
Value Ordering for Finding All Solutions

Barbara M. Smith
Cork Constraint Computation Centre, Ireland.

b.smith@4c.ucc.ie

Paula Sturdy
University of Huddersfield, U.K.
p.sturdy@hud.ac.uk

Abstract

In finding all solutions to a constraint satisfaction
problem, or proving that there are none, with a
search algorithm that backtracks chronologically
and forms k-way branches, the order in which the
values are assigned is immaterial. However, we
show that if the values of a variable are assigned
instead via a sequence of binary choice points, and
the removal of the value just tried from the domain
of the variable is propagated before another value
is selected, the value ordering can affect the search
effort. We show that this depends on the problem
constraints; for some types of constraints, we show
that the savings in search effort can be significant,
given a good value ordering.

1 Introduction
It is well-known that the order in which variables are instanti-
ated can make an enormous difference to the search effort in
solving a constraint satisfaction problem, whether just one so-
lution is required, or all solutions. However, value ordering is
relatively neglected, partly because no cheap general-purpose
value ordering heuristics are known, and partly because it has
been accepted that value ordering is not important if all solu-
tions are required, or there is no solution.

Frost and Dechter [1995] showed that, with backjumping,
the value ordering can have an effect on the search for all so-
lutions, but say: “With backtracking the order in which values
are chosen makes no difference on problems which have no
solution, or when searching for all solutions.” Their argument
is that when a node corresponding to a variable is created in
the search tree, the children correspond to the values of that
variable, and that the subtrees rooted at the children nodes are
explored independently. To find all solutions, or to prove that
there are none, every subtree must be explored, and the order
makes no difference to the overall search.

This argument assumes that the search tree is formed by
k-way branching [Mitchell, 2003], i.e. when a variable with
k values in its domain is selected for instantiation, k branches
are formed. Constraint solvers such as ILOG Solver and
ECLiPSe by default use a search strategy similar to the
MAC algorithm [Sabin and Freuder, 1997], and in particu-
lar use 2-way, or binary, branching. When a variable x is

selected for instantiation, its values are assigned via a se-
quence of binary choices. If the values are assigned in the
order {v1, v2, ..., vk}, the first choice point creates two alter-
natives, x = v1 and x �= v1. The first (the left branch) is
explored; if that branch fails, or if all solutions are required,
the search backtracks to the choice point, and the right branch
is followed instead. Crucially, the constraint x �= v1 is propa-
gated, before a second choice point is created between x = v2

and x �= v2, and so on. (The MAC algorithm also allows the
possibility that on backtracking after trying x = v1, a differ-
ent variable could be assigned next, not just a different value:
that possibility is not considered here.)

With binary branching, the subtrees resulting from succes-
sive assignments to a variable are not explored independently:
propagating the removal of a value from the current variable’s
domain on the right branch can lead to further domain reduc-
tions. This propagation can affect the search when future val-
ues of the variable are considered: indeed, sometimes a future
value can be removed from the domain. Hence, the order in
which the values are assigned can affect the search.

[Smith, 2000] gives an example of the value ordering af-
fecting the search to find all solutions. Here, we present a
more extensive investigation and explain how value order-
ing can affect search effort. We show that, depending on the
problem constraints, the saving in search effort over k-way
branching can be around 50%, given a good value ordering.

2 Search Trees for a Golomb Ruler Problem
First, we examine in detail the effect of the value ordering
when finding all solutions, using a variant of the Golomb ruler
problem (prob006 in CSPLib). A Golomb ruler with m marks
may be defined as a set of m integers 0 = x0 < x1 < ... <
xm−1, such that the m(m − 1)/2 differences xj − xi, 0 ≤
i < j ≤ m − 1, are distinct. The length of the ruler is xm−1,
and the objective is to find a minimum length ruler. Modeling
the problem is discussed in [Smith et al., 2000].

To create a problem with no solution, we set xm−1 =
minl − 1, where minl is the minimum possible length. The
model is chosen so that the search trees (using ILOG Solver’s
default binary branching) for one instance of the problem are
small enough to display, while the value ordering makes a
significant difference to the number of backtracks.

The chosen model is not the quickest way to solve the
problem, since it does expensive constraint propagation in



order to reduce search. Auxiliary variables represent the
m(m − 1)/2 differences between the marks on the ruler, de-
fined by di,j = xj − xi, where i < j; generalized arc con-
sistency (GAC) is enforced on these ternary constraints using
ILOG Solver’s table constraints. We also enforce GAC on the
allDifferent constraint on the difference variables. Since x i is
the sum of i difference variables, its minimum value is set to
be the sum of the first i integers. Similarly, the length xm−1−i

to xm−1 is at least the sum of the first i integers, and this re-
duces the maximum value of xm−1−i. We add the constraint
d0,1 < dm−2,m−1 to break the reflection symmetry.

The search variables are x0, x1, ..., xm−1, assigned in that
order. We compare two value ordering heuristics; choosing
either the smallest value in the domain, or the largest. Choos-
ing the largest value would not be a sensible strategy for find-
ing a minimum length Golomb ruler, since the length is not
known in advance, but here it shows the effect on search of
changing the value ordering.

Figure 1 shows the search trees resulting from proving that
there is no 6-mark Golomb ruler with length 16, with the two
selected value orderings. The difference is striking, given the
conventional view that the value ordering only reorders the
search, and does not affect the overall search effort.

The black circles show where a failure is detected and the
search backtracks. When values are assigned in increasing or-
der, on backtracking to take the right branch the domain of the
variable can sometimes be reduced, or eliminated altogether.
We examine a case in detail. Initial constraint propagation
reduces the domains of the search variables to x0 : 0; x1 :
{1..5}; x2 : {3..10}; x3 : {6..13}; x4: {10..14}; x5 : 16. On
backtracking from x1 = 1, the right branch has x1 ∈ {2..5}.
Constraint propagation reduces this to x1 = 2: there are 14
pairwise differences between the marks in this instance (ex-
cluding d0,5, which has already been assigned) and just 14
possible values for these differences, from 1 to 14. If x1 �= 1,
then x4 ≤ 13, because of the symmetry constraint. Hence,
the value 14 can only be assigned to the difference x5 − x1,
which means that x1 = 2. Enforcing GAC on the allDifferent
constraint on the difference variables makes this inference,
and the branch x1 ∈ {3..5} is not considered further. On the
other hand, when values are assigned in decreasing order, the
domain of x1 on the right branch always contains the value 1,
and the allDifferent constraint is already GAC.

Increasing Decreasing k-way
n order order branching
6 8 18 18
7 71 97 113
8 304 456 525
9 1,748 2,809 3,252
10 6,759 11,395 13,592
11 117,251 206,510 227,815

Table 1: Number of backtracks to prove that there is no Golomb
ruler with n marks of length minl− 1, where minl is the minimum
possible length, using binary branching with increasing or decreas-
ing value ordering, or k-way branching.

Table 1 gives the results for larger instances of the same

x2 ∈{3, 4}

x2 ∈{3, 5}

x2 =10

x1 =1

x1 ∈{1..4}

x1 =2

x2 =10

x2 =3

x2 ∈{3..6}

x2 ∈{3..9}

x2 ∈{3..8}

x2 ∈{3..7}

x2 ∈{3, 5..9}

x2 ∈{3, 5..8}

x2 ∈{3, 5..7}

x2 ∈{3, 5,6}

x2 ∈{3..5}

x2 =9

x2 =8

x2 =7

x2 =6

x2 =5

x2 =9

x2 =8

x2 =7

x2 =6

x2 =5

x1 =3

x1 =4

x1 =5

x1 ∈{1, 2}

x1 ∈{1..3}

x2 =4
x2 =3

x1 =1

x1 =2x2 =3

x2 =4

x2 =5

x2 =6

x2 =7

x2 =3

x2 ∈{4..10}

x2 ∈{5..10}

x2 ∈{6..10}

x2 ∈{7..10}

x2 ∈{5..10}

x1 ∈{3..5}

x1 ∈{2..5}

x2 ∈{8..10}

Figure 1: Search trees formed in proving that there is no Golomb
ruler with 6 marks of length 16, using (top) decreasing value order
and (bottom) increasing value order.

problem, and also shows the effect of using an implementa-
tion of k-way branching in ILOG Solver. k-way branching
nearly doubles the number of backtracks compared with bi-
nary branching using increasing value order. Although de-
creasing order is much worse than increasing order, it still
allows significantly less search than k-way branching for the
larger instances.

The runtimes for k-way branching are usually shorter than
for binary branching with decreasing value ordering, even
when the search tree is larger. For n = 11, k-way branch-
ing takes 1390 sec. (on a 600MHz Celeron PC), compared
to 1410 sec. for binary branching with decreasing value or-
dering. With increasing value ordering, binary branching is
significantly faster (980 sec.).

The explanation given earlier for the immediate failure of
the right branch at the choice point between x1 = 2 and
x1 ∈ {3..5} depends on the global allDifferent constraint.



However, even if the allDifferent constraint is treated as a
clique of binary �= constraints and the constraints d i,j =
xj − xi are not made GAC, choosing the smallest value
in the domain requires fewer backtracks to prove insolubil-
ity than choosing the largest value. The crucial constraints
are x0 < x1 < ... < xm−1 and the symmetry constraint
d0,1 < dm2,m−1, which is equivalent to x1 < 16 − x4 in the
example analysed. With monotonic binary constraints such
as these, the removal of the largest or smallest value in the
domain of one of the variables can reduce the domain of the
other, and removing any other value has no effect [van Hen-
tenryck et al., 1992]. Given a constraint x < y with x as-
signed before y, trying the values of x in increasing order
means that on backtracking, the smallest value in the domain
of x is removed on the right branch and this removal in turn
reduces the domain of y. Since the variables are assigned
in lexicographic order in this case, this explains why assign-
ing the values in increasing order has the largest effect on the
search.

3 Graceful Labeling of a Graph
In this section, we consider further the effect of value ordering
when there are monotonic constraints, and the interaction of
the variable ordering and the value ordering.

The problem is that of determining all graceful labelings of
the graph shown in Figure 2. A labeling f of the nodes of a
graph with q edges is graceful if f assigns each node a unique
label from {0, 1, ..., q} and when each edge xy is labeled with
|f(x) − f(y)|, the edge labels are all different.

A possible CSP model has a variable for each node,
x1, x2, ..., xn, each with domain {0, 1, ..., q} and a variable
for each edge, d1, d2, ..., dq , each with domain {1, 2, ..., q}.
The constraints are: if edge k joins nodes i and j then dk =
|xi − xj |; x1, x2, ..., xn are all different, as are d1, d2, ..., dq .
Since the edge variables must be assigned a permutation of
the values 1 to q, it is worthwhile to enforce GAC on the all-
Different constraint. The allDifferent constraint on the node
variables is looser (9 variables and 17 possible values in the
example of Figure 2) and this is expressed by �= constraints.
The search variables are x1, x2, ..., xn.

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

0

1

8

3

24

5

67

Figure 2: A graph that can be gracefully labeled. The node numbers
correspond to the variables of the CSP.

Symmetrically equivalent solutions can be eliminated by
adding constraints to the model [Petrie and Smith, 2003].
• x0 < 8 (to eliminate the complement symmetry, i.e. the

symmetry that replaces every value v by q − v).

• x1 < x2; x1 < x3; x2 < x4 (to eliminate rotations and
reflections in the cycle consisting of nodes 1, 2, 3, 4).

• x5 < x6; x5 < x7; x6 < x8 (to eliminate symmetry in
the cycle consisting of nodes 5, 6, 7, 8).

• x1 < x5 (to prevent interchanging the two cycles).

What propagation can follow from the removal of a value
from the domain of a variable in this case? The (binary) sym-
metry constraints are monotonic and so a value removal will
propagate as in the Golomb Rulers problem. Given a clique
of �= constraints, as on the node variables, removing a value
from the domain of a variable does not affect the other vari-
ables. However, if there is a global allDifferent constraint,
as on the edge variables, removing a value may affect other
domains; for instance, if there are only as many values as vari-
ables and a value occurs in the domain of only two variables,
removing it from the domain of one means that it must be
assigned to the other. However, the immediate effect on the
search variables (the node variables) is limited, since GAC is
not maintained on the ternary constraints linking the edge and
node variables.

We have tried several different variable orders for this prob-
lem. In each case, if binary branching is used with a value
ordering that chooses a value from the middle of the domain,
it takes the same number of backtracks to find all solutions as
k-way branching. However, if the value chosen is either the
smallest or the largest in the domain, binary branching takes
fewer backtracks than k-way branching. This suggests that
the reduction in search is mainly due to the symmetry con-
straints: any propagation due to the other constraints would
not be restricted to the largest and smallest value in the do-
main.

Table 2 shows the results of solving this problem with dif-
ferent variable and value orders. As well as lexicographic and
reverse lexicographic variable order, we use the orders that
we found to be respectively best and worst, when assigning
the values in increasing order [Sturdy, 2003]. (Incidentally,
the comparison also demonstrates that the value order cannot
compensate for a poor variable order in finding all solutions.)

It is not necessary to use the same order (increasing or de-
creasing) for all variables. The rightmost columns in Table
2 give the results for a heuristic that, for most variable or-
ders, assigns the values of x1 and x5 in increasing order, and
those of the other variables in decreasing order. However, if
x5 comes after x6, x7 and x8 and before x1 in the variable
ordering, it is assigned in decreasing order, and if x1 comes
after x2 to x8 in the variable order, it is assigned in decreas-
ing order. (Hence, when the variables are assigned in reverse
lexicographic order, decreasing order for all variables is best.)
Table 2 shows that the heuristic is at least as good as the bet-
ter of increasing or decreasing order in all cases, and this was
true for the other variable orders that we tried.

The heuristic was derived empirically by trying increasing
or decreasing order for each variable, with a range of variable
orders. We found that the effect of changing the value order
for a single variable does not depend on the value order cho-
sen for the other variables, so that the best order, for a given
variable order, can be chosen independently for each variable.
The heuristic can be related to the binary symmetry-breaking
constraints: unless x1 and x5 are late in the variable order, as-
signing their values in ascending order will lead to reducing



Variable order k-way Increasing Decreasing Heuristic
branching order order

bt. sec. bt. sec. bt. sec. bt. sec.
x0, x1, x2, x3, x4, x5, x6, x7, x8 6043 0.21 3126 0.21 3793 0.21 2929 0.21
x8, x7, x6, x5, x4, x3, x2, x1, x0 11963 0.46 10167 0.55 5304 0.37 5304 0.37
x8, x0, x4, x3, x1, x5, x2, x6, x7 3129 0.15 1839 0.14 2374 0.16 1730 0.14
x1, x7, x5, x3, x2, x8, x0, x6, x4 39469 1.57 31338 1.68 15871 1.04 15834 1.04

Table 2: Finding all graceful labelings of the graph in Figure 2, with k-way branching or binary branching with different value orderings.

the domains of other variables on backtracking. The variables
assigned in decreasing order are those that appear mainly on
the right of > constraints; on backtracking, the largest value
in the domain will be removed, and again this will reduce the
domains of other variables.

4 Langford’s Problem

In the previous examples, assigning values in either increas-
ing or decreasing order reduces the search effort consider-
ably, in comparison with k-way branching, because of the
monotonic binary constraints in the problem. In this section,
a problem with no monotonic constraints is discussed.

Langford’s problem (prob024 in CSPLib) can be stated as
follows: “A sequence of n × m integers consists of the in-
tegers 1 to m each appearing n times. There is one integer
between consecutive occurrences of the integer 1, two inte-
gers between consecutive occurrences of the integer 2, and
so on. Find all possible such sequences.”

Modeling this problem as a CSP is discussed in [Hnich et
al., 2004]. A possible model has nm variables, one for each
location in the sequence; its value represents the integer at
this location. Thus, the value i of dj , 1 ≤ j ≤ nm, is an
integer in the interval [1, nm], representing the fact that oc-
currence (i div n)+1 of the integer i mod n occurs at location
j. For example, in the (3,9) instance, i.e. n =3, m = 9,
d1 = 1, d3 = 2, d5 = 3 represent the 1st, 2nd and 3rd oc-
currences of the integer 1 appearing in positions 1, 3 and 5
of the sequence. A dual model of the problem has a variable
xi, 1 ≤ i ≤ nm, for each occurrence of each integer: its
value is the position in the sequence of this occurrence. The
problem can be viewed as a permutation problem: any valid
sequence assigns a permutation of the nm possible values to
the variables d1, d2, ..., dnm. To ensure that any solution is a
permutation of the values, both sets of variables are included
in the model, with channeling constraints between them, i.e.
di = j iff xj = i. We also add constraints to break the sym-
metry: given any solution, another can be found by reversing
the sequence. We assign values to d1, d2, ..., dnm in turn.

A value ordering heuristic for this problem can be devised
by considering how removing a value from the domain of a
variable dj on backtracking will affect other variables. The
removal will also remove a value from the domain of n − 1
other variables; for example, in the (3,9) instance, if d 1 �= 1,
then d3 �= 2 and d5 �= 3. However, the values 2 and 3 are
only assigned as a consequence of assigning the value 1, and
these deletions will not lead to further propagation. The other
possible propagation is from the channeling constraints: as

discussed in [Hnich et al., 2004], if a value appears in the
domain of only one dj variable, it will be assigned to that
variable. Hence, if there is a value that appears in the domains
of the current variable and only one other search variable, it
should be chosen: on backtracking, propagation will assign
the value to the other variable.

In [Smith, 2000], dualsdf ordering was used, which
chooses the value appearing in fewest domains, i.e. corre-
sponding to the dual variable with smallest domain. dualsdf
was shown to give better results than increasing value order,
for finding all solutions. It will always choose a value appear-
ing in the domain of only one other search variable, if there
is one; hence, we can now explain its good performance. Its
anti-heuristic, dualldf, chooses the value corresponding to the
dual variable with largest domain, and will not choose a value
appearing in only two domains unless there is no alternative.
Whereas dualsdf can be expected to give as much search re-
duction as possible in finding all solutions, dualldf will rarely
be able to reduce the domains of other variables on the right
branch and so should be nearly as bad as k-way branching for
this problem. The results in Table 3 confirm this.

Instance dualsdf dualldf k-way branching
(9,3) 182 208 210
(10,3) 562 619 631
(11,3) 2381 2697 2736

Table 3: Number of backtracks to find all solutions to three instances
of Langford’s problem, using binary branching with different value
orders, or k-way branching.

Hence, dualsdf reduces the search effort to find all solu-
tions compared with k-way branching, and its good perfor-
mance can be explained in relation to to the problem con-
straints. However, the reduction in search is much less than
in the previous examples, and does not make binary branch-
ing cost-effective in terms of run-time.

5 Symmetry Breaking During Search
We have shown that the effect of the value order on the search
for all solutions depends on propagating the removal of the
value just tried, on the right branch at binary choice points. In
Symmetry Breaking During Search [Gent and Smith, 2000],
constraints to avoid assignments symmetric to those already
considered are added dynamically during search, on the right
branch. These additional constraints can reinforce the effect
of the value order on search. We demonstrate this in the n-



queens problem, whose symmetries are described in [Gent
and Smith, 2000].

The basic program (from the ILOG Solver User Manual)
has a variable xi, i = 1, 2, ..., n for each row of the board,
representing the queen on that row, with a value for each col-
umn. There are three allDifferent constraints, representing
that the queens are on different columns and on different di-
agonals in each of the two possible directions. SBDS requires
a specification of the effect of each symmetry on the assign-
ment of a value to a variable. For instance, in the n-queens
problem, the reflection in the top-left to bottom-right diagonal
(symmetry d1) transforms the assignment xi = j to xj = i.
The first assignments made are x1 = 1 and x3 = 2 (the
variable ordering heuristic chooses the variable with smallest
domain, using the smallest value as a tie-breaker). On back-
tracking to take the alternative choice x3 �= 2, d1 is the only
symmetry remaining, given the assignment x1 = 1. SBDS
adds the symmetric equivalent of x3 �= 2, i.e. x2 �= 3, to the
right branch. Both constraints, i.e. x3 �= 2 and x2 �= 3, are
propagated before choosing another value.

When using SBDS to eliminate the symmetry in the n-
queens problem, we compare four value ordering heuristics.
First, we select values in increasing order, as a basis for com-
parison. Second, we use a heuristic which seems likely to
give most scope for the SBDS constraints to prune the do-
mains of future variables. It is not obvious how best to do
this, but the value that attacks the most unattacked squares
will free these squares on backtracking: it seems plausible
that this will increase the likelihood that the SBDS constraints
remove one. The opposite heuristic, choosing the value that
attacks fewest unattacked squares, is similar to the promise
heuristic introduced by Geelen [1992]; hence, we call these
two heuristics anti-promise and promise respectively. Finally,
we use dualsdf, as in Langford’s problem, taking into account
that x1, ..., xn must be assigned a permutation of the values
1 to n; in a permutation problem, a global allDifferent con-
straint does at least as much domain pruning as channeling
constraints would do, when a value is removed from the do-
main of one of the variables [Hnich et al., 2004].

We first compare the four heuristics if the symmetry is not
eliminated: the results are given in Table 4. The effect of
the value ordering then depends on how the allDifferent con-
straints are treated. If they are treated as cliques of binary
�= constraints, the value ordering can have no effect on the
search effort. Table 4 gives the results for k-way branching
only, since the four binary branching heuristics give the same
number of backtracks, though a marginally longer runtime.

On the other hand, if the allDifferent constraints are treated
as global constraints, dualsdf requires less search than k-way
branching, and least search of the binary branching heuris-
tics. However, the reduction in search, in comparison with
k-way branching, is not great. Overall, if the symmetry is
not eliminated, k-way branching and �= constraints give the
fastest runtime. Maintaining GAC on the allDifferent con-
straints is time-consuming, especially when GAC has to be
re-established after each individual value for a variable has
been tried, as in binary branching.

Table 5 compares the four heuristics when the symmetry
in the problem is eliminated using SBDS. We cannot com-

�= constraints GAC on allDifferent constraints
k-way k-way

branching dualsdf branching
n bt. sec. bt. sec. bt. sec.
9 1111 0.04 854 0.03 858 0.03
10 5072 0.11 3831 0.14 3869 0.12
11 22124 0.41 16308 0.63 16478 0.54
12 103956 1.90 74514 3.05 75448 2.62
13 531401 9.79 366488 15.6 371298 13.5
14 2932626 53.9 1964642 84.8 1990925 73.8

Table 4: Number of backtracks (bt.) and runtime (on a 1.7GHz Pen-
tium M PC) to find all solutions to the n-queens problem, if symme-
try is not eliminated.

Increasing anti-
n order promise promise dualsdf
9 144 144 158 148
10 649 617 674 647
11 2433 2375 2375 2384
12 11305 10872 11547 11252
13 52140 51045 52825 51452
14 292869 279844 295522 291825
15 1562199 1521670 1541946 1547019

Table 5: Number of backtracks to find all non-isomorphic solutions
to the n-queens problem, using different value ordering heuristics.

pare the heuristics with k-way branching in this case, be-
cause SBDS depends on binary branching. Anti-promise, in-
tended to allow propagation of the SBDS constraints to re-
duce search, is indeed the best of the four heuristics. Dual-
sdf is often a rather poor second best, suggesting that the
SBDS constraints are more significant than the allDifferent
constraints in allowing domain reductions on the right branch.
The experience with this problem class shows that it is pos-
sible to design value ordering heuristics for finding all solu-
tions by considering the propagation of the constraints added
on the right branch during search, whether the removal of
the value just tried or SBDS constraints. The differences in
search effort are relatively small, however, and the runtimes
for promise, anti-promise and dualsdf are very similar; in-
creasing order is fastest, being simplest to implement.

The original promise heuristic [Geelen, 1992] was de-
signed to find a first solution quickly, and it is worth noting
that our version is much better than anti-promise in this re-
spect. For n ≤ 100, promise can usually find a first solution in
just a few backtracks, whereas anti-promise becomes increas-
ingly successful at avoiding solutions. For instance, when
n = 100, promise finds a solution in 2 backtracks, whereas
anti-promise takes more than 21 million. However, promise
is slightly worse than anti-promise for finding all solutions.

6 Conclusions
Mitchell [2003] showed that binary branching can do much
less search than k-way branching, due to the possibility that
on backtracking to a choice point, the next assignment tried
need not be another value (if there is one) of the same vari-



able. In practice, this is not provided by default in solvers
such as ECLiPSe and ILOG Solver, although the user can im-
plement such a search strategy, and Sabin and Freuder [1997]
allowed it in their description of the MAC algorithm.

We have shown that even when the search always assigns
another value of the current variable on backtracking, binary
branching offers another potential advantage. Before another
value is assigned, the removal of the value just tried from the
domain of the variable is propagated. This can lead to further
domain reductions, which can in turn mean that a future value
of the current variable is pruned, or that the search when a fu-
ture value is assigned is reduced. As a result, given the same
variable ordering, binary branching does no more search than
k-way branching in finding all solutions, and may do consid-
erably less, depending on the order in which values are tried.

The reduction in search effort is much less than Mitchell
found, since if all the values of the current variable are tried
in turn, the propagation of the removal of the value just tried
will be subsumed by the propagation of the assignment of an-
other value. Nevertheless, we have shown that binary branch-
ing can result in a 50% reduction in backtracks over k-way
branching, with a reduction of around 30% in runtime.

We found the largest search savings in the problems with
monotonic binary constraints, when assigning the values in
increasing or decreasing order. A reasonable value ordering
heuristic in that case seems to be that if a variable is con-
strained to be less than several other variables, and is assigned
before them, its values should be tried in increasing order,
and otherwise in decreasing order. In that way, on backtrack-
ing, removing the value just tried means reducing the range of
the variable, and this propagates to the variables it constrains.
Furthermore, propagating range reductions in monotonic bi-
nary constraints is cheap, so that the additional overhead in
propagating the removal of a value before the assignment of
the next is not large.

In other cases, although it is possible to choose good value
orderings by considering how the problem constraints would
propagate the removal of a value from the domain of a vari-
able, the reduction in search effort is much less, and k-way
branching is faster. The experience with these problems sug-
gests that constraint propagation must be cheap and further
domain reductions must be very likely in order for binary
branching to be worthwhile. For instance, enforcing GAC
on an allDifferent constraint fails on both counts: it is time-
consuming, and removing a value from the domain of a single
variable only occasionally leads to further domain reductions.
As shown in the n-queens problem, when finding all solu-
tions without breaking symmetry, it is better to use k-way
branching than binary branching, if using global allDifferent
constraints, or better still to use k-way branching with �= con-
straints.

Binary branching, with any value ordering, does no more
search than k-way branching in finding all solutions, or prov-
ing that there are no solutions. However, even when binary
branching does less search, k-way branching can be faster.
Propagating the effect of removing the value just tried from
the domain of the current variable can be time-consuming,
and may not give sufficient reduction in search to be worth-
while. Our investigations have been concerned with finding

all solutions; however, when the extra propagation done by
binary branching is not worthwhile for finding all solutions,
it is unlikely to be worthwhile for finding one solution either.
Although binary branching on successive values of the cur-
rent variable is the default search strategy in some constraint
solvers, k-way branching may often be a better choice.

Acknowledgements
We thank Gene Freuder, Deepak Mehta, Barry O’Sullivan
and Nic Wilson for their helpful comments, and Peter van
Beek for providing k-way branching code. This work was
supported in part by the Science Foundation Ireland under
Grant No. 00/PI.1/C075.

References
[Frost and Dechter, 1995] D. Frost and R. Dechter. Look-

ahead value ordering for constraint satisfaction problems.
In Proceedings IJCAI95, pages 572–578, 1995.

[Geelen, 1992] P. A. Geelen. Dual Viewpoint Heuristics for
Binary Constraint Satisfaction Problems. In B. Neumann,
editor, Proceedings ECAI’92, pages 31–35, 1992.

[Gent and Smith, 2000] I. P. Gent and B. M. Smith. Symme-
try Breaking During Search in Constraint Programming.
In W. Horn, editor, Proceedings ECAI’2000, pages 599–
603, 2000.

[Hnich et al., 2004] B. Hnich, B. M. Smith, and T. Walsh.
Dual Models of Permutation and Injection Problems.
JAIR, 21:357–391, 2004.

[Mitchell, 2003] D. G. Mitchell. Resolution and constraint
satisfaction. In F. Rossi, editor, Principles and Practice of
Constraint Programming - CP 2003, LNCS 2833, pages
555–569. Springer, 2003.

[Petrie and Smith, 2003] K. E. Petrie and B. M. Smith. Sym-
metry Breaking in Graceful Graphs. Technical Report
APES-56a-2003, APES Research Group, June 2003.

[Sabin and Freuder, 1997] D. Sabin and E. C. Freuder. Un-
derstanding and Improving the MAC Algorithm. In G.
Smolka, editor, Principles and Practice of Constraint Pro-
gramming - CP97, LNCS 1330, pages 167–181. Springer,
1997.

[Smith et al., 2000] B. M. Smith, K. Stergiou, and T. Walsh.
Using auxiliary variables and implied constraints to model
non-binary problems. In Proceedings AAAI-2000, pages
182–187, 2000.

[Smith, 2000] B. M. Smith. Modelling a Permutation Prob-
lem. Research Report 2000.18, School of Computer Stud-
ies, University of Leeds, June 2000.

[Sturdy, 2003] P. Sturdy. Learning Good Variable Order-
ings. Technical Report APES-64-2003, APES Research
Group, June 2003. Available from http://www.dcs.st-
and.ac.uk/˜apes/apesreports.html.

[van Hentenryck et al., 1992] P. van Hentenryck, Y. Deville,
and C.-M. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, 57:291–321,
1992.


