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Abstract. Constraints have played a central role in cp because they
capture key substructures of a problem and efficiently exploit them to
boost inference. This paper intends to do the same thing for search,
proposing constraint-centered heuristics which guide the exploration of
the search space toward areas that are likely to contain a high number
of solutions. We first propose new search heuristics based on solution
counting information at the level of individual constraints. We then de-
scribe efficient algorithms to evaluate the number of solutions of two
important families of constraints: occurrence counting constraints, such
as alldifferent, and sequencing constraints, such as regular. In both
cases we take advantage of existing filtering algorithms to speed up the
evaluation. Experimental results on benchmark problems show the effec-
tiveness of our approach.

1 Introduction

Constraint Programming (cp) is a powerful technique to solve combinatorial
problems. It applies sophisticated inference to reduce the search space and a
combination of variable and value selection heuristics to guide the exploration
of that search space. Despite many research efforts to design generic and robust
search heuristics and to analyze their behaviour, a successful cp application often
requires customized, problem-centered search heuristics or at the very least some
fine tuning of standard ones, particularly for value selection. In contrast, Mixed
Integer Programming (mip) and sat solvers feature successful default search
heuristics that basically reduce the problem at hand to a modeling issue.

Constraints have played a central role in cp because they capture key sub-
structures of a problem and efficiently exploit them to boost inference. This
paper intends to do the same thing for search, proposing constraint-centered
heuristics. A constraint’s consistency algorithm often maintains data structures
in order to incrementally filter out values that are not supported by the con-
straint’s set of valid tuples. These same data structures may be exploited to
evaluate how many valid tuples there are. Up to now, the only visible effect of
the consistency algorithms has been on the domains, projecting the set of tuples
on each of the variables. Additional information about the number of solutions
of a constraint can help a search heuristic to focus on critical parts of a problem
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or promising solution fragments. Polytime approximate or exact algorithms to
count the number of solutions of several common families of constraints were
given in [12]. For some families, little work was required to provide close or even
exact evaluations of the number of solutions for a constraint, given the existing
consistency algorithm and its data structures.

There is a large body of scientific literature on search heuristics to solve csps.
Most of the popular dynamic variable selection heuristics favour small domain size
and large degree in the constraint graph (mindom, dom/deg,dom/ddeg, dom/wdeg,
Brelaz). For value selection, minimizing the number of conflicts with neighbouring
variables is popular. We mention below the closest related work on search. Kask et
al. [9] approximate the total number of solutions extending a partial solution to a
csp and use it in a value selection heuristic, choosing the value whose assignment
to the current variable gives the largest approximate solution count. An implemen-
tation optimized for binary constraints performs well compared to other popular
strategies. Refalo [14] proposes a generic variable selection heuristic based on the
impact the assignment of a variable has on the reduction of the remaining search
space, computed as the Cartesian product of the domains of the variables. It re-
ports promising results on benchmark problems. The main difference between our
work and these is that we focus on individual constraints whereas they consider the
problemas awhole.As an interesting connection for constraint-centeredheuristics,
Patel and Chinneck [10] investigate several variable selection heuristics guided by
the constraints that are tight at the optimal solution of the relaxation, to find fea-
sible solutions of mips.

Contributions. There are two main contributions in this work. First, we de-
scribe and experiment with new search heuristics based on solution counting
information at the level of individual constraints. Second, we propose efficient
algorithms to evaluate the number of solutions of two important families of con-
straints: occurrence counting constraints (alldifferent) and sequencing con-
straints (regular). With respect to [12], what is proposed for the former is a
considerable improvement and for the latter it details what was only alluded to
before.

Plan of the paper. Section 2 presents some key definitions and describes the
search heuristics we propose. Section 3 gives an algorithm to compute the num-
ber of solutions of regular constraints. Section 4 summarizes the literature on
counting solutions of alldifferent constraints and proposes a related algorithm
more suited to our purpose. Section 5 presents comparative experimental results
supporting our proposal. Finally Section 6 summarizes our work and mentions
some of the arising research issues.

2 Generic Constraint-Centered Heuristic Search
Framework

Whereas most generic dynamic search heuristics in constraint programming rely
on information at the fine-grained level of the individual variable (e.g. its domain
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size and degree), we investigate dynamic search heuristics based on coarser, but
more global, information. Global constraints are successful because they encap-
sulate powerful specialized filtering algorithms but firstly because they bring out
the underlying structure of combinatorial problems. That exposed structure can
also be exploited during search. The heuristics proposed here revolve around
the knowledge of the number of solutions of individual constraints, the intuition
being that a constraint with few solutions corresponds to a critical part of the
problem with respect to satisfiability.

Definition 1 (solution count). Given a constraint γ(x1, . . . , xk) and respec-
tive finite domains Di 1≤i≤k, let #γ(x1, . . . , xk) denote the number of solutions
of constraint γ.

Search heuristics following the fail-first principle (detect failure as early as pos-
sible) and centered on constraints can be guided by a count of the number of
solutions left for each constraint. We might focus the search on the constraint
currently having the smallest number of solutions, recognizing that failure nec-
essarily occurs through a constraint admitting no more solution.

max = 0;1

for each constraint γ(x1, . . . , xk) do2

for each unbound variable xi ∈ {x1, . . . , xk} do3

for each value d ∈ Di do4

if σ(xi, d, γ) > max then5

(x�, d�) = (xi, d);6

max = σ(xi, d, γ);7

return branching decision “x� = d�”;8

Algorithm 1. The Maximum Solution Density (MaxSD) search heuristic

We can go one step further with solution count information and evaluate it
for each variable-value pair in an individual constraint.

Definition 2 (solution density). Given a constraint γ(x1, . . . , xk), respective
finite domains Di 1≤i≤k, a variable xi in the scope of γ, and a value d ∈ Di, we
will call

σ(xi, d, γ) =
#γ(x1, . . . , xi−1, d, xi+1, . . . , xk)

#γ(x1, . . . , xk)

the solution density1 of pair (xi, d) in γ. It measures how often a certain assign-
ment is part of a solution.

We can favour the highest solution density available with the hope that such
a choice generally brings us closer to satisfying the whole csp. Our choice may
combine information from every constraint in the model, be restricted to a single
constraint, or even to a given subset of variables. Algorithms 1 to 3 define the
search heuristics with which we will experiment in Section 5.
1 Also referred to as marginal in some of the literature.
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max = 0;1

choose constraint γ(x1, . . . , xk) which minimizes #γ;2

for each unbound variable xi ∈ {x1, . . . , xk} do3

for each value d ∈ Di do4

if σ(xi, d, γ) > max then5

(x�, d�) = (xi, d);6

max = σ(xi, d, γ);7

return branching decision “x� = d�”;8

Algorithm 2. The Minimum Solution Count, Maximum Solution Density

(MinSC;MaxSD) search heuristic

max = 0;1

Let S = {xi : |Di| > 1 and minimum};2

for each variable xi ∈ S do3

for each constraint γ with xi in its scope do4

for each value d ∈ Di do5

if σ(xi, d, γ) > max then6

(x�, d�) = (xi, d);7

max = σ(xi, d, γ);8

return branching decision “x� = d�”;9

Algorithm 3. The Smallest Domain, Maximum Solution Density (MinDom;MaxSD)

search heuristic

3 Counting for Regular Constraints

The regular(X, Π) constraint [11] holds if the values taken by the sequence of fi-
nite domain variables X = 〈x1, x2, . . . , xn〉 spell out a word belonging to the reg-
ular language defined by the deterministic finite automaton Π = (Q, Σ, δ, q0, F )
where Q is a finite set of states, Σ is an alphabet, δ : Q × Σ → Q is a partial
transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final (or
accepting) states. The filtering algorithm associated to this constraint is based
on the computation of paths in a graph. The automaton is unfolded into a lay-
ered acyclic directed graph G = (V, A) where vertices of a layer correspond to
states of the automaton and arcs represent variable-value pairs. We denote by
v�,q the vertex corresponding to state q in layer �. The first layer only contains
one vertex, v1,q0 ; the last layer only contains vertices corresponding to accepting
states, vn+1,q with q ∈ F . This graph has the property that paths from the
first layer to the last are in one-to-one correspondence with solutions of the con-
straint. The existence of a path through a given arc thus constitutes a support
for the corresponding variable-value pair [11]. Figure 1 gives an example of a
layered directed graph built for one such constraint on five variables.

The time complexity of the filtering algorithm is linear in the size of the
graph (the number of variables times the number of transitions appearing in the
automaton). Essentially, one forward and one backward sweep of the graph are
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sufficient. An incremental version of the algorithm, which updates the graph as
the computation proceeds, has a time complexity that is linear in the size of the
changes to the graph.

3.1 Counting Paths in the Associated Graph

Given the graph built by the filtering algorithm for regular, what is the addi-
tional computational cost of determining its number of solutions? As we already
pointed out, every (complete) path in that graph corresponds to a solution.
Therefore it is sufficient to count the number of such paths. We express this
through a simple recurrence relation, which we can compute by dynamic pro-
gramming. Let #op(�, q) denote the number of paths from v�,q to a vertex in the
last layer. Then we have:

#op(n + 1, q) = 1

#op(�, q) =
∑

(v�,q,v�+1,q′ )∈A

#op(� + 1, q′), 1 ≤ � ≤ n

The total number of paths is given by

#regular(X, Π) = #op(1, q0)

in time linear in the size of the graph even though there may be exponentially
many of them. Therefore this is absorbed in the asymptotic complexity of the
filtering algorithm.

The search heuristics we consider require not only solution counts of con-
straints but solution densities of variable-value pairs as well. In the graph of
regular, such a pair (xi, d) is represented by the arcs between layers i and i+1
corresponding to transitions on value d. The number of solutions in which xi = d
is thus equal to the number of paths going through one of those arcs. Consider
one such arc (vi,q, vi+1,q′ ): the number of paths through it is the product of the
number of outgoing paths from vi+1,q′ and the number of incoming paths to vi,q.
The former is #op(i + 1, q′) and the latter, #ip(i, q), is just as easily computed:

#ip(1, q0) = 1

#ip(� + 1, q′) =
∑

(v�,q,v�+1,q′ )∈A

#ip(�, q), 1 ≤ � ≤ n

where #ip(�, q) denotes the number of paths from v1,q0 to v�,q.
In Figure 1, the left and right labels inside each vertex give the number of

incoming and outgoing paths for that vertex, respectively. For example, the arc
between the vertex labeled “2; 2” in layer L3 and the vertex labeled “5; 2” in
layer L4 has 2 × 2 = 4 paths through it.

Let A(i, d) ⊂ A denote the set of arcs representing variable-value pair (xi, d).
The solution density of pair (xi, d) is thus given by:

σ(xi, d, regular) =

∑
(vi,q ,vi+1,q′ )∈A(i,d) #ip(i, q) · #op(i + 1, q′)

#op(1, q0)
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x1 x2 x3 x4 x5

L2 L3 L4 L5 L6L1

 1;7

 1;6

 1;1

 1;5

 1;5

 1;4

 1;1

 
  1;5

 1;2

 5;2

 3;1

 1;2

 1;2  4;1

 19;1

 1;1

 8;1

 6;1

 2;2

 1;19

Fig. 1. The layered directed graph built for a regular constraint on five variables.
Vertex labels represent the number of incoming and outgoing paths.

Once these quantities are tabulated, the cost of computing the solution density
of a given pair is in the worst case linear in |Q|, the number of states of the
automaton.

3.2 An Incremental Version

Because a constraint’s filtering algorithm is called on frequently, the graph for
regular is not created from scratch every time but updated at every call. Given
that we already maintain data structures to perform incremental filtering for
regular, should we do the same when determining its solution count and solution
densities?

For the purposes of the filtering algorithm, as one or several arcs are removed
between two given layers of the graph as a consequence of a value being deleted
from the domain of a variable, other arcs are considered for removal in the
previous (resp. following) layers only if the out-degree (resp. in-degree) of some
vertices at the endpoints of the removed arcs becomes null. Otherwise no further
updates need to be propagated. Consequently even though the total amount of
work in the worst case is bounded above by the size of the graph, it is often
much less in practice.

In the case of solution counting, the labels that we added at vertices contain
finer-grained information requiring more extensive updates. Removing an arc
will change the labels of its endpoints but also those of every vertex reachable
downstream and of every vertex upstream which can reach that arc. Here the
total amount of work in practice may be closer to the worst case. Therefore
maintaining the additional data structures could prove to be too expensive.

3.3 A Lazy Evaluation Version

We may not be interested in the value of #op() and #ip() for every combina-
tion of arguments — for example in some search heuristics we may only want
the solution densities for a particular variable. One way to avoid useless work
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is to lazily evaluate the #op()/#ip() values as we require them. Memory func-
tions combine the goal-oriented, top-down approach of recursive calls with the
compute-once ability of dynamic programming. The request for a solution den-
sity triggers the computation of the required #op()/#ip() values. If that value
has been computed before, it is simply looked up in a table. Otherwise, it is
computed recursively and tabulated before it is returned to avoid recomputing
it. In some cases only a small fraction of the vertex labels are actually computed,
especially if we do not require the solution count of the constraint: if we only
compare variable-value pairs within a constraint, solution densities can be re-
placed by the number of solutions in which each pair participates, thus avoiding
the computation of #op(1, q0).

On the Nonogram problem introduced in Section 5, the lazy evaluation version
was slightly faster than the version computing from scratch and up to five times
faster than the version maintaining the data structures. Consequently we used
the lazy evaluation version in our experiments.

4 Counting for Alldifferent Constraints

The alldifferent constraint restricts a set of variables to be pairwise
different [15].

Definition 3 (Value Graph). Given a set of variables X = {x1, . . . , xn} with
respective domains D1, . . . , Dn, we define the value graph as a bipartite graph
G = (X ∪ DX , E) where DX =

⋃
i=1,...,n Di and E = {{xi, d} | d ∈ Di}.

There exists a bijection between a maximum matching of size |X | on the value
graph and a solution of the related alldifferent constraint. Finding the num-
ber of solutions is then equivalent to counting the number of maximum matchings
on the value graph.
Maximum matching counting is also equivalent to the problem of computing the
permanent of a (0-1) matrix. Given a bipartite graph
G = (V1 ∪ V2, E), with |V1| = |V2| = n, the related n × n adjacency matrix
A has element ai,j equal to 1 if and only if vertex i is connected to vertex j. The
permanent of a n × n matrix A is formally defined as:

per(A) =
∑

σ∈Sn

∏

i

ai,σ(i) (1)

where Sn denotes the symmetric group, i.e. the set of n! permutations of [n].
Given a specific permutation, the product is equal to 1 if and only if all the
elements are equal to 1 i.e. the permutation is a valid maximum matching in the
related bipartite graph. Hence, the sum over all the permutations gives us the
total number of maximum matchings. In the following, we will freely use both
matrix and graph representations.
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4.1 Computing the Permanent

Permanent computation has been studied for the last two centuries and it is
still a challenging problem to address. Even though the analytic formulation of
the permanent resembles that of the determinant, there has been few advances
on its exact computation. In 1979, Valiant [16] proved that the problem is #P -
complete, even for 0-1 matrices, that is, under reasonable assumptions, it cannot
be computed in polynomial time. The focus then moved to approximating the
permanent. We can identify at least four different approaches for approximat-
ing the permanent: elementary iterative algorithms, reductions to determinants,
iterative balancing, and Markov Chain Monte Carlo methods.

Elementary Iterative Algorithms. Rasmussen proposed in [13] a very simple re-
cursive estimator for the permanent. This method works quite well for dense
matrices but it breaks down when applied to sparse matrices; its time complex-
ity is O(n3ω) recently improved to O(n2ω) by Fürer [3] (here ω is a function
satisfying ω → ∞ as n → ∞). Further details about these approaches will be
given in the next section.

Reduction to Determinant. The determinant reduction technique is based on
the resemblance of the permanent and the determinant. This method randomly
replaces some 1-entry elements of the matrix by uniform random elements {±1}.
It turns out that the determinant of the new matrix is an unbiased estimator of
the permanent of the original matrix. The proposed algorithms either provide
an arbitrarily close approximation in exponential time [2] or an approximation
within an exponential factor in polytime [1].

Iterative Balancing. The work of Linial et al. [8] exploits a lower bound on the
permanent of a doubly stochastic2 n × n matrix B: per(B) ≥ n!/nn. The basic
idea is to use the linearity of permanents w.r.t. multiplication with constants and
transform the original matrix A to an approximated doubly stochastic matrix
B and then exploit the lower bound. The algorithm that they proposed runs in
O(n5 log2 n) and gives an approximation within a factor of en.

Markov Chain Monte Carlo Methods. Markov Chains can be a powerful tool to
generate almost uniform samples. They have been used for the permanent in [6]
but they impose strong restrictions on the minimum vertex degree. A notable
breakthrough was achieved by Jerrum et al. [7]: they proposed the first poly-
nomial approximation algorithm for general matrices with non-negative entries.
Nonetheless this remarkable result has to face its impracticality due to a very
high-computational complexity Õ(n26) improved to Θ(n10 log2 n) later on.

Note that for our purposes we are not only interested in computing the total
number of solutions but we also need that solution densities for each variable-
value pair. Moreover, we need fast algorithms that work on the majority of the
matrices; since the objective is to build a search heuristic based on counting
information, we would prefer a fast algorithm with less precise approximation
2

∑
i ai,j =

∑
j ai,j = 1.
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over a slower algorithm with better approximation guarantees. With that in
mind, Markov Chain-based algorithms do not fit our needs (they are either too
slow or they have a precondition on the minimum vertex degree). Determinant
based algorithms are either exponential in time or give too loose approximations
(within an exponential factor) as well as algorithms based on matrix scaling. The
approach that seems to suit our needs better is elementary iterative algorithms.
It combines a reasonable complexity with a good approximation. Although it
gives poor results for sparse matrices, those cases are likely to appear close
to the leaves of the search tree where an error by the heuristics has a limited
negative impact.

4.2 Rasmussen’s Estimator and Its Extensions

Suppose we want to estimate a function Q (in our case the permanent): a tradi-
tional approach is to design an estimator that outputs a random variable X whose
expected value is equal to Q. The estimator is unbiased if E(X) and E(X2) are
finite. A straightforward application of Chebyshev’s inequality shows that if we
conduct O(E(X2)

E(X)2 ε−2) independent and identically distributed trials and we take
the mean of the outcomes then we have guarantee of ε-approximation. Hence the
performance of a single run of the estimator and the ratio E(X2)

E(X)2 (critical ratio)
determine the efficiency of the algorithm.

In the following, we denote by A(n, p) the class of random (0-1) n×n matrices
in which each element has independent probability p of being 1. We write XA for
the random variable that estimate the permanent of the matrix A; Ai,j denotes
the submatrix obtained from A by removing row i and column j. The pseudo-
code of Rasmussen’s estimator is shown in Algorithm 4; despite its simplicity
compared to other techniques, the estimator is unbiased and shows good exper-
imental behaviour. Rasmussen gave theoretical results for his algorithm applied
to random matrices belonging to the class A(n, p ≥ 1/2). He proved that for
“almost all” matrices of this class, the critical ratio is bounded by O(nω) where
ω is a function satisfying ω → ∞ as n → ∞; the complexity of a single run
of the estimator is O(n2), hence the total complexity is O(n3ω). Here “almost
all” means that the algorithm gives a correct approximation with probability
that goes to 1 as n → ∞. While this result holds for dense matrices, it breaks
down for sparse matrices. Note however that there are still matrices belonging
to A(n, p = 1/2) for which the critical ratio is exponential. Consider for instance
the upper triangular matrix:

U =

⎛

⎜⎜⎜⎝

1 1 . . . 1
1 . . . 1

. . .
...
1

⎞

⎟⎟⎟⎠

For this particular matrix Rasmussen’s estimator has expected value E(XU ) = 1
and E(X2

U ) = n!, hence the approximation is likely to be very poor.
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if n = 0 then1

XA = 12

else3

W = {j : a1,j = 1};4

if W = ∅ then5

XA = 0;6

else7

Choose j u.a.r. from W ;8

Compute XA1,j ;9

XA = |W | · XA1,j ;10

Algorithm 4. Rasmussen’s estimator

Fürer et al. [3] enhanced Rasmussen’s algorithm with some branching strate-
gies in order to pick up more samples in the critical parts of the matrix.
It resembles very closely the exploration of a search tree. Instead of choosing
u.a.r. a single column j from W , Fürer picks up a subset J ⊆ W and it iterates
on each element of J . The number of times it branches is logarithmic in the size
of the matrix, and for a given branching factor he showed that a single run of
the estimator still takes O(n2) time. The advantage of this approach resides in
the theoretical convergence guarantee: the number of required samples is only
O(ω) instead of Rasmussen’s O(nω), thus the overall complexity is O(n2ω).
Both Fürer and Rasmussen estimators allow to approximately compute the to-
tal number of solution of an alldifferent constraint. However if we need to
compute the solution density σ(xi, d, γ) we are forced to recall the estimators on
the submatrix Ai,d. Hence the approximated solution density is:

σ(xi, d, γ) ≈ E(XAi,d
)

E(XA)
(2)

Adding Propagation to the Estimator. A simple way to improve the qual-
ity of the approximation is to add propagation to Rasmussen’s estimator. After
randomly choosing a row i and a column j, we can propagate on the subma-
trix Ai,j in order to remove all the 1-entries (edges) that do not belong to any
maximum matching (the pseudo-code is shown in Algorithm 5). This broadens

if n = 0 then1

XA = 12

else3

Choose i u.a.r. from {1 . . . n};4

W = {j : ai,j = 1};5

Choose j u.a.r. from W ;6

Propagation on Ai,j ;7

Compute XAi,j ;8

XA = |W | · XAi,j ;9

Algorithm 5. Estimator with propagation
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the applicability of the method; in matrices such as the upper triangular matrix,
the propagation can easily lead to the identity matrix for which the estimator
performs exactly. However, as a drawback, the propagation takes an initial pre-
computation of O(

√
nm) plus an additional O(n + m) each time it is called [15]

(here m is the number of ones of the matrix i.e. edges of the graph). A single
run of the estimator requires n propagation calls, hence the time complexity is
O(nm); the overall time complexity is then O(n2mω).

A particularity of the new estimator is that it removes a priori all the 1-entries
that do not lead to a solution. Hence it always samples feasible solutions whereas
Rasmussen’s ends up with infeasible solutions whenever it reaches a case in which
W = ∅. This opens the door also to an alternative evaluation of the solution den-
sities; given the set of solution samples S, we denote by Sxi,d ⊆ S the subset of
samples in which xi = d. The solution densities are approximated as:

σ(xi, d, γ) ≈ |Sxi,d|
|S| (3)

Experimental results showed a much better approximation quality for the com-
putation of the solution densities using samples (3) instead of using submatrix
counting (2). It is worth pointing out that Fürer’s provides several samples in
a single run but highly biased from the decisions taken close to the root of the
search tree; thus it cannot be used to compute solution densities from samples.
Due to the better results obtained using samples, we decide not to apply prop-
agation methods to Fürer’s.

Table 1. Estimators performance

% Removals 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Counting Error
Rasmussen 1.32 1.76 3.66 5.78 7.19 13.80 22.65
Fürer 0.69 1.07 1.76 2.17 2.52 4.09 5.33
CountS 1.44 1.51 2.48 2.30 4.31 3.94 1.23

Average Solution Density Error
Rasmussen 1.13 1.83 3.12 5.12 7.85 13.10 23.10
Fürer 0.58 0.92 1.55 2.49 3.74 6.25 8.06
CountS 0.73 0.76 0.80 1.01 1.33 1.81 2.03

Maximum Solution Density Error
Rasmussen 3.91 6.57 11.60 19.86 30.32 42.53 40.51
Fürer 2.09 3.20 5.75 9.36 15.15 21.18 15.01
CountS 2.64 2.60 2.89 3.90 5.39 6.03 2.61

EstimatorBenchmarks. We compared three estimators: Rasmussen’s, Fürer’s,
and ours (the version based on samples,“CountS”). Due to the very high compu-
tational time required to compute the exact number of solutions, we performed
systematic experiments on alldifferent of size 10, 11 and 12 with varying per-
centage of domain value removals. Table 1 shows the error on the total number
of solutions, the average and the maximum error on the solution densities (all the
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errors are expressed in percentage). The number of samples used is 100 times the
size of the instance. The time taken for counting is slightly higher than one tenth of
a second for our methods compared to one tenth for Fürer’s and a few hundredths
for Rasmussen’s. On the other side, exact counting can take up to thousands of
seconds for very loose instances to a few hundredths of a second. Due to lack of
room, we do not show the tests with a common time limit: the situation is pretty
much the same, with our method showing the best approximations. Note that we
also tested our method with instances of bigger size (up to 30) and even with few
samples (10 times the instance size): the average error remains pretty low (again
on the order of 2-4%) as well as the maximum error. The current implementation
of our approach makes use of Ilog Solver 6.2; we believe that a custom implemen-
tation can gain in performance, avoiding the overhead due to model extraction
and to backtrack information bookkeeping.

5 Experimental Results

We evaluate the proposed constraint-centered search heuristics on two bench-
mark problems modeled with the alldifferent and regular constraints.

Nonogram. A Nonogram (problem 12 of CSPLib) is built on a rectangular n×m
grid and requires filling in some of the squares in the unique feasible way ac-
cording to some clues given on each row and column. As a reward, one gets
a pretty monochromatic picture. Each individual clue indicates how many se-
quences of consecutive filled-in squares there are in the row (column), with their
respective size in order of appearance. Each sequence is separated from the oth-
ers by at least one blank square but we know little about their actual position
in the row (column). Such clues can be modeled with regular constraints (the
actual automata Ar

i ,Ac
j are not difficult to derive but lie outside the scope of

this paper):

regular((xij)1≤j≤m,Ar
i ) 1 ≤ i ≤ n

regular((xij)1≤i≤n,Ac
j) 1 ≤ j ≤ m

xij ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ j ≤ m

These puzzles typically require some amount of search, despite the fact that
domain consistency is maintained on each clue. We experimented with 75 in-
stances3 of sizes ranging from 16 × 16 to 24 × 24.

We compared four search heuristics: random selection for both variable and
value, dom/ddeg variable selection with min conflicts value selection, MaxSD,
and MinSC;MaxSD. A variable selection heuristic based solely on domain size is
not useful for this problem since every unbound variable has an identical domain
of size 2. Note also that for the same reason the min conflicts value selection does
not discriminate at all.

Table 2 reports the average and median number of backtracks and the to-
tal computation time for these heuristics. dom/ddeg is definitely ill-suited for

3 Instances taken from http://www.blindchicken.com/∼ali/games/puzzles.html
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Table 2. Number of backtracks and computation time (in seconds) for 75 Nonogram
instances

heuristic avg btk median btk total time

random var/val 348.0 16 40.7
dom/ddeg ; min conflicts 33640.4 146 4405.2
MaxSD 236.0 2 57.0
MinSC;MaxSD 48.5 3 8.9

such a problem: the statistics reported should even be higher since ten instances
where interrupted after five minutes of computation. A purely random heuristic
performs fairly well here, which can be explained by the binary domains of the
variables: even a random choice of value has a 50% chance of success. MaxSD per-
forms better than the random heuristic in terms of backtracks but not enough to
offset its higher computational cost, yielding a slightly higher computation time.
MinSC;MaxSD is the best of the four, with a significantly lower average number
of backtracks and the best computation time. The difference in performance be-
tween our two heuristics is actually strongly influenced by a few instances for
which MaxSD behaved poorly: if we look at the median number of backtracks,
the two are very close and markedly lower than for the random heuristic.

Quasigroup with Holes. A Latin Square of order n is defined on a n × n grid
whose squares each contain an integer from 1 to n such that each integer appears
exactly once per row and column. The Quasigroup with Holes (QWH) problem
gives a partially-filled Latin Square instance and asks to complete it. It is easily
modeled as:

alldifferent((xij)1≤j≤n) 1 ≤ i ≤ n
alldifferent((xij)1≤i≤n) 1 ≤ j ≤ n
xij = d (i, j, d) ∈ S
xij ∈ {1, 2, . . . , n} 1 ≤ i, j ≤ n
We tested four search heuristics: dom/ddeg variable selection with min conflicts

value selection (one of the most robust heuristics for QWH), MinDom;MaxSD,
MaxSD, and a lazy version of MaxSD. For counting, we used an exact algorithm
for 0.1 seconds and, in case of timeout, we ran CountS for another 0.1 seconds.
Note that the counting is done only if a domain event occurs, that is, the count-
ing algorithm is woken up in a way that is similar to constraint propagation. The
lazy version of maximum solution density recounts at each event when the search
is close to the tree root (whenever less than 20% of variables are assigned), ev-
ery 2 events when the unbound variables are between 20% and 50% and every 3
events thereafter. The four heuristics were tested on 40 balanced QWH instances
with about 41% of holes, randomly generated following [4]. We set the time limit
to 1200 seconds. Table 3 shows the results. The heuristics based on maximum
density were the ones performing better in term of backtracks (two orders of
magnitude of difference), total time and number of instances solved. We also
ran some tests on easier instances outside the phase transition: the dom/ddeg
heuristic did better than our heuristics in terms of running time but not in
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Table 3. Number of backtracks, computation time (in seconds) and the number of
unsolved instances for 40 hard QWH instances of order 30

heuristic avg btk median btk total time unsolved

dom/ddeg ; min conflicts 788887.1 365230.5 19070.7 10
MinDom;MaxSD 17626.3 10001.5 25983.8 19
MaxSD 5634.0 2534.2 11371.3 1
LazyMaxSD 7479.6 2243.7 10258.0 2

terms of number of backtracks. It is worth mentioning that the number of back-
tracks by our heuristics only diminished slightly on these easier instances, so the
heuristics appear fairly robust throughout the range. We also tried some simple
combinations of the solution densities (i.e. for each variable-value pair the sum
of the solution densities of the two alldifferent constraints) but we did not
experience any significant improvement.

6 Conclusion and Open Issues

This paper advocated using constraints not only for inference but also for search.
The key idea is to use solution counting information at the level of individual
constraints. We showed that for some widely-used constraints such information
could be computed efficiently, especially given the support already in place for
domain filtering. We also proposed novel search heuristics based on solution
counting and showed their effectiveness through experiments. From the point of
view of cp systems, we are really introducing a new functionality for constraints
alongside satisfiability testing, consistency and domain filtering, entailment, etc.
As we argued, providing this support does not necessarily require a lot of extra
work. It would, however, benefit from some thinking about how best to offer
access to solution counts and solution densities, from a programming language
design perspective.

We believe there are still several open issues regarding this work. Even though
we have had some success with the search heuristics we proposed, little has
been tried so far about combining the information originating from the different
constraints, which should increase robustness in cases where the constraints give
hugely conflicting information. We saw already that some compromises were
attempted for the alldifferent constraint to cut down its computation time
— a more in-depth investigation is required, including finding out a way to
make it more incremental. Finally there are many more families of constraints
for which efficient solution counting algorithms must be found.
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