Seek Support for maxR3WC-1 iterates through
the, at most e − 2, constraints cl that intersect with cj or ck. For each constraint cl the
algorithm searches for a valid tuple in rel(cl) that takes the same values as τ on variables
var(cj)∩ var(cl) and the same values as τ ′ on variables var(ck)∩ var(cl). As discussed,
there are three cases depending on whether cl intersects only with cj , only with ck, or with
both. The first two are similar in terms of their effect on the cost. Therefore, to simplify
the analysis we combine these cases into one and assume that cl intersects with ck when
intersecting with only one of the two. Let us denote by rk the number of variables involved
in ck and by pkl the total number of variables involved in the two constraints ck and cl.
In this case there are at most dpkl−rk tuples to be searched, i.e. those that take the same
values in variables var(ck) ∩ var(cl) as in τ ′, with cost O(k) for each one. Now if cl

intersects with both cj and ck then let us denote by pljk the number of variables involved
in cl but not in cj or ck. In this case there are at most dpljk tuples to be searched with
cost O(k) for each one. Putting things together, the cost of a single iteration of the inner
loop is O(k × max(dpkl−rk , dpljk )) = O(kdpljk ).d Therefore, the cost of the inner loop
is bounded above by Kjk =

∑
cl∈C\{cj ,ck}

kdpljk .
As the rest of algorithm EIωC-1 is similar to IωC-1 and EIωC-1, following the

analysis of Propositions 5.2 and 5.3 we can conclude that the the cost of Seek Support
is bounded above by Kija =

∑
ck∈C\{cj}

(kdpjk−kj × Kjk). Therefore, for a variable
xj , value a, and constraint ci, the complexity is bounded above by (nd + dkj−1) × (k +
∑

ck∈C\{cj}
(kdpjk−kj ×

∑
cl∈C\{cj ,ck}

kdpljk ). Assuming that dk−1 > nd, this gives a

complexity in O(dkj−1×ekdp−kj ×ekdp′

) = O(e2k2dp+p′−1) Therefore, the complexity
of EIωC-1 is in O(e3k3dp+p′

).

The space complexity of maxR3WC-1 is the same as IωC-1 and EIωC-1 since they
all use the same data structures (i.e. lastGAC).

6. Experimental Results

We compared IωC and EIωC to maxRPWC on random problems generated using the ex-
tended model B.1 According to this model, a random non-binary CSP is defined by the
input parameters 〈n, d, k, p(e), q〉, where n is the number of variables, d the uniform do-
main size, k the uniform arity of the constraints, p the density of the problem (i.e. the ratio
between the e constraints in the problem and the number of possible constraints involving k

variables), and q the uniform looseness of the constraints. The constraints and the allowed
tuples were generated following a uniform distribution. We made sure that the generated
graphs were connected. All algorithms were implemented in C and the experiments were
run on a 3.06 GHz Pentium PC with 1 GB RAM.

dAsymptotically dpkl−rk is in O(dpljk ) and vice versa.
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Fig. 9. Cpu times (left) and percentage of inconsistent problems detected (right).

We first compare the pruning power of the three consistencies and their effect as pre-
processing tools. Results show that EIωC and, on denser problems, IωC can achieve con-
siderably more pruning than maxRPWC and thus are useful for preprocessing. Then we
compare algorithms that maintain the consistencies throughout search. Results show that
IωC, and especially EIωC, can be too expensive to maintain on soluble instances, but they
can offer speed-ups on insoluble instances.

Figure 9 (left) shows average CPU times for the three consistencies on 100 instances of
class 〈30, 20, 4, 0.001(27), q〉. We show both the time needed to enforce the consistencies
and the time required to solve the instances with an algorithm that maintains maxRPC dur-
ing search after they have been preprocessed by each of the three consistencies (suffix s).
The right figure shows the average percentage of instances proved to be inconsistent by the
three consistencies. The value of q is varied along the x-axis.

IωC displays similar performance to maxRPWC in cpu times and inconsistency detec-
tion. This is not surprising given that this is a sparse class where all constraints are 4-ary.
As a result, for any pair of intersecting constraints cj , ck there is seldom the case that
some other constraint exists which only involves variables from var(cj) ∪ var(ck). Note
that EIωC detects many more inconsistent problems, and deletes a higher percentage of
values, (for q >0.004) than IωC and maxRPWC, albeit with a higher cost. However, this
preprocessing cost is negligible compared to the cost of search, and as a result, the search
algorithm that uses EIωC preprocessing is more efficient than the others up to the value of
q where EIωC achieves a notable number of value deletions.

Table 1 gives results from problems belonging to classes 〈50, 10, 4, 0.001(230), q〉

(class 1) and 〈100, 10, 4, 0.0001(392), q〉 (class 2). In each line we give the number of in-
consistent instances detected, the average percentage of value deletions, and the cpu time
(in msecs) when each consistency is enforced for preprocessing. The first three lines in
the table refer to class 1 and correspond to parameter settings such that maxRPWC deter-
mines as inconsistent almost all, around half and only a few of the instances. Accordingly
for class 2 in the next three lines. EIωC proves the inconsistency of all instances and in
some cases it runs up to one order of magnitude faster than the other consistencies as it
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Table 1. Average results over 100 instances on two classes of random problems.

class maxRPWC IωC EIωC

inc %del time inc %del time inc %del time

1 96 28 583 99 26 275 100 7 48
1 45 15 561 90 27 441 100 10 90
1 8 3 295 53 17 470 100 13 231
2 95 24 888 95 23 813 100 10 70
2 48 14 1488 54 16 1251 100 13 302
2 9 3 412 18 5 535 100 15 674
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Fig. 10. Cpu times and node visits for classes 〈15, 20, 4, 0.02(27), q〉 (top) and 〈20, 8, 4, 0.008(38), q〉
(bottom).

quickly wipes out some domain. IωC proves the inconsistency of many more instances
than maxRPWC (especially in class 1) in competitive run times.

Figure 10 gives results from problems belonging to classes 〈15, 20, 4, 0.02(27), q〉 and
〈20, 8, 4, 0.008(38), q〉. For each data point we generated 50 instances and measured the
average node visits and cpu time of algorithms that maintain maxRPWC, IωC and EIωC
throughout search. These algorithms are simply denoted by the local consistency they
apply. Results show that in both classes, and especially the first one, EIωC significantly
reduces the size of the explored search tree (i.e. node visits) but at a high cost. IωC out-
performs maxRPWC on the first class while it is competitive but not faster on the second



September 30, 2008 12:16 WSPC-IJAIT 00416

Strong Domain Filtering Consistencies for Non-Binary Constraint Satisfaction Problems 801

class. Both of the strong consistencies are more efficient on insoluble instances compared
to soluble ones.

In general, these preliminary experiments indicate that IωC is better suited to denser
problems with large domains where there are many intersections between constraints. On
such problems it can outperform maxRPWC as it detects more inconsistencies with little
extra cost. EIωC cannot be maintained throughout search in practice, but it can be used
for preprocessing and perhaps it can be conservatively applied during search (e.g. on spe-
cific constraints). Of course, further experimentation is required to validate or refute these
conjectures.

7. Conclusion

Although domain filtering local consistencies tend to be more practical than consistencies
that change the constraint relations and the constraint graph, only few such consistencies
have been proposed for non-binary constraints. In this paper, we performed a detailed study
of several strong domain filtering consistencies for non-binary constraints. All these con-
sistencies are stronger than GAC, the consistency that is predominantly used by current
constraint solvers, and most are stronger than maxRPWC, a recently introduced domain
filtering consistency for non-binary constraints. We proved that three of the new consisten-
cies are equivalent to maxRPC when restricted to normalized binary CSPs while another
is equivalent to PIC. We also described a generic algorithm for domain filtering consisten-
cies in non-binary CSPs, showed how this algorithm can be instantiated to enforce some
of the proposed consistencies, and analyzed the worst-case complexities of the resulting
algorithms.
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