
Restricted Path Consistency Revisited

Kostas Stergiou(B)

Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Kozani, Greece

kstergiou@uowm.gr

Abstract. Restricted path consistency (RPC) is a strong local consis-
tency for binary constraints that was proposed 20 years ago and was
identified as a promising alternative to arc consistency (AC) in an early
experimental study of local consistencies for binary constraints. How-
ever, and in contrast to other strong local consistencies such as SAC
and maxRPC, it has been neglected since then. In this paper we revisit
RPC. First, we propose RPC3, a new lightweight RPC algorithm that is
very easy to implement and can be efficiently applied throughout search.
Then we perform a wide experimental study of RPC3 and a light version
that achieves an approximation of RPC, comparing them to state-of-the-
art AC and maxRPC algorithms. Experimental results clearly show that
restricted RPC is by far more efficient than both AC and maxRPC when
applied throughout search. These results strongly suggest that it is time
to reconsider the established perception that MAC is the best general
purpose method for solving binary CSPs.

1 Introduction

Restricted path consistency (RPC) is a local consistency for binary constraints
that is stronger than arc consistency (AC). RPC was introduced by Berlandier
[4] and was further studied by Debruyne and Bessiere [7,8]. An RPC algorithm
removes all arc inconsistent values from a domain D(x), and in addition, for any
pair of values (a, b), with a ∈ D(x) and b ∈ D(y) s.t. b is the only support for a
in a D(y), it checks if (a, b) is path consistent. If it is not then a is removed from
D(x). In this way some of the benefits of path consistency are retained while
avoiding its high cost.

Although RPC was identified as a promising alternative to AC as far back
as 2001 [8], it has been neglected by the CP community since then. In contrast,
stronger local consistencies such as max restricted path consistency (maxRPC)
[7] and singleton arc consistency (SAC) [8] have received considerable attention
in the past decade or so [1–3,5,9,11,13,14]. However, despite the algorithmic
developments on maxRPC and SAC, none of the two outperforms AC when
maintained during search, except for specific classes of problems. Therefore,
MAC remains the predominant generic algorithm for solving binary CSPs.

In this paper we revisit RPC and make two contributions compared to pre-
vious works that bring the state-of-the-art regarding RPC up to date. The first
is algorithmic and the second experimental.
c⃝ Springer International Publishing Switzerland 2015
G. Pesant (Ed.): CP 2015, LNCS 9255, pp. 419–428, 2015.
DOI: 10.1007/978-3-319-23219-5 30



420 K. Stergiou

The two algorithms that have been proposed for RPC, called RPC1 [4] and
RPC2 [7], are based on the AC algorithms AC4 and AC6 respectively. As a result
they suffer from the same drawbacks as their AC counterparts. Namely, they use
heavy data structures that are too expensive to maintain during search. In recent
years it has been shown that in the case of AC lighter algorithms which sacrifice
optimality display a better performance when used inside MAC compared to
optimal but heavier algorithms such as AC4, AC6, AC7, and AC2001/3.1. Hence,
the development of the residue-based version of AC3 known as AC3r [10,12]. A
similar observation has been made with respect to maxRPC [1]. Also, it has
been noted that cheap approximations of local consistencies such as maxRPC
and SAC are more cost-effective than the full versions. In the case of maxRPC,
the residue-based algorithm lmaxRPC3r, which achieves an approximation of
maxRPC, is the best choice when applying maxRPC [1].

Following these trends, we propose RPC3, an RPC algorithm that makes use
of residues in the spirit of ACr and lmaxRPCr and is very easy to implement. As
we will explain, for each constraint (x, y) and each value a ∈ D(x), RPC3 stores
two residues that correspond to the two most recently discovered supports for a
in D(y). This enables the algorithm to avoid many redundant constraint checks.
We also consider a restricted version of the algorithm (simply called rRPC3)
that achieves a local consistency property weaker than RPC, but still stronger
than AC, and is considerably faster in practice.

Our second and most important contribution concerns experiments. Given
that the few works on RPC date from the 90s, the experimental evaluations of the
proposed algorithms were carried out on limited sets of, mainly random, prob-
lems. Equally importantly, there was no evaluation of the algorithms when used
during search to maintain RPC. We carry out a wide evaluation on benchmark
problems from numerous classes that have been used in CSP solver competi-
tions. Surprisingly, results demonstrate that an algorithm that applies rRPC3
throughout search is not only competitive with MAC, but it clearly outperforms
it on the overwhelming majority of tested instances, especially on structured
problems. Also, it clearly outperforms lmaxRPC3r. This is because RPC, and
especially its restricted version, achieves a very good balance between the prun-
ing power of maxRPC and the low cost of AC.

Our experimental results provide strong evidence of a local consistency that
is clearly preferable to AC when maintained during search. Hence, perhaps it is
time to reconsider the common perception that MAC is the best general purpose
solver for binary problems.

2 Background

A Constraint Satisfaction Problem (CSP) is defined as a triplet (X ,D, C) where:
X = {x1, . . . , xn} is a set of n variables, D = {D(x1), . . . , D(xn)} is a set of
domains, one for each variable, with maximum cardinality d, and C = {c1, . . . , ce}
is a set of e constraints. In this paper we are concerned with binary CSPs. A
binary constraint cij involves variables xi and xj .



Restricted Path Consistency Revisited 421

At any time during the solving process if a value ai has not been removed
from the domain D(xi), we say that the value is valid. A value ai ∈ D(xi) is arc
consistent (AC) iff for every constraint cij there exists a value aj ∈ D(xj) s.t.
the pair of values (ai, aj) satisfies cij . In this case aj is called an support of ai.
A variable is AC iff all its values are AC. A problem is AC iff there is no empty
domain in D and all the variables in X are AC.

A pair of values (ai, aj), with ai ∈ D(xi) and aj ∈ D(xj), is path consistent
PC iff for any third variable xk constrained with xi and xj there exists a value
ak ∈ D(xk) s.t. ak is a support of both ai and aj . In this case aj is a PC-support
of ai in D(xj) and ak is a PC-witness for the pair (ai, aj) in D(xk).

A value ai ∈ D(xi) is restricted path consistent (RPC) iff it is AC and for each
constraint cij s.t. ai has a single support aj ∈ D(xj), the pair of values (ai, aj)
is path consistent (PC) [4]. A value ai ∈ D(xi) is max restricted path consistent
(maxRPC) iff it is AC and for each constraint cij there exists a support aj for
ai in D(xj) s.t. the pair of values (ai, aj) is path consistent (PC) [7]. A variable
is RPC (resp. maxRPC) iff all its values are RPC (resp. maxRPC). A problem
is RPC (resp. maxRPC) iff there is no empty domain and all variables are RPC
(resp. maxRPC).

3 The RPC3 Algorithm

The RPC3 algorithm is based on the idea of seeking two supports for a value,
which was first introduced in RPC2 [7]. But in contrast to RPC2 which is based
on AC6, it follows an AC3-like structure, resulting in lighter use of data struc-
tures, albeit with a loss of optimality. As explained below, we can easily obtain
a restricted but more efficient version of the algorithm that only approximates
the RPC property. Crucially, the lack of heavy data structures allows for the
use of the new algorithms during search without having to perform expensive
restorations of data structures after failures.

In the spirit of ACr, RPC3 utilizes two data structures, R1 and R2, which
hold residual data used to avoid redundant operations. Specifically, for each
constraint cij and each value ai ∈ D(xi), R1

xi,ai,xj
and R2

xi,ai,xj
hold the two

most recently discovered supports of ai in D(xj). Initially, all residues are set to
a special value NIL, considered to precede all values in any domain.

The pseudocode of RPC3 is given in Algorithm 1 and Function 2. Being
coarse-grained like AC3, Algorithm 1 uses a propagation list Q, typically imple-
mented as a fifo queue. We use a constraint-oriented description, meaning that Q
handles pairs of variables involved in constraints. A variable-based one requires
minor modifications.

Once a pair of variables (xi, xj) is removed from Q, the algorithm iterates
over D(xi) and for each value ai first checks the residues R1

xi,ai,xj
and R2

xi,ai,xj

(line 5). If both are valid then ai has at least two supports in D(xj). Hence,
the algorithm moves to process the next value in D(xi). Otherwise, function
findTwoSupports is called. This function will try to find two supports for ai in
D(xj). In case it finds none then ai is not AC and will thus be deleted (line 13).



422 K. Stergiou

Algorithm 1. RPC3:boolean
1: while Q ̸= ∅ do
2: Q ← Q−{(xi, xj)};
3: Deletion ← FALSE;
4: for each ai ∈ D(xi) do
5: if both R1

xi,ai,xj
and R2

xi,ai,xj
are valid then

6: continue;
7: else
8: if only one of R1

xi,ai,xj
and R2

xi,ai,xj
is valid then

9: R ← the valid residue;
10: else
11: R ← NIL;
12: if findTwoSupports(xi, ai, xj , R) = FALSE then
13: remove ai from D(xi);
14: Deletion ← TRUE;
15: if D(xi) = ∅ then
16: return FALSE;
17: if Deletion = TRUE then
18: for each (xk, xi) ∈ C s.t. (xk, xi) /∈ Q do
19: Q ← Q ∪ {(xk, xi)};
20: for each (xl, xk) ∈ C s.t. xl ̸= xi and (xl, xi) ∈ C and (xl, xk) /∈ Q do
21: Q ← Q ∪ {(xl, xk)};
22: return TRUE;

In case it finds only one then it will check if ai is RPC. If it is not then it will
be deleted. Function findTwoSupports takes as arguments the variables xi and
xj , the value ai, and a parameter R, which is set to the single valid residue of
ai in D(xj) (line 9) or to NIL if none of the two residues is valid.

Function findTwoSupports iterates over the values in D(xj) (line 3). For each
value aj ∈ D(xj) it checks if the pair (ai, aj) satisfies constraint cij (this is what
function isConsistent does). If both residues of ai in D(xj) are not valid then
after a support is found, the algorithm continues to search for another one.
Otherwise, as soon as a support is found that is different than R, the function
returns having located two supports (lines 9-11).

If only one support aj is located for ai then the algorithm checks if the
pair (ai, aj) is path consistent. During this process it exploits the residues to
save redundant work, if possible. Specifically, for any third variable xk that is
constrained with both xi and xj , we first check if one of the two residues of ai is
valid and if aj is consistent with that residue (line 16). If this is the case then we
know that there is a PC-witness for the pair (ai, aj) in D(xk) without having to
iterate over D(xk). If it is not the case then the check is repeated for the residues
of aj in D(xk). If we fail to verify the existense of a PC-witness in this way then
we iterate over D(xk) checking if any value ak is consistent with both ai and aj .
If a PC-witness is found, we proceed with the next variable that is constrained
with both xi and xj . Otherwise, the function returns false, signaling that ai is
not RPC.



Restricted Path Consistency Revisited 423

Function 2. findTwoSupports(xi, ai, xj , R):Boolean
1: if R = NIL then oneSupport ← FALSE;
2: else oneSupport ← TRUE;
3: for each aj ∈ D(xj) do
4: if isConsistent(ai, aj) then
5: if oneSupport = FALSE then
6: oneSupport ← TRUE;
7: R1

xi,ai,xj
← aj ;

8: else
9: if aj ̸= R then
10: R2

xi,ai,xj
← aj ;

11: return TRUE;
12: if oneSupport = FALSE then
13: return FALSE
14: else
15: for each xk ∈ X, xk ̸= xi and xk ̸= xj , s.t. (xk, xi) ∈ C and (xk, xj) ∈ C do
16: if there is a valid residue R∗

xi,ai,xk
and isConsistent(R∗

xi,ai,xk
, aj) or if there

is a valid residue R∗
xj ,aj ,xk

and isConsistent(R∗
xj ,aj ,xk

, ai)
17: then continue;
18: PCwitness ← FALSE;
19: for each ak ∈ D(xk) do
20: if isConsistent(ai, ak) and isConsistent(aj , ak) then
21: PCwitness ← TRUE;
22: break;
23: if PCwitness = FALSE then
24: return FALSE;
25: return TRUE;

Moving back to Algorithm 1, if at least one value is deleted from a domain
D(xi), some pairs of variables must be enqueued so that the deletions are prop-
agated. Lines 18-19 enqueue all pairs of the form (xk, xi). This ensures that if a
value in a domain D(xk) has lost its last support in D(xi), it will be processed
by the algorithm when the pair (xk, xi) is dequeued, and it will be removed. In
addition, it ensures that if a value in D(xk) has been left with only one support
in D(xi), that is not a PC-support, it will be processed and deleted once (xk, xi)
is dequeued. This means that if we only enqueue pairs of the form (xk, xi), we
can achieve stronger pruning than AC. However, this is not enough to achieve
RPC. We call the version of RPC3 that only enqueues such pairs restricted RPC3
(rRPC3).

To achieve RPC, for each pair (xk, xi) that is enqueued, we also enqueue all
pairs of the form (xl, xk) s.t. xl is constrained with xi. This is because after the
deletions from D(xi) the last PC-witness in D(xi) for some pair of values for
variables xk and xl may have been deleted. This may cause further deletions
from D(xl).



424 K. Stergiou

The worst-case time complexity of RPC3, and rRPC3, is O(ned3)1. The space
complexity is determined by the space required to store the residues, which is
O(ed). The time complexities of algorithms RPC1 and RPC2 are O(ned3) and
O(ned2) respectively, while their space complexities, for stand-alone use, are
O(ed2) and O(end). RPC3 has a higher time complexity than RPC2, and a lower
space complexity than both RPC1 and RPC2. But most importantly, RPC3
does not require the typically quite expensive restoration of data structures
after failures when used inside search. In addition, this means that its space
complexity remains O(ed) when used inside search, while the space complexities
of RPC1 and RPC2 will be even higher than O(ed2) and O(end).

4 Experiments

We have experimented with 17 classes of binary CSPs taken from C.Lecoutre’s
XCSP repository: rlfap, graph coloring, qcp, qwh, bqwh, driver, job shop,
haystacks, hanoi, pigeons, black hole, ehi, queens, geometric, composed, forced
random, model B random. A total of 1142 instances were tested. Details about
these classes of problems can be found in C.Lecoutre’s homepage. All algorithms
used the dom/wdeg heuristic for variable ordering [6] and lexicographic value
ordering. The experiments were performed on a FUJITSU Server PRIMERGY
RX200 S7 R2 with Intel(R) Xeon(R) CPU E5-2667 clocked at 2.90GHz, with 48
GB of ECC RAM and 16MB cache.

We have compared search algorithms that apply rRPC3 (resp. RPC3) during
search to a baseline algorithm that applies AC (i.e. MAC) and also to an algo-
rithm that applies lmaxRPC. AC and lmaxRPC were enforced using the ACr

and lmaxRPC3 algorithms respectively. For simplicity, the four search algorithms
will be denoted by AC, rRPC, RPC, and maxRPC hereafter. Note that a MAC
algorithm with ACr and dom/wdeg for variable ordering is considered as the
best general purpose solver for binary CSPs.

A timetout of 3600 seconds was imposed on all four algorithms for all the
tested instances. Importantly, rRPC only timed out on instances where
AC and maxRPC also timed out. On the other hand, there were several
cases where rRPC finished search within the time limit but one (or both) of AC
and maxRPC timed out. There were a few instances where RPC timed out while
rRPC did not, but the opposite never occured.

Table 1 summarizes the results of the experimental evaluation for specific
classes of problems. For each class we give the following information:

– The mean node visits and run times from non-trivial instances that were
solved by all algorithms within the time limit. We consider as trivial any
instance that was solved by all algorithms in less than a second.

– Node visits and run time from the single instance where AC displayed its
best performance compared to rRPC.

1 The proof is quite simple but it is omitted for space reasons.



Restricted Path Consistency Revisited 425

– Node visits and run time from the single instance where maxRPC displayed
its best performance compared to rRPC.

– Node visits and run time from a representative instance where rRPC dis-
played good performance compared to AC, excluding instances where AC
timed out.

– The number of instances where AC, RPC, maxRPC timed out while rRPC
did not. This information is given only for classes where at least one such
instance occured.

– The number of instances where AC, rRPC, RPC, or maxRPC was the win-
ning algorithm, excluding trivial instances.

Comparing AC to rRPC we can note the following. rRPC is more efficient in
terms of mean run time performance on all classes of structured problems with
the exception of queens. The difference in favor of rRPC can be quite stunning,
as in the case of qwh and qcp. The numbers of node visits in these classes suggest
that rRPC is able to achieve considerable extra pruning, and this is then reflected
on cpu times.

Importantly, in all instances of 16 classes (i.e. all classes apart from queens)
AC was at most 1.7 times faster than rRPC. In contrast, there were 7 instances
from rlfap and 12 from graph coloring where AC timed out while rRPC finished
within the time limit. The mean cpu time of rRPC on these rlfap instances
was 110 seconds while on the 12 graph coloring instances the cpu time of rRPC
ranged from 1.8 to 1798 seconds. In addition, there were numerous instances
where rRPC was orders of magnitude faster than AC. This is quite common in
qcp and qwh, as the mean cpu times demonstrate, but such instances also occur
in graph coloring, bqwh, haystacks and ehi.

Regarding random problems, rRPC achieves similar performance to AC on
geometric (which is a class with some structure) and is slower on forced ran-
dom and model B random. However, the differences in these two classes are not
significant. The only class where there are significant differences in favour of
AC is queens. Specifically, AC can be up to 5 times faster than rRPC on some
instances, and orders of magnitude faster than both RPC and maxRPC. This
is because all algorithms spend a lot of time on propagation but evidently the
strong local consistencies achieve little extra pruning. Importantly, the low cost
of rRPC makes its performance reasonable compared to the huge run times of
RPC and maxRPC.

The comparison between RPC and AC follows the same trend as that of
rRPC and AC, but importantly the differences in favour of RPC are not as large
on structured problems where AC is inefficient, while AC is clearly faster on
random problems, and by far superior on dense structured problems like queens
and pigeons.

Comparing the mean performance of rRPC to RPC and maxRPC we can
note that rRPC is more efficient on all classes. There are some instances where
RPC or/and maxRPC outperform rRPC due to their stronger pruning, but the
differences in favour of RPC and maxRPC are rarely significant. In contrast,
rRPC can often be orders of magnitude faster. An interesting observation that



426 K. Stergiou

Table 1. Node visits (n), run times in secs (t), number of timeouts (#TO) (if appli-
cable), and number of wins (winner) in summary. The number in brackets after the
name of each class gives the number of instances tested.

class AC rRPC RPC maxRPC
(n) (t) (n) (t) (n) (t) (n) (t)

rlfap (24)
mean 29045 64.1 11234 32.3 10878 39.0 8757 134.0
best AC 12688 9.3 11813 14.5 10048 18.2 5548 33.2
best maxRPC 8405 10.1 3846 4.4 3218 6.86 1668 4.8
good rRPC 19590 28.8 5903 8.2 5197 10.4 8808 23.7
#TO 7 3 6
winner 1 18 1 0
qcp (60)
mean 307416 345.4 37725 44.8 43068 167.1 49005 101.3
best AC 36498 63.5 36286 73.7 57405 354.3 63634 173.5
best maxRPC 20988 16.8 7743 7.6 4787 11.9 1723 1.8
good rRPC 1058477 761 65475 53.5 67935 162.9 54622 63.1
winner 2 8 0 4
qwh (40)
mean 205232 1348.2 20663 46.2 28694 177.9 24205 64.7
best AC 6987 4.5 3734 3.0 5387 11.9 3174 3.2
best maxRPC 231087 461.4 30926 72.3 30434 187.6 13497 35.8
good rRPC 445771 859.6 35923 79.5 56965 375.4 37582 103.9
winner 0 9 0 6
bqwh (200)
mean 28573 7.6 7041 2.4 5466 2.9 6136 2.7
best AC 5085 1.2 4573 1.4 4232 2.0 3375 1.3
best maxRPC 324349 85.3 122845 46.1 56020 33.8 64596 29.3
good rRPC 83996 22.5 7922 2.6 10858 5.6 9325 4.2
winner 2 36 13 20
graph coloring (177)
mean 322220 88.6 261882 60.4 192538 73.7 263227 138.79
best AC 1589650 442.5 1589650 743.8 1266416 930.8 1589650 1010.0
best maxRPC 1977536 647.9 1977536 762.4 1265930 613.7 1977536 759.8
good rRPC 31507 189.1 3911 15.6 2851 18.2 10477 62.7
#TO 12 1 5
winner 8 35 17 0
geometric (100)
mean 111611 58.4 54721 58.6 52416 97.3 38227 190.9
best AC 331764 203.1 169871 218.1 160428 358.1 113878 696.2
best maxRPC 67526 28.1 31230 28.1 30229 53.5 20071 73.6
good rRPC 254304 123.3 119248 117.4 117665 203.0 84410 363.3
winner 12 11 1 0
forced random (20)
mean 348473 143.5 197994 177.2 191114 309.8 154903 455.4
best AC 1207920 491.5 677896 596.7 654862 1040.4 538317 1551.4
best maxRPC 26729 7.6 12986 9.0 12722 13.5 9372 22.4
good rRPC 455489 201.6 270345 258.5 262733 462.0 207267 651.2
winner 20 0 0 0
model B random (40)
mean 741124 194.3 383927 224.5 361926 346.5 28871 1044.9
best AC 2212444 669.8 1197369 805.7 1136257 1283.8 - TO
best maxRPC 345980 81.2 181127 94.4 171527 142.7 130440 405.8
good rRPC 127567 32.4 43769 24.4 41328 39.1 51455 171.5
#TO 0 0 14
winner 39 1 0 0
queens (14)
mean 2092 14.2 797 59.2 2476 1032.2 953 2025.2
best AC 150 9.2 149 43.0 149 499.1 149 3189.2
best maxRPC 7886 10.8 2719 11.5 9425 910.5 3341 367.9
good rRPC 7886 10.8 2719 11.5 9425 910.5 3341 367.9
#TO 0 0 1
winner 4 0 0 0



Restricted Path Consistency Revisited 427

requires further investigation is that in some cases the node visits of rPRC are
fewer than RPC and and/or maxRPC despite the weaker pruning. This usually
occurs on soluble instances and suggests that the interaction with the dom/wdeg
heuristic can guide search to solutions faster.

Finally, the classes not shown in Table 1 mostly include instances that are
either very easy or very hard (i.e. all algorithms time out). Specifically, instances
in composed and hanoi are all trivial, and the ones in black hole and job shop are
either trivial or very hard. Instances in ehi typically take a few seconds for AC
and under a second for the other three algorithms. Instances in haystacks are
very hard except for a few where AC is clearly outperformed by the other three
algorithms. For example, in haystacks-04 AC takes 8 seconds and the other three
take 0.2 seconds. Instances in pigeons are either trivial or very hard except for
a few instances where rRPC is the best algorithm followed by AC. For example
on pigeons-12 AC and rRPC take 709 and 550 seconds respectively, while RPC
and maxRPC time out. Finally, driver includes only 7 instances. Among them,
3 are trivial, rRPC is the best algorithm on 3, and AC on 1.

5 Conclusion

RPC was recognized as a promising alternative to AC but has been neglected for
the past 15 years or so. In this paper we have revisited RPC by proposing RPC3,
a new algorithm that utilizes ideas, such as residues, that have become standard
in recent years when implementing AC or maxRPC algorithms. Using RPC3 and
a restricted variant we performed the first wide experimental study of RPC when
used inside search. Perhaps surprisingly, results clearly demostrate that rRPC3
is by far more efficient than state-of-the-art AC and maxRPC algorithms when
applied during search. This challenges the common perception that MAC is the
best general purpose solver for binary CSPs.

References

1. Balafoutis, T., Paparrizou, A., Stergiou, K., Walsh, T.: New algorithms for max
restricted path consistency. Constraints 16(4), 372–406 (2011)

2. Balafrej, A., Bessiere, C., Bouyakh, E., Trombettoni, G.: Adaptive singleton-based
consistencies. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, pp. 2601–2607 (2014)

3. Barták, R., Erben, R.: A new algorithm for singleton arc consistency. In:
Proceedings of the Seventeenth International Florida Artificial Intelligence,
pp. 257–262 (2004)

4. Berlandier, P.: Improving domain filtering using restricted path consistency. In:
Proceedings of IEEE CAIA 1995, pp. 32–37 (1995)

5. Bessiere, C., Cardon, S., Debruyne, R., Lecoutre, C.: Efficient Algorithms for Sin-
gleton Arc Consistency. Constraints 16, 25–53 (2011)

6. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: Proceedings of ECAI 2004, Valencia, Spain (2004)



428 K. Stergiou

7. Debruyne, R., Bessière, C.: From restricted path consistency to max-restricted
path consistency. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 312–326.
Springer, Heidelberg (1997)

8. Debruyne, R., Bessière, C.: Domain Filtering Consistencies. JAIR 14, 205–230
(2001)

9. Grandoni, F., Italiano, G.F.: Improved algorithms for max-restricted path con-
sistency. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 858–862. Springer,
Heidelberg (2003)

10. Lecoutre, C., Hemery, F.: A study of residual supports in arc cosistency. In:
Proceedings of IJCAI 2007, pp. 125–130 (2007)

11. Lecoutre, C., Prosser, P.: Maintaining singleton arc consistency. In: 3rd Interna-
tional Workshop on Constraint Propagation and Implementation (CPAI 2006),
pp. 47–61 (2006)

12. Likitvivatanavong, C., Zhang, Y., Bowen, J., Shannon, S., Freuder, E.: Arc consis-
tency during search. In: Proceedings of IJCAI 2007, pp. 137–142 (2007)

13. Prosser, P., Stergiou, K., Walsh, T.: Singleton consistencies. In: Dechter, R. (ed.)
CP 2000. LNCS, vol. 1894, pp. 353–368. Springer, Heidelberg (2000)

14. Vion, J., Debruyne, R.: Light algorithms for maintaining max-RPC during search.
In: Proceedings of SARA 2009 (2009)


	Restricted Path Consistency Revisited
	1 Introduction
	2 Background
	3 The RPC3 Algorithm
	4 Experiments
	5 Conclusion
	References


