
ARTIFICIAL INTELLIGENCE 343

Controlling Recursive Inference

David E. Smith, Michael R. Genesereth and
Matthew L. Ginsberg
Knowledge Systems Laboratory, Department of Computer
Science, Stanford University, Stanford, CA 94305-2095,
U.S.A.

Recommended by Eric Sandewall

ABSTRACT

Loosely speaking, recursive inference occurs when an inference procedure generates an infinite
sequence o f similar subgoals. In general, the control o f recursive inference involves demonstrating
that recursive portions o f a search space will not contribute any new answers to the problem beyond a
certain level. We first review a well-known syntactic method for controlling repeating inference
(inference where the conjuncts processed are instances of their ancestors), provide a proof that it is
correct, and discuss the conditions under which the strategy is optimal. We also derive more powerful
pruning theorems for cases involving transitivity axioms and cases involving subsumed subgoals. The
treatment o f repeating inference is followed by consideration of the more difficult problem of
recursive inference that does not repeat. Here we show how knowledge o f the properties o f the
relations involved and knowledge about the contents o f the system's database can be used to prove
that portions of a search space will not contribute any new answers.

I. Introduction

1.1. Motivation

Consider a system for reasoning about circuits based on descriptions of circuit
topology and the functional characteristics of circuit elements. Such a system
might need to know that connection between terminals in a circuit is transitive,

Conn(x, y) A Conn(y, z) ~ Conn(x, z), (1)

where the proposition Conn(x, y) means that the point x is electrically
connected to the point y in the circuit. The problem with such facts is that they
often result in infinite searches. Suppose, for instance, that we want to find all
of the connections to some point A in a circuit. A portion of the backward
AND/OR search tree for this problem is shown in Fig. 1. Applying the

Artificial Intelligence 30 (1986) 343-389
0004-3702/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

344 D.E. SMITH ET AL.

Conn(A, z)

Conn(A, y) Conn(y, z)

Conn(A,y') Conn(y',y) Conn(y,w) Conn(w, z)

Conn(A,y") Conn(y",y') Conn(y,w') Conn(w',w)

FI6. 1. A portion of the backward search space for the goal Conn(A, z).

transitivity rule to the query Conn(A, z) results in the subgoal Conn(A, y) A
Conn(y, z). The transitivity rule can be applied again to both of these
conjuncts yielding the subgoals Conn(A, y ') ^ Conn(y', y) and Conn(y, w) A
Conn(w, z) respectively. Transitivity applies again to each of these four
conjuncts, and so on. For this problem a backward inference procedure would
apply the transitivity rule again, and again, and again until it runs out of
storage, the user runs out of patience or money, or the machine crashes. We
could eliminate the recursion in the connectivity problem simply by discarding
all repeating subgoals, but we might sacrifice important answers in the process.
For example, suppose that the database contains the facts,

Conn(A, B),
Conn(B, C),
Conn(C, D),

and the query is to find all answers to Conn(A, z) as before. A database
lookup on the goal expression yields the solution z - - B . The remaining two
solutions, z = C and z = D both require an application of the transitivity
axiom. But after one application of the transitivity axiom, we have a subgoal
containing the conjunct Conn(A, y), which matches the original goal. This
repeating subgoal is the only possible subgoal for our problem. If it is
eliminated, neither of the remaining two answers will be found.

For this example, if we were to allow recursion only one level deep, all of
the answers could be found. A solution y = B to the subgoal Conn(A, y) is
found using only database lookup. Substituting this binding into the remaining
conjunct gives the subgoal Conn(B, z). The solution z = C is found to the
original goal, Conn(A, z), by database lookup on this subgoal. Next the
transitivity axiom is applied again to this subgoal yielding the subgoal
Conn(B, w) ^ Conn(w, z). Again permiting a single level of recursion, the
solution w = C is found by database lookup on the first clause leaving us with

CONTROLLING RECURSIVE INFERENCE 345

the subgoal Conn(C, z). A database lookup on this subgoal yields the final
answer z = O.

Unfortunately not all recursion can be eliminated this simply. In general, an
arbitrary number of levels of recursion may be required to find all answers to a
problem. For example, consider an axiom of the form

P(x) ^ R(x, y) ~ P(y),

where we want to find all P(z). A portion of the search space for this example
is shown in Fig. 2. Suppose that the database contains the facts

P(1) ,
R(1, 2),
R(2, 3),
R(3, 4),

The answer z = 1 will be found instantly by database lookup. The answer z = 2
requires one level of recursion. The answer z = 3 requires two levels, and so
on. To find the nth answer requires searching n - 1 levels deep in the recursive
space.

P(z)

P(~,) n(~,, z)

Fro. 2. A portion of the backward search space for the goal P(z).

In this paper we develop methods for deciding how deep a problem solver
must go in a recursive space. The amount of the space that must be examined
depends, in general, upon the form of the recursion, as well as on the facts that
are present in the system's database. But before proceeding, we need to
consider some alternatives for dealing with recursion.

1.2. False hopes

It might seem that there are several easy solutions to this problem, such as
using breadth-first search, using selective forward inference, or reformulating

346 D.E. SMITH ET AL.

the troublesome axioms to make the problem go away. In fact, as we will
demonstrate in this section, none of these measures work very well.

1.2.1. Breadth-first search

Suppose we were to use breadth-first search on a space like that in Fig. 1.
Using breadth-first search we are guaranteed to find any answer in the search
space (eventually). Unfortunately this does not help if we are looking for all
answers to a problem. If there is no information about when to stop looking for
answers, the entire infinite space must be explored, and breadth-first search
will never halt. Even if we are only interested in a specific number of answers,
breadth-first search will only halt if the space contains at least that many
answers. For example, if we ask for only a single answer to a query, but it turns
out there are no answers, breadth-first search will not halt. Thus, breadth-first
search alone does not solve the problem of recursive inference.

1.2.2. Selective forward inference

In the connectivity example, suppose that forward inference is selectively
performed on all facts of the form Conn(x, y) using the transitivity rule, and
the transitivity rule is not used for backward inference. The recursion problem
would then be eliminated, since the transitivity rule does not cause problems
for forward inference. Unfortunately, there are several serious difficulties with
this approach. First of all, even the selective use of forward inference can result
in the computation and storage of many irrelevant facts. For the example
above, forward inference would result in computation of the transitive closure
of all connections in the circuit, even though we may only need to know the
connections to a few. This would be unacceptable for circuits with high fan-out
or fan-in, or for connections to common busses, power supplies, or grounds.

To make matters worse, it is not always possible to limit the use of forward
inference to just those rules responsible for recursion. ~ Suppose that, in
addition to the transitivity axiom, there is another axiom P(x, y) ~ Conn(x, y)
in the database, along with the facts Conn(A, B) and P(B, C). If forward
inference is confined to just the transitivity axiom, incompleteness can result.
Since there is only one connectivity fact, no conclusions are drawn using
forward inference on the transitivity axiom. If one were then to ask for all
connections to A, the answer B would be found, but not the answer C. To fix
this incompleteness, the axiom P(x, y) ~ Conn(x, y) must also be subject to
forward inference. More generally, if an axiom is restricted to forward
inference, all axioms that can be used in the proof of any of its premise clauses
must also be subject to forward inference. Subjecting additional axioms to
forward inference further increases the number of potentially irrelevant facts
that must be computed and stored.

1Minker and Nicolas [19] and Reiter [23] have also pointed this out.

CONTROLLING RECURSIVE INFERENCE 347

Another problem with forward inference is that it can also lead to infinite
deductive chains. Consider the rule for computing Fibonacci numbers:

x = Fibonacci(i - 2) A y = Fibonacci(i - 1) A Z = X + y

Fibonacci(i) = z. (2)

When two Fibonacci numbers are given to a forward inference procedure it
would proceed to compute Fibonacci numbers forever. This rule can cause an
infinite loop in either a backward or forward inference engine.

Thus, even the selective use of forward inference is not a good solution to
the problem of recursive inference.

1.2.3. Reformulation

The technique of reformulation is one quite familiar to P~OLO~ programmers. It
involves rewriting the facts available to the inference procedure so that the
search space for the goal is no longer infinite, or so that the inference
procedure will not discover the recursive portion. As an example of what we
mean by reformulation, consider the troublesome transitivity rule (1) for
circuit connections, together with the database

Conn(A, B),
Conn(B, C),
Conn(C, D).

Suppose we introduce a new relation IConn, meaning "immediately connect-
ed". The database and transitivity rule can then be replaced by the facts

IConn(A, B),
IConn(B, C),
IConn(C, D),

and the two rules

IConn(x, y) f f Conn(x, y),
IConn(x, y) A Conn(y, z) ~ Conn(x, z).

For this example the answer z = B can be found using the first rule. The
reformulated transitivity rule can also be applied, yielding the conjunctive
subgoal IConn(A, y) ^ Conn(y, z). By database lookup, the solution y = B
can be found to the first clause. Substituting this binding into the remaining
conjunct leaves the subgoal Conn(B, z). The solution z = C can be found using
the first rule. The reformed transitivity rule can also be applied again yielding

348 D.E. SMITH ET AL.

the subgoal IConn(B, y ') ^ Conn(y', z), and so on. The search space for this
problem is shown in Fig. 3. With this reformulation, we have eliminated the
recursion on all left-hand branches of the tree. As a result, this reformulation
does not lead to an infinite search, so long as the IConn conjunct is solved
before the Conn conjunct.

There are several serious problems with reformulating information in this
way. First of all, reformulations generally only work well for a few of the
possible forms that a query might take. For example, the above reformulation
works well for the query Conn(A, z) but it does not work well for the query
Conn(x, D). On applying the reformulated version, we would get the subgoal
IConn(x, y) ^ Conn(y, D). If the IConn conjunct is expanded first we end up
searching through all of the immediate connections in the circuit, a horribly
inefficient process in a large circuit. Alternatively, if the Conn conjunct is
expanded first, we again end up with an infinitely repeating search space. The
dual reformulation,

IConn(x, y) ~ Conn(x, y),
IConn(y, z) ^ Conn(x, y) ~ Conn(x, z),

works well for the query Conn(x, D), but performs miserably for the query
Conn(A, z). Neither of these reformulations is reasonable if both kinds of
queries are expected, as might be the case for an asymmetric relation. In
general, reformulations only work effectively for some subset of the possible
queries covered by the original domain knowledge.

A second problem with reformulations is that they are often fragile. For the
example above, adding the fact IConn(B, A) to the database would again lead
to a loop. As before, the subgoal Conn(B, z) can be generated from the goal
Conn(A, z), but using the new fact, the subgoal Conn(A, z) can be generated
from the subgoal Conn(B, z) . 2

Conn(A, z)

IConn(A,z) IConn(A,~) Conn(~,z)

IConn(y,z) IConn(y,y') Conn(y',z)

FiG. 3. Reformulated search space for the goal Conn(A, z).

2We are indebted to an anonymous reviewer for this observation.

CONTROLLING RECURSIVE INFERENCE 349

A third problem with reformulation is that it can be an arbitrarily difficult
programming task. Suppose that, in addition to the transitivity rule for
connections, we also have the symmetry rule

Conn(x, y) ~ Conn(y, x).

The reformulation now requires four facts, and another intermediate relation,
TConn.

IConn(x, y) f f TConn(x, y),
IConn(x, y) n TConn(y, z) ~ TConn(x, z),
TConn(x, y) f f Conn(x, y),
TConn(x, y) ~ Conn(y, x).

It is not so obvious that this reformulation covers all of the possible cases.
As an even more problematic example, consider the recursive rule that states

that a person will be an albino if both his parents are albinos.

Albino(x) ^ Parents(z)= {x, y} A Albino(y)
Albino(z). (3)

Suppose that the query is to find all albinos:

find all z: Albino(z).

Expanding the Parents conjunct first would result in an unacceptable search
through all parent/child pairs. Alternatively, expanding either of the Albino
conjuncts first would result in an infinite repeating search space. By indulging
in knowledge programming, we could reformulate this rule so that depth-first
backward inference results in an efficient search of the space for this query. As
a first step we introduce the new predicate GivenAlbino(x) to refer to those
individuals given as albinos initially. The first two rules in (4) below state that
any given albino is an albino, and that any nth generation descendent of a
given albino (along albino lines) is also an albino. We still need to define what
it means for an individual to be of albino descent from a given albino. The
third rule states that an individual is of albino descent from a given albino if the
given albino is a parent of the individual, and the other individual's parent is an
albino. The fourth rule simply expresses the transitive closure of this relation-
ship, that an individual is of albino descent from a given albino if that
individual is of albino descent from the given's albino children. The final two
rules are for checking whether a given individual is an albino and are a simple
reformulation of the original albino rule (3).

350 D.E. SMITH ET AL.

GivenAlbino(z) ~ Albino(z);

GivenAlbino(x) A AlbinoDescent(z, x) ~ Albino(z);

Parents(z) = {x, y} A CheckAlbino(y) ~ AlbinoDescent(z, x);

Parents(w) = {x, y} A CheckAlbino(y) A AlbinoDescent(z, w)
AlbinoDescent(z, x); (4)

GivenAlbino(z) ~ CheckAlbino(z);

Parents(z) = {x, y} A CheckAlbino(x) A CheckAlbino(y)
CheckAlbino(z).

Performing depth-first backward inference on this reformulation effectively
results in forward inference from given albinos to their progeny, and backward
inference at each step to verify that the other parent of the progeny is also an
albino. Note that this backward portion of the inference is accomplished using a
simple reformulation of the original albino rule (3). As with the connectivity
example, this reformulation only works efficiently for the query Albino(z),
where one or more albinos are desired. It does not work well for checking
whether a given individual is an albino.

From these examples, we can see that there are several serious disadvantages
to reformulation as a method of controlling recursive inference. First, the
resulting knowledge programs only work effectively for some subset of the
possible queries covered by the original domain knowledge. Second, the
programs may be fragile, in that additional data can reintroduce recursion.
Third, it may be an arbitrarily difficult programming task to do such a
reformulation. Finally, it is more difficult to understand, explain, and modify
reformulations. Reformulation results in an implicit embedding of control
information into the domain information. Instead of having facts about the
domain and facts about control, the two are merged into knowledge-rich
programs for a given interpreter. This has little advantage over building expert
systems in more traditional programming languages like LISP or PASCAL. Many
authors have argued against reformulation for exactly these reasons [3-5, 9,
10, 17].

1.3. Definitions

So far we have relied on the reader's intuitions and the examples to indicate
what we might mean by the term recursive inference. We now give a precise
definition.

Let the term goal set refer to the set of all conjuncts for a conjunctive goal in
a search space. We say that one goal set g' is a descendant of another goal set
g, if there is some sequence of goal sets beginning with g and ending with g',
such that each goal set in the sequence is a subgoal of its predecessor. An

CONTROLLING RECURSIVE INFERENCE 351

inference path in a search space is a sequence of goal sets in the space such that
each goal set in the sequence is an (immediate) subgoal of the preceding goal
set. For example, the sequence

{Conn(A, z)},
{Conn(A, y),Conn(y, z)},
{Conn(A, y ') ,Conn(y' , y),Conn(y, z)}, (5)

is an inference path for the connectivity problem.
We use the notation p lb to refer to the expression formed by substituting the

variable bindings b into the expression p. Using this notation, an expression c'
is said to be an instance of an expression c if there is a substitution (a set of
variable bindings) b for the variables in c such that c' = Clb.

Definition 1.1. An inference path is recursive if there is an infinite subsequence
(gl, • • •, gi) of the goal sets in the path and a distinguished clause ci in
each goal set g~ such that,

(1) c i is an instance of Ci_l, and
(2) c~ is in the subset of g~ that are descendants of c~_ 1.

An inference procedure generating any recursive inference path is said to be
involved in recursive inference.

As an example, consider the infinite inference path (5) for the connec-
tivity problem. The conjunct Conn(A, y) in the second goal set is an instance
of the conjunct Conn(A, z) in the first goal set. The descendants of
Conn(A, z) constitute the entire set {Conn(A, y),Conn(y, z)), which contains
Conn(A, y). Likewise, the conjunct Conn(A, y ') in the third goal set is an
instance of the conjunct Conn(A, y) in the second goal set. The descendants of
Conn(A,y) are the subset { C o n n (A , y ') , C o n n (y ' , y) } , which contains
Conn(A, y') . Thus, with gi as the ith goal set in the inference path and c i as
the first conjunct in each goal set, the inference path satisfies the definition for
a recursive path.

The definition of recursive inference given above actually covers a much
broader class of problems than we have considered so far. For example, the
definition includes recursive paths where there are intermediate descendants in
between those descendants with repeating conjuncts. The definition also
includes paths where the repeating conjunct may have its variables bound
before it is actually processed. Consider the simple axiom

y = x + 1 ^ Integer(x) ~ Integer(y) (6)

with the query Integer(2.5). One inference path for this problem is shown in

352 D.E. SMITH ET AL.

Fig. 4. When the Integer conjuncts are expanded, they are each different, since
the variable x is already bound. The subsequence of goals

Integer(2.5),
Integer(1.5),
Integer(0.5),

does not repeat. However, the subsequence

2.5 = x + 1 ^ Integer(x),
1.5 = x + 1 ^ Integer(x),
0 . 5 = x + l A Integer(x),

satisfies our definition for recursive inference. Each member contains the
conjunct Integer(x), which is both an instance and a descendant of the
preceding Integer(x) conjunct.

Although both the integer example and the connectivity example constitute
recursive inference, there is an important difference between the two exam-
ples. Consider the sequence made up of the conjuncts actually processed by the
inference engine at each step. For the connectivity example this sequence
repeats:

Integer(2.5)

2 . 5 = x + 1 AInteger(x)

Integer(1.5)

1 . 5 = x + 1 AInteger(x)

I
Integer(.5)

.5 = x + 1 A Integer(x)

Fm. 4. Inference path for the query Integer(2.5).

CONTROLLING RECURSIVE INFERENCE 353

Conn(A, z),
Corm(A, y),
Conn(A, y ') ,

In other words, the repeating conjuncts Conn(A, ~b) are instances of their
predecessors at the time they are actually reduced to subgoals. We refer to
such recursive inference as repeating inference.

In contrast, the sequence of conjuncts

Integer(2.5),
Integer(1.5),
Integer(0.5),

does not repeat. The argument of Integer(x) is always bound before the
conjunct is actually reduced to subgoals, and each time the argument is bound
to a different constant. 3 We refer to this nonrepeating recursive inference as
divergent inference.

1.4. The approach

Control of recursive inference means eliminating those portions of the search
space that are superfluous or redundant. We say that a goal is superfluous if
there are no facts in the database that will satisfy it or any of its descendants.
For a particular problem we say that a goal g is redundant with another goal g '
if none of its descendants will result in any solutions to the problem not
produced by descendants to the goal g'. The difficulty is to determine which
branches of a search space are indeed superfluous or redundant. If all recursive
inference were unproductive it would be a simple matter to provide effective
control. However, as we illustrated with some of the examples in Section 1.1
there are many instances where a limited amount of recursive inference is
necessary in order to arrive at desired answers. If too much of a recursive space
is discarded, important answers to the problem are lost. Alternatively, if not
enough of the recursive space is discarded, valuable problem solving effort is
wasted.

In general, it is not decidable whether or not a given portion of a recursive
search space is redundant. However, there are special cases where it is possible
to prove redundancy without completely exploring the space. For repeating

3The latter qualification is important. It is still possible for the sequence of goals processed to be
repeating even though all of the arguments are bound. We will show examples of this in Section 3.

354 D.E. SMITH ET AL.

inference, a simple syntactic solution is possible. We can decide when to cut off
inference by keeping track of the answers produced with each additional level
of repetition. For divergent inference the problem is much harder. Here we
must generate automatic proofs that no answers exist in a portion of the search
space. These proofs are similar to proofs of program termination using
well-founded sets. They require information about the properties of the
relations involved, and about the content of the system's database. Finally,
where rule sets are commutative and each set alone cannot produce answers, it
is possible to generate automatic proofs that no novel answers will appear in a
portion of the search space, again by making use of knowledge about the
properties of the relations involved, and about the contents of the system's
database.

1.5. Organization

In the next section we consider the types of facts that make recursive inference
possible, and consider the conditions under which recursive inference will
actually occur. The reader more interested in a solution to the problem of
recursive inference can skip ahead to Sections 3 and 4 and refer back as needed
to Section 2. In Section 3, techniques for the common special case of repeating
inference are reviewed. Although several of the algorithms presented are not
novel, we consider them from the viewpoint of search control, introduced in
Section 1.4. We provide a proof that the methods are correct and consider the
conditions under which the pruning strategies are optimal. In addition, power-
ful methods for dealing with the special cases of transitivity and logical
subsumption are described.

The more general class of nonrepeating recursive inference is considered in
Section 4. Here we show how properties of the relations involved and
knowledge about the contents of the system's database can be used to
demonstrate that a portion of the search space is redundant. Finally, in Section
5 we consider the problem of detecting recursive inference so that control can
be instituted only when necessary. Related work is also discussed.

2. The Conditions for Recursive Inference

2.1. Cyclic and recursive collections

Suppose that a set of facts can be arranged in the form,

FI: L 1 A ~1 ~ L~,
F2: L2 ^ 4)2 :~ L3,

Fn_l: Ln_ 1 A ~)n 1 ~ L'n,
F,,: L,, ^ 4~,, ~ L~+I,

CONTROLLING RECURSIVE INFERENCE 355

where the consequent, L ' i +1 of each fact Fi unifies with the premise L~+ 1 in its
successor F,.+~, and the consequent, L '+ I , of the final rule F, unifies with the
premise L 1 in the first rule F 1. We say that such a set of rules forms a cycle and
constitutes a cyclic collection. 4 For example the set of rules,

P(x) ~ Q(x),
Q(B) ~ P(A)

form a cycle, since Q(x) unifies with Q(B) and P(x) unifies with P(A). A rule
can be involved in more than one cycle, so we also refer to the union of any
two cyclic collections that share rules as a cyclic collection.

If a common set of bindings is possible for all of the unifications in a cycle,
the facts are said to be recursive and constitute a recursive collection. In other
words, a group of facts is recursive if there is some common set of bindings b
for the variables in each of the facts F 1 through Fn such that Li[b = L~ Ib and
L'+l[b = LI[b. (The notation P[b refers to the clause P under the variable
bindings b.) The cyclic collection given above is not a recursive collection
because x cannot be bound to both A and B simultaneously. However , the
cyclic collection

P(x) ~ Q(x),
Q(y) ~ P(y)

is a recursive collection since the binding x : y unifies Q(x) with Q(y) and P(x)
with P(y) . Likewise, the transitivity and symmetry rules, the albino rule, and
the Fibonacci rule given in the previous section are all recursive collections.

As with cyclic collections, it is possible for a single rule to be part of more
than one recursive collection. We therefore refer to the union of any two
recursive collections that share rules as a recursive collection.

2.2. Recursive search spaces

We say that a search space is recursive if it contains a recursive inference path
(Definition 1.1). It should come as no surprise that recursive collections give
rise to recursive search spaces.

Theorem 2.1. For any recursive collection of facts there is at least one goal that
will result in a recursive search space.

Proof. By the definition of a recursive collection, there is some common set of
bindings b for the variables in each of the facts F 1 through F n such that each
Li[b = L~[b and L~+I[b ---- LI[b. From the goal proposition Lllb, using the rules

4This notation and terminology is derived from [19]. There, Minker and Nicolas express these
definitions in terms of facts in conjunctive normal form. For simplicity we have expressed these
definitions in terms of rules.

356 D.E. SMITH ET AL.

R 1 , . . . , R n it is possible to regenerate the subgoal Lit b. This process can be
repeated arbitrarily many times, resulting in an arbitrarily long inference
path. []

As an example, consider the transitivity rule for circuit connections. The
search space in Fig. 1 shows that the goal Conn(A, z) has a recursive space
since each subgoal in the sequence

(Conn(A, z) ,Conn(A, y) ,Conn(A, y ') , C o n n (A , y"), . . .

is an instance of the preceding goal.

Corollary 2.2. I f a goal proposition g results in a recursive search space for a
given recursive collection, any generalization g' of the goal will also result in a
recursive search space.

By a generalization of a proposit ion g, we mean a proposit ion g ' such that
g'lb = g for some set of bindings b. For example, since the query Conn(A, z)
has a recursive search space, the query Conn(x, z) will also have a recursive
search space.

It is natural to ask whether recursive collections are the only kinds of facts
that can lead to infinite search spaces. Infinite search spaces can always occur if
there is an an infinite database, but barring this possibility, the answer appears to
be yes.

Conjecture 2.3. If an infinite path exists in the search space, and the data-
base is finite, there must be a recursive collection of facts involved in the
generation of that path.

In fact, we believe that a stronger s tatement holds.

Co~ecture 2.4. A set of n axioms that is not a recursive collection can
generate an inference path of at most length (2 n - 2)a + 1 where a is the
maximum arity (number of arguments) of all relations in the collection. 5

Lewis [13] has proven a weaker theorem, but we are not aware of any proof
of these conjectures.

2.3. Recursive inference

As we stated in Section 1.3, recursive inference occurs when an inference
procedure follows a recursive path in a recursive search space. By this definiton
a recursive search space is a necessary condition for recursive inference, but it
is not a sufficient condition. Thus, even though a given problem may have a

SWe arrived at the formula (2 n - 2)a + 1 by empirical generalization of a set of examples,
beginning with the cyclic collection, P(y, x) ~ Q(x, y), Q(A, x) ~ P(B, x), and progressing to
higher arity, more rules, and rules involving functional expressions.

CONTROLLING RECURSIVE INFERENCE 357

recursive search space, recursive inference will not necessarily result. The
inference procedure must also happen on to a recursive path. Consider the
reformulated version of the transitivity axiom for circuit connections (Section
1.2.3). Although the search space for the goal Conn(A, z) is still a recursive
space, if the IConn conjunct is always solved first, recursive inference will not
result for this goal and the database of connections given.

In general, whether or not recursive inference occurs depends upon
- t h e characteristics of the recursive collections involved,
- t h e facts available in the database,
- t h e search strategy employed by the inference procedure,
- t h e strategy for evaluating embedded functional expressions (whether they

are evaluated or treated syntactically),
- t h e number of answers desired for the problem, and
- t h e number of answers actually available for the problem.
The first of these criteria, the characteristics of the recursive collection,
influences the shape of the search space and therefore affects the chances of
recursive inference. The facts in the database can also affect the likelihood of
recursive inference, as we saw with the reformulated version of the transitivity
axiom for connections (3). In that example, the presence of the facts
IConn(A, B) and IConn(B, A), cause a loop, but either fact alone will not.

The search strategy also affects whether or not recursive inference will occur.
If nonrecursive subgoals are preferred to recursive subgoals, the chances of
recursive inference will be less. This is because the inference procedure might
be able to find enough answers without ever exploring a recursive portion of
the space. Likewise, if nonrecursive clauses are preferred to recursive clauses
in conjunctive subgoals, the chances of recursive inference will be less. This is
because the nonrecursive clauses may fail, stopping recursion.

Finally, recursive inference becomes more likely as the ratio of number of
solutions sought to number of solutions available increases. If more answers
are required, a larger percentage of the space must be searched, making it
more likely that recursive paths will be explored.

Unfortunately, there is no simple precise characterization of when recursive
inference will or will not occur. Any such characterization would require a
classification of all the different possibilities for each factor, and a multi-
dimensional table to consider all of the different combinations. When a
recursive collection is present, there is always the potential for recursive
inference, although, as we have seen, it can sometimes be avoided by careful
search.

3. Repeating Inference

As indicated in Section 1.3, repeating inference occurs when the sequence
of processed goal conjuncts actually repeats. More precisely, there is some infinite

358 D.E. SMITH ET AL.

subsequence of the goal conjuncts processed, such that each successive con-
junct is an instance of its predecessor. Most of the examples that we considered
in Section 1 were of repeating inference. In particular, the connectivity
example had this characteristic, since a goal expression of the form Conn(A, z)
is generated and expanded repeatedly in the leftmost branch of the A N D / O R
search tree.

In repeating inference, a portion of the A N D / O R search space is repeated
over and over again. To control the search we must determine the level at
which the repetition can be cut off. The search space below the cutoff point
must not hold any new answers.

3.1. Finding a single answer

First consider the special case where only a single answer is needed for a query.
In such cases, if an answer cannot be found without exploring a repeating
portion of the space, no answer can be found at all. As a result, the search
space can be pruned drastically.

Theorem 3.1. I f only a single answer is needed for a goal g, any subgoal g' that
is an instance of g can be discarded (along with the entire subspace descending
from g'). Furthermore, it is optimal to do so, in the sense that the simplest proof
of an answer for g will not involve a repeating subgoal g'.

Some definitions are needed to prove this result. An answer for a goal
expression g consists of a set of variable bindings, i.e. a substitution list, such
that the steps in the search space, when reversed, would constitute a proof of
the goal expression with those bindings substituted in. We refer to that portion
of the search space as a proof tree for that particular answer. We will use the
operator o to refer to the composition of two binding lists, e.g.

(x : z, y : B } o (z : A, w: C} = {x: A, y: B, w: C}.

We say that one proof tree is isomorphic to another if they are identical up to
variable bindings for the goals and subgoals. Note that if t is a proof tree for a
goal glb there is an isomorphic proof tree for the generalization g, construct-
able using the same axioms and rules of inference.

Proof. Let t be a proof tree for the goal g that contains a repeating subgoal g'.
Let g" be the deepest repeating subgoal in the proof tree, and let t" be the
subproof tree for g". Since g" is the deepest repeating subgoal, t" contains no
repeating subgoals. Since g" = glb, t" is also a proof tree for gl~. So there is also
a proof tree t* for g that is isomorphic to t". Since there is a nonrecursive way
of finding an answer to g, g' can be discarded. Furthermore, since t* is
isomorphic to a proper subtree of t, t will never be the simplest proof. Thus,
the simplest proof will never involve repeating subgoals. []

CONTROLLING RECURSIVE INFERENCE 359

Note that in the statement and proof of this theorem we assumed nothing
about the relative cost or simplicity of proofs, except that if one proof is
isomorphic to a subproof of another, it is simpler.

There is a useful corollary of the above theorem.

Corollary 3.2. Repeated ground queries and functional queries can always be
pruned from a search space.

This result holds because functional queries never have more than one
answer.

Finally, note that Theorem 3.1 does not mean that all repetitions can be
discarded, only those for goals that require only one solution. Consider the
hypothetical search space in Fig. 5. The goal g, which has only a single
solution, generates a conjunctive descendant h A]. It might be necessary to
search through several of the answers to the conjunct h in order to find a
solution to the conjunction. Thus, while any reoccurrences of g can be
discarded, reoccurrences of the goal h cannot be.

9

h j

g h

FIG. 5. Search space for a single-solution problem.

3.2. Finding multiple answers

In cases where more than one answer is needed, Theorem 3.1 does not apply.
Such problems arise far more often than might be expected. Even though only
a single answer is needed for a problem, some of its subproblems may be
conjunctive, as in the example above. Solving a conjunction frequently re-
quires generating more than one solution to at least one of the conjuncts.

3.2.1. The theory

If multiple answers are needed, in order to eliminate a portion of the repeating
space we must show that that portion of the space is redundant (i.e. will not
produce any novel answers to the original problem). What makes such a proof
possible is the observation that if a search of one or more levels of repetition
deeper in a recursive space does not produce any new answers, no amount of
additional search will produce any new answers to the original repeated
supergoal.

Some notation is needed in order to state this theorem precisely and prove

360 D.E. SMITH ET AL.

that it is correct . Let S (g) refer to the search space beginning with the goal g
and containing all of the legal descendants of the goal g. A frontier set F of a
search space S(g) is defined to be a set of goals in the space such that no goal
in the frontier set is a descendant of any o ther goal in the frontier set.
Intuitively, a frontier set is some possibly jagged, partial slice th rough a search
space. Let S t (g) refer to that por t ion of the space S(g) not including any of the
frontier goals f E F or their descendants S(f) . In o ther words, the restricted
search space SF(g) is just S (g) with all o f the frontier branches p runed out. Let
A e (g) refer to the set of answers to the goal g present in the restricted space

SF(g).
For a recursive space let Rn(g) refer to the frontier set consisting of the nth

level repeti t ions of the goal g.

Theorem 3.3. Let F be the frontier set Rn(g) consisting of nth-level instances of
the goal g. Let F' be a frontier set consisting of repeating descendants of goals in
the set F. If Ae , (g)= AF(g), all of the frontier subspaces S(r) for rE F are
redundant. 6

Proof. The p roof is by induct ion on the level of repet i t ion in the search space.
First we prove the t heo rem for the case where F ' = R n ÷x(g).

Let g ' be a first-level repeat ing descendant of g and let c be the set of
bindings such that g' = glc. Let r be the subset of Rn(g) that are descendants of
g ' as shown in Fig. 6. Thus r = R . _ l (g ') . Let r ' be the set R1(r) = Rn(g') (all
first-level repeat ing descendants o f r) and let r" be the set R2(r) = Rn÷ l(g') (all
second-level repeat ing descendants of r).

The space Sr,(g') is an instance of a por t ion of the space SF(g). In fact,

Ar,(g') : {a : c ° a E A r (g) } .

Likewise the space Sr,,(g') is an instance of a por t ion of the space SF,(g) SO

Ar,,(g') = {a : coa E Ae,(g)}.

Since AF(g) = Ae,(g), it follows that Ar,(g') = Ar,,(g'), i.e. there are no
addit ional answers to g ' available by going a level deeper .

6This theorem relies on the assumption of complete indexing in the problem solver's database.
In other words, the system must be able to find any fact in the database that matches a goal.
Without complete indexing, answers could be found to an instance of a goal when they could not
be found for the original goal. A weaker version of the theorem still holds if complete indexing of
the problem solver's database is not assumed. In this case, the frontier set F must contain
repetitions instead of instances of the goal g. Essentially, this means that search must be a few
recursion levels deeper until a specialization of the initial goal is found for which F will contain
pure repetitions.

CONTROLLING RECURSIVE INFERENCE 361

F

F ~ r p }

F " r " [

o .qr o

oooooooo,AAAA 0 0 0 0 0 0 0 0

Fro. 6. Abstract repeating search space.

Let bg, be the set of bindings connecting answers to the subgoal g' E R l (g)
to answers to the supergoal g. In other words, if a ' is an answer to g', bg, o a is
an answer to g. Then,

A(g) = Ag,(g) U {a : a = bg, oa' A a ' E A (g ')) .

Now consider the frontier F " = R ,+z(g). Using the two results above,

AF,,(g)=ARI(g)(g)U U {a:a=bg, oa'Aa'EAr,,(g')}
g'~Rl(g)

=Anl(g)(g)U U {a:a=bg, Oa' Aa'EAr,(g')}
g'ERl(g)

= A F (g).

By induction A~(k)(g)= A r (g) for all k. Thus, A (g) = A s (g) , which means
that the repeating descendants in F are redundant.

Finally, for any set F ' satisfying the requirements of the theorem,
SR.+l(g)(g) C_ Sr,(g) , so A F , (g) = A F (g) implies that AR,+l(g)(g) = A F (g).
Since the theorem holds for F ' = R , + l (g), it holds for arbitrary F'. []

Corollary 3.4. The depth o f repetition in a search space can be limited to one
less than the total number o f answers desired for the problem.

Theorem 3.1 is a special case of this corollary.

362 D.E. SMITH ET AL.

Example 3.5. Consider the connectivity axiom for circuits,

Conn(x, y) ^ Conn(y , z) ~ Conn(x, z).

As before, suppose that the problem is to find all points in a circuit connected
to a given point A,

find all z: Conn(A, z).

An initial portion of the backward A N D / O R search space for this problem is
reproduced in Fig. 7. If there are no answers in the system's database for
Conn(A, z), there are no answers at all. In this case the frontier sets F =
{"Corm(A, z)"} and F ' = {"Conn(A, y)"} satisfy the conditions of Theorem
3.3. SF(g) is the null space and SF,(g) is the space consisting of only the goal
g = "Conn(A, z)" . Since there are no answers in the database for the goal g,
AF(g) = AF,(g) = 0. As a result, Theorem 3.3 states that no search is neces-
sary for the problem.

Conn(A, z)

Corm(A, y) Corm(y, z)

Conn(A,y') Conn(y',y) Conn(g,w) Conn(w,z)

Conn(A,y") Conn(y",y') Conn(y,w') Conn(w',w)

FI6. 7. A portion of the backward search space for the goal Conn(A, z).

If, instead, the database contains the fact Conn(A, B), but no facts about
the connections to B, the sets

F = {"Conn(A, y)"} and F ' = {"Conn(A, y ') "}

satisfy the theorem. In this case, Sv(g) and Sv,(g) both contain the single
answer z = B. As a result, only database answers to the initial goal Conn(A, z)
need be located in this case.

Finally, suppose that the database contains the facts Conn(A, B) and
Conn(B, C) but no other connections to A, B, or C. For this case, the cutoff
frontiers contain two terms since the right-hand branch of the conjunction also
contributes a recursive branch for the binding z = B:

CONTROLLING RECURSIVE INFERENCE 363

F = {"Conn(A, y ')" ,"Conn(B, w)"}

F ' = ("Conn(A, y")","Conn(B, w')"}

For both of these frontiers, the answer set will consist of z = B and z = C.

Optimality. Although Theorem 3.3 tells us some conditions under which a
portion of the search space is redundant, it does not tell us that pruning the
redundant portion of the space is necessarily the best thing to do. In some
cases it can be advantageous to search part of the redundant portion of the
space. As an example, consider the connectivity example of the previous
section, where the available facts were Conn(A, B) and Conn(B, C). Suppose
that we also have the (nonrecursive) collection of facts

H(x, y) ~ Conn(x, y),
G(x, y) ~ H(x, y),
F(x, y) ~ G(x, y),
E(x, y) ~ F(x, y),

together with the facts E(A, B) and E(A, C). In this case, we could find all the
answers to the query Conn(A, z) by exploring this nonrecursive path. Theorem
3.3, therefore, allows us to conclude that the goal Conn(A, y) is redundant.
However, the nonrecursive way of finding the answer z = C is longer and
probably more costly than finding the same answer by exploring a level deeper
in the repeating space. As a result, pruning the subgoal Conn(A, z) would not
be the best thing to do in this case.

In the case where all of the solutions are needed to a problem, we can show
that pruning the redundant portion is a good idea.

Theorem 3.6. For recursive problems where all of the solutions are sought (and
the number of solutions is not known), if there exists a frontier F that obeys the
conditions of Theorem 3.3 it is optimal to prune the frontier goals F, in the sense
that the amount of search required to find all answers can only be reduced by this
pruning.

Proof. In order to find all answers in a space, all portions that may contain
novel answers must be searched. Assuming that we do not know which
portions of SF(g) are redundant with S(r) for each r ~ F then, St(g) must be
searched in any case. If SF(g) must be searched, each of the S(r) contain only
redundant answers, so there is no advantage to searching any of them. As a
result, the amount of search necessary to find all answers can only be reduced
by pruning the goals in F. []

As we demonstrated in Example 3.5, this result does not hold for problems
where some specific number of solutions is sought.

364 D.E. SMITH ET AL.

3.2.2. Repetition cutoff algorithms 7

In order to make use of Theorem 3.3 we need a mechanism for finding the
repetition level that satisfies the conditions of the theorem. Finding such a
frontier set requires preserving the answers to any goal with repeating descen-
dants.

Algorithm 3.7.
(1) If a goal ge is an instance of one of its supergoals g, the goal g~ is

suspended until all other alternatives for solving g have been exhausted.
(2) If any new answers are found to the goal g, all repeated instances gi of g

are enabled for another level of expansion. If not, the inference is terminated.

A flowchart of a problem solver incorporating this procedure appears in Fig.
8. One major efficiency improvement can be made on this procedure. The
answers produced by expanding the search space an additional level of
repetition will be a subset of those produced in the first level since each
repeated descendant gi is an instance of the goal g. Therefore , it is not
necessary to reproduce the space at each level. It is sufficient to cache all of the
answers to the supergoal and use them as the answers to any repeated
descendants. Thus, a more efficient procedure would be:

Algorithm 3.8.
(1) Each time a solution is found to a query (or subquery) the solution is

cached.
(2) When a repeated descendant is encountered, only instances found in the

system's database (including cached answers) are used as solutions to the
repeated descendant. No additional inference is performed on this repeated
descendant.

(3) The solution of a repeated descendant is not complete until no addition-
al solutions can be found to the goal that it is a repeat of. In other words, new
answers to a goal must continually be plugged into all repeated descendants
until quiescence occurs and no new answers appear.

As an illustration of this method, consider the search tree shown in Fig. 9.
This tree is a snapshot of the goal stack for the inference engine at some point
in the computation. There are two repetitions of the original goal expression g,
both of which are suspended awaiting answers to g. If the answer a is found to
g, this answer is cached and consequently plugged in as an answer for g' and g".
If these branches generate additional answers a ' and or" to g, then these
answers, in turn, are cached and must be tried in the two repeated descen-
dants. When no new answers to g can be produced the process is complete.

7These algorithms were first discovered by Black [1] and were later rediscovered by McKay and
Shapiro [18] and by the authors.

Ma
rk H

igh
es

t Su
pe

rgo
al

T
Blo

ck
 Re

pe
ate

d Go
al

<
ye

s

Ch
oo

se
 Go

al

Ch
oo

se
 Cl
au

se

~
_

_

ub
s~

um
ed

 ~
/

/
~

no

Ge
'::r a

mt
D:tn

as~
er J

~
!o

~
 .

9/
/~

no

Ge
ne

rate
 Su

bg
oa

l(s)

]

h
l

En
ab

le R
ep

ea
ted

 Su
bg

oa
ls

©

~e

-]

70

©

t"
 7~

70

O

70

< 70

FI
G

.
8.

B

ac
kw

ar
d

in
fe

re
nc

e
pr

oc
ed

ur
e

w
it

h
re

pe
ti

ti
on

 c
on

tr
ol

.

366 D.E. SMITH ET AL.

g

g" / ~

FIG. 9. An idealized AND/OR tree containing repetition.

Example 3.9 (Circuit connections). Consider Example 3.5, where the goal is to
find all points in a circuit connected to a given point A and the database
contains the facts Conn(A, B) and Conn(B, C). First the answer z : B is
found. The transitivity rule is then applied to the initial goal yielding
Conn(A, y) ^ Corm(y, z). Since the clause Corm(A, y) is an instance of the
initial goal, Conn(A, z), no inference is performed on this clause. However,
since there is already a cached solution to the original goal Conn(A, z), the
solution y : B is found for the repeated descendant. Substituting this binding
into the other conjunct yields the subgoal Corm(B, z). The answer z : C is
found in the system's database and is therefore cached as a solution to the
original goal. The descendant Conn(B, z) is then expanded using the transitivi-
ty rule, yielding the conjunction Conn(B, y ') ^ Conn(y', z). As with the first
expansion, the clause Conn(B, y ') is an instance of the subgoal Conn(B, z) so
no inference is performed on the repeated clause Conn(B, y'). As before there

Corm(A, z)

Conn(A, y) Conn(y, z)
y:B/

Conn(B, z)

Conn(B,y') Conn(y',z)
I
ly~:C

Conn(C, z)

Conn(C,y") Conn(y",z)
Fro. 10. Search for the query Conn(A, z).

~y:C

Conn(C, z)

/< ,
Conn(C,y'") Conn(y',z)

CONTROLLING RECURSIVE INFERENCE 367

is already a solution, y ' : C , in the system's database, so this solution is
substituted into the other conjunct yielding the subgoal Conn(C, z). There are
no solutions to this clause in the system's database. The expansion to
Conn(C, y") A Conn(y", z) again contains the repeating subgoal Conn(C, y"),
so no further inference is performed and no answers are found to Conn(C, z).
This leaves no further alternatives for the supergoal Conn(B, z). However, this
subgoal did generate an additional answer z : C to the initial goal Conn(A, z),
so the cached fact must be used in the first repeating descendant Conn(A, y).
Substituting the binding y: C into the other conjunct yields the subgoal
Conn(C, z). As before, this subgoal yields no solutions, and the inference
process terminates.

Example 3.10 (Ancestry). As a second example, consider the problem of
finding all albinos, given the rule

Albino(x) ^ Parents(z)= {x, y} ^ Albino(y)
Albino(z).

Assume that our database contains the facts:

Parents(A B C D) = { A B , CD } ,
Parents(AB) = {A, B},
Parents(CD) = {C, D},

Albino(A),
Albino(B),
Albino(C),
Albino(D).

Beginning with the conjunct Albino(z) the system would first discover the four
answers in its database. It would then apply the recursive rule resulting in the
conjunction Albino(x) ^ Parents(z) = {x, y} ^ Albino(y). The first of these
conjuncts is identical to its parent so the algorithm would halt further inference
on this branch. However, since there are already four cached solutions to the
original problem, these are substituted in as solutions to the repeated descen-
dant. We are left with the conjunction Parents(z) = {x, y} ^ Albino(y) for the
cases of x = A, x = B, x = C, and x = D. For these different bindings, the
parents conjunct yields values for y and z:

x y z

A B A B
B A A B
C D CD
D C CD

368 D.E. SMITH ET AL.

For each of these solutions for y, the final conjunct Albino(y) is verified by
reference to the database. Thus, the answers A B and CD are produced and
cached for the original query. These, in turn, are substituted into the repeated
descendant, again yielding the conjunction Parents(z) = {x, y} A Albino(y) for
the cases x = A B and x = CD. The parents conjunct yields new values for y
and z:

x y z

A B CD A B C D
CD A B A B C D

Again the conjuncts Albino(CD) and Albino(AB) are verified by reference to
the database so the answer A B C D is produced and cached for the original
query.

Finally, substitution of A B C D into the repeated descendant yields no
additional answers (since A B C D has no progeny) and the search terminates. A
sketch of this search space appears in Fig. 11.

Albino(z)

Albino(x) Parents(z) = {x, y} Albino(y)
x = A z = A B y = B

B AB A
C CD D
D CD C
AB ABCD CD
CD ABCD AB

Fro. ll. Search space for the query Albino(z).

Soundness, completeness, and optimality. Since Algorithms 3.7 and 3.8 are
merely finding frontier sets that satisfy Theorem 3.3, they do not adversely
affect the logical soundness or completeness of an inference procedure.
Although use of these algorithms will result in a drastic reduction of the size of
repeating search spaces, their use does not guarantee termination of search.
This is because the restricted search space SR(g) can still be infinite. Theorem
3.3 and the algorithms do not detect or eliminate divergent inference paths. As
a result, an inference procedure making use of the cutoff algorithms might still
encounter a divergent path and might therefore never terminate or find all of
the answers in the space.

However, barring divergent paths, inference procedures based on Al-
gorithms 3.7 and 3.8 are guaranteed to terminate, and any solution in the

CONTROLLING RECURSIVE INFERENCE 369

search space will be found. If the subgoal generator is logically complete, such
an inference procedure will also be logically complete.

The algorithms limit search to one recursion level beyond the minimal level
that satisfies the conditions of Theorem 3.3. In Section 3.2.1 we pointed out
that cutting off redundant recursive paths at the earliest possible level may not
be optimal. This observation therefore extends to the algorithms as well.

3.3. Special types of repetition

The theorems of the previous section are general, but weak. There are special
cases of repeating inference where stronger results are possible. For example,
in Section 3.1 we developed a much stronger result for the case where only a
single answer was needed. There are two other special cases that merit
particular attention, descendant subsumption and transitivity. Both of these
cases rely on goal subsumption for their power. We say that a goal set g
subsumes another goal set g ' if there is a set of bindings b such that glb C g'. If
only a single answer is needed for a problem any goal set g ' subsumed by
another goal set g will be redundant with that descendant [22]. The situation is
somewhat more complicated when more than one answer is needed.

Theorem 3.11. Let h' and h" be arbitrary descendants o f g and let b' and b" be
the binding sets that relate solutions to h' and h" to solutions to g (i.e. h' ~ glb,
and h " ~ glb,,) as illustrated in Fig. 12. Suppose that h' subsumes h" with the
bindings c. I f the bindings for the output variables in b' o c are a subset o f the
bindings b", h" is redundant with h'.

g

h' h"
Fl~. 12. Illustration for the subsumption theorem.

Proof. Let a" be a solution found to h". Then b"o a" is a solution to g that will
be found by exploring h". We must show that the same solution (or a
generalization of it) can be found by exploring h'. Since h'lc C h" we know that
there is some solution a' C_ c o a" that will be found for h ' (assuming complete
database indexing). Thus, b' o a ' will also be a solution to g. But since
a ' _C c o a" and b ' o c C b" we have

b' oa' c_ b' ocoa"C b"oa".

So the solution b 'o a ' found by the descendant h ' is a generalization of the

370 D.E. SMITH ET AL.

solution b"oa" found by the descendant h". h" is therefore redundant with
h'. []

As an example, consider the simple search space of Fig. 13 generated from
the goal Q(x) using the rules

RI: P(x) ~ Q(x),
R2: P(A) ~ Q(A),
R3: P(A) ~ Q(B),
R4: P(A) ~ Q(x).

The subgoal P(x) subsumes the three subgoals P(A) with the bindings c =
{x : A}, but not all of these subgoals are redundant with P(x). The leftmost
P(A) in Fig. 13 is redundant because its binding set {x : A} is identical to c.
However, the second P(A) has the binding set {x : B}, which does not contain
x : A. Therefore , this subgoal is not redundant with the subgoal P(x), unless x
is not an output variable. The third instance of P(A) is als0 not redundant with
the subgoal P(x) (assuming x is an output variable), since it has an empty
binding set. Finally, it is worth noting that the first and second instances of
P(A) are redundant with the third instance of P(A). For these cases c is empty
and therefore, is contained in any binding set.

Q(~)

p(:~) p(a) P(,~) P(A)

Fro. 13. Subsumption example.

3.3.1. Descendant subsumption

We can apply Theorem 3.11 to cases of repeating inference. In this case, h" is a
descendant of h', and the root goal g can be taken to be h'. Thus, the binding
list b' is empty.

Corollary 3.12. Let g' be a repeating descendant of g and let b be the set of
bindings that relate solutions to g' to solutions to g (g' ~ gl~). Let c be the set of
bindings such that g' = glc. If the bindings for the output variables in c are
contained in b, the goal g' is redundant with the goal g. Furthermore, it is
optimal to discard g', since for every proof of an answer to g involving g', there
is a simpler proof of the same answer not involving g'.

CONTROLLING RECURSIVE INFERENCE 371

p(x)

P(A) P(A) P(A)

Fro. 14. Repetition subsumption example.

As an example, consider the simple search space of Fig. 14 generated from
the goal P(x) and the rules

RI: P(A) ff P(A),
R2: P(A) f f P(B),
R3: P(A) f f P(x).

The three subgoals, P(A), are subsumed by the root goal P(x) with the binding
set c = {x: A}. The first subgoal has the binding set b = {x: A}, which is
identical to the binding set c. According to Corollary 3.12 the first subgoal can
therefore be eliminated. This agrees with our intuitions, since any proof of
P(A) could be used directly to get the solution x : A for the original goal P(x).
The second subgoal has the set of bindings b = {x : B}, which does not contain
c. Therefore, it cannot be eliminated if x is an output variable. Intuitively, a
proof of the second subgoal, P(A), would allow us to conclude P(B), and there
may be no direct proof of P(B). Likewise, the third subgoal cannot be
eliminated since its binding set b is empty and therefore does not contain c. In
this case, a proof of P(A) would allow us to conclude VxP(x), and there may
be no direct proof of this statement.

The most common cases of descendant subsumption are when a descendant
is identical to an ancestor in every respect, including variables. For this case,
the set c is empty and the descendant can be eliminated. These situations arise
from if-and-only-if rules expressing definitions and from rules expressing
properties like symmetry, associativity, and commutivity. For example, in a
circuit analysis system we might need the information that electrical connec-
tions are symmetric:

Conn(x, y) ~ Conn(y, x).

Suppose we were to apply this rule to the problem of finding all the points in a
circuit connected to a given point A.

find all z: Conn(A, z).

372 D.E. SMITH ET AL.

Conn(A, z)

Conn(z, A)

Conn(A, z)

Fro. 15. Search path for a symmetry rule.

We first get the subgoal Conn(z, A). Applying the rule to this subgoal gives the
subgoal Conn(A, z), as shown in Fig. 15. But this subgoal is identical to the
original goal, so we can prune the repetition using the subsumption theorem.

3.3.2. Transi t iv i ty

The subsumption theorem also has a direct application to repeating inference
resulting from transitivity rules. Consider the connectivity example used in the
previous sections, with the query Conn(A, z) and a database containing the
facts

Conn(A, B) ,
Conn(B, C),
Conn(C, D).

Figure 16 shows the portion of the space that would be generated for this
problem using Algorithm 3.8. First, the answer z = B is found in the database.
Then, the conjunctive subgoal Conn(A, y) A Conn(y, z) is generated. The first
of these conjuncts is repeated, so we plug in the answer y = B that has already
been found. Continuing on the remaining conjunct Conn(B, z) we find one
answer in the database, z = C, and use the transitivity rule to generate the
subgoal Conn(B, u) A Conn(u, z). The first of these conjuncts is a repeat of its
parent so we again plug in the solution already found, u = C. The remaining
conjunct becomes Conn(C, z). Again, there is a single answer in the database,
z = D. We apply the transitivity rule one more time yielding the conjunction
Conn(C, v) A Conn(v, z). The first of these is again a repeat of its parent and
we plug in the available solution, o = D. The remaining conjunct, Conn(D, z),
yields no solutions, so we begin to unwind. Note that we have already found all
of the solutions to the problem, z = B, C, and D, yet we have not substituted
the newly generated answers into the two remaining repeating descendants.
According to the algorithm, we must substitute u = D into the conjunction
Conn(B, u) A Conn(u, z). Following this, we must substitute the answers y = C
and y = D into the first subgoal Conn(A, y)A Conn(y, z). Each of these

CONTROLLING RECURSIVE INFERENCE 373

Conn(A, y)

y : B ~

u : D

Conn(D, z)

Conn(D, w) Conn(w, z)

Conn(B, z) /

Conn(B,u) Conn(u,z)

u : C /'~

Conn(C, z)

Conn(C, v) Conn(v, z)
I

' v : D
I

Conn(D, z)

Conn(D,w) Conn(w,z)

Conn(A, z)

Conn(y, z)

y : C \
Conn(C, z)

Conn(C, v) Conn(v, z)
I

I v : D
I

Conn(D, z)

Conn(D,w) Conn(w,z)

~ / : D

~Conn(D, z)

Conn(D, w)

FIG. 16. Search space for the query Conn(A, z).

Conn(w, z)

substitutions causes more redundant inference. In effect the procedure pro-
duces each of the answers twice. A similar situation occurs with the dual query
Conn(x, D) (assuming the conjuncts are processed in a reasonable order) and
with the general query, Conn(x, z)

Much of the duplication can be eliminated by recognizing and pruning
subsumed goals. For example, the two instances of the goal Conn(C, z) are
mutually redundant according to the subsumption theorem. Likewise, the four
instances of the goal Conn(D, z) are mutually redundant. If all but one of each
are eliminated the remaining search space does not contain any redundant
portions. Using the subsumption theorem, together with Algorithm 3.8 there-
fore solves the problem. However, the two results can be combined into a
more succinct reduction theorem.

Theorem 3.13. Let g' ^ g" be the conjunctive subgoal produced by applying a
transitivity rule

R(x, y) A R(y, z) ~ g(x, z)

to the goal g, as illustrated in Fig. 17. Let h' and h" be the conjunctive subgoals
produced by the application of the transitivity rule to the conjuncts g' and g"
respectively. Then, h' and h" are mutually redundant. In other words, A(g) =
Ah,(g) = Ah,,(g).

374 D.E. SMITH ET AL.

9

g' 9"

h' h"

FIG. 17. Transitivity search space.

Proof. For all possible g that match R(x, z), the conjunction g' A h" subsumes
h' A g" and vice versa. For example, if

g = "R(x, z)", g ' = "R(x, y)", g"= "R(y, z)",
h ' = "R(x, o) ^ R(v, y)" and h"= "R(y, w) ^ R(w, z)",

then R(x, y) A R(y, w) ^ R(w, z) subsumes R(x, v) ^ R(v, y) ^ R(y, z) and
vice versa for any subset of (x, z} as output variables. The theorem therefore
follows immediately from the subsumption theorem. []

Conn(A, z)

Conn(A, y) Conn(y, z)
I

'y:B
I

Conn(B, z)

Conn(B,u) Conn(u,z)
I

l u : C
I

Conn(C, z)

Conn(C, v) Conn(v, z)
I

I v : /)
I

Conn(D, z)

Conn(D,w) Conn(w,z)

FIG. 18. Left-pruned search space for the goal Conn(A, z).

CONTROLLING RECURSIVE INFERENCE 375

This result is easily implemented. When a transitivity rule is applied to a
goal, the rule should not be applied to one of the two conjunctive subgoals
generated. For the connectivity example the two possibilities are shown in Figs.
18 and 19. If the transitivity rule is not reapplied to the left-hand branches the
result is a simple, but lopsided search space. If it is not reapplied to the
right-hand branch, repeating inference occurs in the left-hand branch, and the
methods of Section 3.2 must be applied. Using Algorithm 3.8, inference on the
left-hand branch would stop after one level. All answers are generated merely
by caching solutions and substituting them into the left branch.

Conn(A, z)

Conn(A, y) Conn(y, z)
y = B z = C

C D
D

Fro. 19. Right-pruned search space for the goal Conn(A, z).

4. Divergent Inference

The most troublesome form of inference loops are those that do not repeat.
Consider again the simple rule describing the integers:

y = x + 1 ^ Integer(x) ~ Integer(y) . (7)

A query such as Integer(2.5) generates an infinite sequence of subgoals like
that shown in Fig. 20. If we were to list the sequence of goal conjuncts reduced
at each step in the inference process, no specific conjunct would appear more
than once in this sequence. There are an infinite number of Integer conjuncts

Integer(2.5)

2.5 = x + 1 Integer(1.5)

1.5 = x + 1 Integer(.5)

.5 = x + 1 Integer(-.5)

Fro. 20. Search space for the query Integer(2.5). The first conjunct has been evaluated for each
subgoal.

376 D.E. SMITH ET AL,

in this sequence, but each one has a different argument. As we indicated in
Section 1.3 we refer to such nonrepeating recursive inference as divergent
inference.

How do we go about cutting off inference in such cases? In general it is only
semidecidable whether or not the space below a given subgoal will contain
novel answers to the problem. Yet for a case like the one above we can supply
a fairly simple argument for pruning the infinite recursion from the search
space. Suppose that the smallest integer in the database is 2. The sequence of
descendants from Integer(2.5) is monotonically decreasing. As a result, once
we have passed Integer(2) all further descendants are superfluous; they will
never be able to match any fact in the database. This argument is not unlike
the sort of arguments used in proving program correctness or program termin-
ation. Here we have used, as an invariant assertion, the fact that every
descendant of Integer(2.5) will be of the form ~b(x) A Integer(x) and that x will
always be less than 2.

This kind of argument can be generalized to arbitrary recursive collections.
What is necessary is to find an invariant assertion for each goal form in the
loop that implies that there will be no answers in the database for the
corresponding goal. In addition we must show that all other rules that apply to
goals in the loop (rules not in the recursive collection) will not produce any
answers.

We can make this kind of argument more precise. Let the relation N o (p)
mean that there are no facts in the database that unify with the proposition p.

Theorem 4.1. Let (R I R m } be the relations occurring in the consequents of
the rules in a cyclic collection (recursive collections included). Let

Fj,k,,, = "thj,k,#(Y, z) A Rj(y) ~ Rk(Z)"

designate the nth rule in the collection having a relation Rj in its premise, and R k
in its consequent. (The ~bj,k, . may contain additional R from the set.) Suppose
that there is a predicate ilk on the domain of each relation R k such that

(1) ilk(Y) ~ N°("Rk(Y)") ,
(2) ilk(z) ^ qbj,k,,(y, Z) ~ ilj(y), and
(3) ilk(z) ~ Superf luous(r) , for all other facts, (r ~ Rk(z)), not in the

recursive collection.
Then, if ilk(A) holds, the goal Rk(A) is superfluous.

Here ilk(Z) is the invariant assertion for those goals with the relation R k. The
first condition states that the invariant assertion assures that no answers will be
found. The second condition states that the invariant assertions are preserved
from a goal to its immediate subgoals, and the third condition assures that
none of the exit points of the loop will lead to any answers.

CONTROLLING RECURSIVE INFERENCE 377

Proof. First we consider just those descendants of Rk(A) that can be generated
using rules in the cyclic collection. We want to show that there are no answers
in the database for any of these descendants. We know that each of these
descendants will contain a clause Rj(y) for some Rj in the set of relations
described in the theorem. If we can show that the invariant assertion tj(Y)
holds for that descendant, condition (1) in the theorem tells us that there will
not be any answers in the database. Thus, we want to show that, for each
descendant g' generated using only the cyclic collection, there is some expres-
sion ~b(y, z) and some relation Rj in the set so that g' takes the form

g' -- "~b(y, z) A Rj(y)" (8)

and that

~b(y, z) ~ ilj(y). (9)

We prove this by induction on descendant depth. For the initial goal Rk(A),
the induction hypothesis (8) holds if we let ff be the empty clause, y = A and let
j = k. Likewise, (9) follows from the given ilk(A).

Now assume (8) and (9) for every lth-level descendant of the goal Rk(A).
Any (1 + 1)st-level descendant will be a subgoal of some/th-level descendant.
There are two possible ways of obtaining subgoals from an/th-level descendant
~(y, z) ^ Rj(y).

(1) Apply some rule to a clause of ~b. In this case the new subgoal will be of
the form ff ' (y, z) ^ Rj(y), which satisfies (8). Furthermore, since

~b'(y, z) f f if(y, z) and ~b(y, z) f f ilj(y)

we get ~b'(y, z)::>flj(y), which proves the second half of our induction
hypothesis (9).

(2) Alternatively, we could apply some rule Fi,j, n to the clause Rj(y). In this
case the new subgoal will be

z) ^ 6,,i,n(x, y) ^ R,(x).

If we let

~b'(x, z) = dPi,j,n(X, y) A ~b(y, Z)

our subgoal becomes ~b'(x, z) A Ri(x), which again satisfies (8). Furthermore,
since

~b(y,z) ~ flj(y) and ili(Y) A ~i,j,n(X, y) ~ ~i(X).

378 D.E. SMITH ET AL.

(condition (2) of the theorem) we get that

~bi,j,,,(x, y) A qJ(y, Z) ~ fi(X) or ~O'(x, Z) ~ fi(x).

Thus the second part of the induction hypothesis also holds.
The hypotheses (8) and (9) therefore hold for all (l + 1)st-level descendants

of Rk(A) and by induction, for all descendants of Rk(A) produced using only
rules in the cyclic collection. It follows from condition (1) in the theorem that
there will not be any answers in the database for any of these descendants.

What remains is to consider those descendants produced using rules not in
the cyclic collection. Every such descendant will involve either applying such a
rule directly to the goal Rk(A), or to one of the goals qJ(y, z) A Rj(y) generated
using the cyclic collection. Again there are two ways of producing subgoals to a
goal of the form ~(y, z) A Rj(y).

(1) Apply some rule to a clause of ~b. As before, such a subgoal will still
satisfy the induction hypothesis and the previous argument holds.

(2) Apply a rule, 3' f f Rj(y), to the clause Rj(y) to yield the subgoal
~b(y, z) ^ 3'. But by the induction hypothesis we know that ~b(y, z) ~ fj(y). By
condition (3) of the theorem we conclude that 7 is superfluous. Thus there are
no answers in the database to any of the descendants of this subgoal.

Therefore, there are no answers in the database for any of the descendants
of Rk(z), which means it is superfluous. []

4.1. Example

To see how this theorem applies, consider the simple integer example intro-
duced earlier. For this example there is only one rule in the recursive
collection. The relation in its consequent R 1 is the Integer relation, and its ~b
will be (~I,I,I(X, y) - - " y = x + 1". If we choose fl(X)= "X ~2" , the condition
ill(Y) A ~bl,l,~(x, y) ~ f l (X) will be satisfied. If the smallest integer in the
database is 2, f l (x) ~ NO(Rl(X)) is true. The final condition, that all rules not
in the recursive collection result in superfluous goals, is true since there are no
other rules. Then, according to the theorem fix(X)~ Superfluous("Rl(x)"), or
x < 2~Superf luous("In teger(x)") . Therefore, we conclude that the subgoal
Integer(1.5) is superfluous.

4.2. Application of the theorem

In general, mechanizing the application of Theorem 4.1 is not a simple matter.
First we choose an applicable recursive collection to apply the theorem to. It
may be that all recursive collections are already known and marked in the
database. In this case finding an applicable recursive collection is a straightfor-
ward lookup operation. If not, we must recursively enumerate the set of
applicable rules looking for recursive collections. This is done by mapping

CONTROLLING RECURSIVE INFERENCE 379

through each rule that applies to a goal and doing the same for each subgoal. If
the same rule is used again in any path, a cycle and possible recursive
collection has been located. If several independent recursive collections are
found we must choose one. In satisfying the final criterion of the theorem (that
all other applicable rules do not result in any answers) the others will be
considered. Note that the theorem may need to be applied recursively to prove
these cases.

Ambiguity in choosing the recursive collection also arises when two or more
recursive collections share a common rule. In this case we have nested or
interwoven loops. According to the definition of a recursive collection, their
union also constitutes a recursive collection. We could therefore choose to
apply the theorem to one of the individual recursive collections, or to the
composite collection. If we choose to apply it only to an individual collection,
in the final step it will be necessary to prove that none of the other interwoven
loops can yield an answer. This is usually more difficult. It is therefore
probably wise to consider the maximal recursive collection first.

The second step is to collect the set of consequent relations in the recursive
collection. This is straightforward.

The third step is to find a set of invariants/3 i that satisfy the characteristics

(1) ilk(Z) ~ No("Rk (Z)") ,

(2) /3k(Z) A ~bj.k.,,(Y, Z) ~ /3j(y).

This task involves generating possible predicates/3i and testing them to see if
they satisfy the above axioms. The most efficient way to do this is to start at
one place in the loop, and proceed around the loop in an orderly fashion,
generating the/3 at each step. Thus we start by generating a possibility /3k for
some k and check to see that it satisfies the first axiom above. Then, choose j
so that there is some rule Fj ,k , n. Now generate /3j and check to see that it
satisfies both the first and second axioms. Then, choose i so that there is some
rule Fi,j, n and so forth. 8

The real problem is in generating good candidates for any individual /3~,
particularly since the desired/3~ might be a conjunction of known relations. We
could start by considering all known predicates on the domain D~ of R i. If none
of these work, we could try all known relations from D~ to a new domain D'
and conjoin these with known predicates on D'. If none of these work, we
consider conjunctions containing three relations, and so on. In general this may
be necessary. However , it seems that /3 often takes the form of an integer
bound,

/3i(x) = "~,(x, l) ^ t ~ N "

SManna and Waldinger [16] discuss more sophisticated ways of generating loop invariants for the
purposes of program verification. Much of this work appears to be applicable here.

380 D.E. SMITH ET AL.

where - is one of < , > or = and N is a fixed integer. In our simple integer
case, 3' was the identity relation, ~ was < and N was 2. However, if we were
dealing with lists of ever increasing length, the Length function might be
appropriate. Similarly, if we were dealing with human ancestry a function such
as Birthdate might be appropriate. The strategy for generating /3 i therefore
involves first considering an empty 3' if the domain of R i is the integers. If this
fails, known relations mapping the domain Di onto the integers are considered.
In effect, this is a way of generating possible ordering relations for domains
where an ordering relation is not already known. Although it may, in theory,
be necessary to consider conjunctions of known relations for 3', if the number
of known relations is large, the space of possibilities quickly becomes in-
tractable.

The final step involves verifying that none of the other relevant facts will
generate any answers to the problem. This may be trivial as in the integer
example, or it can be arbitrarily difficult, if there are other recursive collections
involved. In the latter case, this final step may well involve application of
Theorem 4.1 or any one of the cutoff theorems developed in Section 3.

4.3. Functional embedding: A special case

A common cause of divergent inference are rules that contain functional
expressions on their left-hand sides. By this we mean rules of the form,

e(F(x)) ^ e(x).

For example, the rules,

Jewish(Mother(x)) ~ Jewish(x),
Integer(Successor(x)) ~ Integer(x),

are both of this sort. Such rules will always lead to divergent inference if the
inference engine does not evaluate the embedded functional expressions.
For example, a query such as Jewish(Job) would lead to the subgoals
Jewish(Mother(Job)), Jewish(Mother(Mother(Job))), etc.

For such cases we can often choose/3 to be a lower bound on the level of
functional embedding in a subgoal. If there are no rules relevant to a problem
that can shrink the amount of functional embedding (e.g. Q(x)~ P(f(f(x)))),
it is possible to stop the inference process whenever the level of functional
embedding exceeds the largest embedding available in the database. For
example, in the jewish ancestry problem, if the fact with the largest functional
embedding is Jewish(Mother(Mother(Job))), any subgoal having a functional
embedding deeper than two could be discarded. Notice that this strategy refers
to total functional embedding independent of the actual functions involved.

C O N T R O L L I N G R E C U R S I V E I N F E R E N C E 381

The reason is that there may be rules available such as P(G(x)) ~ P(F(x)) that
can result in new subgoals having different embedded functions.

4.4. Commutivity of inference steps

In the previous section we considered only cases where it was possible to prove
that no answers existed in a portion of the search space. In fact we can
generalize Theorem 4.1 by only insisting that subgoals contribute no novel
answers to the overall problem (as opposed to no answers at all). It is usually
quite difficult to prove that answers generated somewhere in a loop will not
result in novel answers to the overall goal. However, there are special cases
where redundancy can be proven, and in such cases Theorem 4.1 can be
applied. In this section we develop such a special case result for situations
where the inference steps are commutative.

Consider the pair of axioms:

R l: y = x + 1 ^ Integer(x) f f Integer(y),
R2: y = x - 2 ^ Integer(x) ~ Integer(y).

As before, suppose that the problem is to determine whether or not 2.5 is an
integer, and the smallest integer in the database is 2.

When only the first of the above two rules was available, we argued that the
sequence of subgoals from Integer(1.5) was monotonically decreasing, and
therefore the subgoal Integer(1.5) was superfluous. Given both rules, this
argument no longer holds, since Integer(3.5), Integer(5.5),. . . are now descen-
dants of the subgoal Integer(1.5). In fact, imagine that the fact Integer(5.5)
happened to be in the database. Then, the subgoal Integer(1.5) would not be
superfluous, since the problem could be solved by exploring one of its
descendants.

Even though the goal Integer(1.5) may not be superfluous, we can argue that
it is redundant with its supergoal, Integer(2.5). The argument depends on the
observation that any application of the two rules above is commutative. In
other words, if a subgoal can be produced by applying one rule, then the other,
it can also be produced by applying the rules in the reverse order. For
example, the subgoal Integer(3.5) can be produced from the goal Integer(2.5)
by applying R1 followed by R 2. Alternatively, it can be produced by applying
R 2 followed by R 1 .

Using this observation, we separate the descandants of Integer(1.5) into two
groups, those generated by applying only the first of the two rules, and those
that involve at least one application of the second rule. From our earlier
argument we know that the first class will not result in any answers. For the
second class, since the two rules are commutative, the same subgoal can be
produced by first applying the second rule to the goal Integer(2.5). Thus the
subgoal Integer(1.5) is redundant.

382 D.E. SMITH ET AL.

We now make this kind of argument precise. We say that two sets of rules
are commutative if any subgoal produced using a rule from one set followed by
a rule from the other set could also be produced by using the rules in the
opposite order. More formally,

Commutative(s, t) <:> Vq E s, r E t, g, g', h
(Subgoalq(g, g') ^ Subgoalr(g', h)

3g"(Subgoalr(g, g") ^ Subgoalq(g", h))),

where the notation Subgoalr(g , h) means that the goal h can be derived as a
subgoal of the goal g using the rule r.

Theorem 4.2. Suppose that the set of applicable facts for a goal g can be broken
up into two commutative subsets s and t. Suppose that all descendants of g,
generated using only rules in s, produce no novel answers (i.e. if only rules in s
are used, the subgoal g would be redundant). Then, all (immediate) subgoals of
g produced using rules in s are redundant for the entire collection s U t.

Proof. Let g' be an (immediate) subgoal of g generated using a rule from the
set s. Consider an arbitrary descendant, d, of g'. Suppose d is produced using
only the rules in the set s. Then, by the premises of the theorem there are no
answers in the database for d that result in novel answers to the overall
problem. Alternatively, suppose that d is produced using, at least one rule r
from the set t. Since the rules in s and t are commutative, the descendant d will
also be a descendant of the subgoal g" generated by applying r to the goal g.
All descendants of g' (including g' itself) are therefore redundant with
immediate subgoals of g produced using rules in t. Since our choice of g' was
arbitrary all immediate subgoals of g produced using rules in s are
redundant. []

4.5. Example

Using Theorem 4.2, together with the results of previous sections, the two-rule
integer example can now be handled.

There are two immediate subgoals of the goal Integer(2.5). The first,
Integer(1.5), is redundant according to Theorems 4.2 and 4.1. Therefore, it is
possible to eliminate it without sacrificing any answers. The other subgoal,
Integer(4.5), has the two immediate subgoals Integer(3.5) and Integer(6.5). If
the maximum integer in the database is 3, we can again apply Theorems 4.2
and 4.1 to show that Integer(6.5) is redundant. The other subgoal,
Integer(3.5), has the two immediate subgoals Integer(2.5) and Integer(5.5).
The latter is again redundant, by application of Theorems 4.2 and 4.1. The
remaining subgoal Integer(2.5) is identical to the original goal, and so by

CONTROLLING RECURSIVE INFERENCE 383

Integer(2.5)

Integer(1.5) Integer(4.5)
(redundant) ~

Integer(3.5) Integer(6.5)
~ (redundant)

Integer(2.5) Integer(5.5)
(subsumed) (redundant)

Fro. 21. Search space for the query Integer(2.5). The first conjunct has been evaluated and
removed from each subgoal.

Corollary 3.12 it can also be eliminated. The abbreviated subgoal tree is shown
in Fig. 21.

It is interesting to note that if we changed the constant in either of the two
rules to an irrational number, the inference could not be completely stopped.
We could still apply Theorems 4.2 and 4.1 at each level of the search space, but
we would never return to the original goal, and therefore could never apply
Corollary 3.12. In this case, the chain of subgoals would continue to bounce
back and forth between the two extreme integers in the database.

4.6. Remarks

In this section, we first developed a general theorem for terminating divergent
inference, and used it to solve a simple problem involving a single loop. We
also applied the theorem to the special case of functional embedding.

It is generally more difficult to apply the theorem to cases of redundancy, as
we can see from the two-rule integer example above. Powerful special case
methods like Theorem 4.2 seem essential for dealing with such complex cases.
We have investigated only one such result here. Additional work is needed to
build up a library of theorems, like 4.2, that can be used for various difficult
cases of divergent inference.

5. Discussion

5.1. Detecting recursive inference

There is always a price to pay for controlling inference and control of recursive
inference is no exception. For repeating inference the cost is relatively low. It
involves suspension of repeating goals and the caching of answers to goals with
repeating subgoals. However, for divergent inference, control involves explicit
proofs that subspaces are superfluous or redundant. When the alternative is an

384 D.E. SMITH ET AL.

infinite loop, any finite control cost is justifiable. The problem is, we usually
cannot be certain whether or not an infinite loop will result. As we pointed out
in Section 2, even when a problem has an infinite recursive search space,
recursive inference will not necessarily occur. The necessary answers might be
found before an infinite path is explored by the inference engine.

In general, it is undecidable whether or not a given inference procedure will
terminate when searching a recursive space. 9 The best that can be done is to
institute control only when it is considered likely that it will be necessary or
cost-effective. This general issue is discussed further in [27, 28]. For recursive
inference there are several interesting strategies. The simplest is to monitor
search depth or total search space size and institute control when it exceeds
some threshold. A more elaborate, but more costly scheme is to preserve the
subgoal and justification trees and institute control when a given fact has been
used more than some fixed number of times in the derivation of a particular
subgoal. A third alternative is to limit control to those cases where a recursive
collection is involved in the deduction. (Recursive collections could be recog-
nized either when rules are entered into the system, or during the problem
solving process.)

Each of the strategies has certain advantages and disadvantages. In general,
they trade accuracy for expense. For example, the recognition of rule reuse is
usually a more accurate predictor of recursive inference than overall search
depth, but it is also more expensive since it requires keeping the goal and
justification stacks and searching them for each new subgoal. ~° As a result, the
best strategy for a given application will depend upon such things as the
average depth of inference, the frequency of recursive inference, and the
density of recursive collections in the system's database.

There is also no reason why these strategies cannot be combined. For
example, we could use search space depth or complexity to determine whether
or not to initiate the strategy of checking for recursive collections or repeated
rules. Likewise, the strategy of checking for repeated rules could be used as a
filter for the strategy of looking for recursive collections. These combined
strategies allow a less expensive but less accurate detection criteria to serve as a
filter for a more accurate and more costly one. Such combinations may, in fact,
prove to be the most cost-effective for many applications.

5.2. History and related work

5.2.1. Recursive inference

Black [1] and McKay and Shapiro [18] describe algorithms for stopping

9The problem is equivalent to the halting problem for Turing machines since backward inference
over a set of axioms is Turing equivalent.

~°Associating a marker or counter with each rule doesn't work in general. The marker would
have to be path-dependent since we do not wish to count the repeated usage of rules in
independent inference paths.

C O N T R O L L I N G R E C U R S I V E I N F E R E N C E 3 8 5

repeating inference similar to those developed in Section 3.2.2. However, they
do not provide any proof that the pruning strategy is correct and do not
consider the question of optimality. They also do not consider any of the
special cases (like transitivity, subsumed subgoals, or single-answer queries)
where more powerful strategies can be used.

The special case of eliminating identical subgoals appears to have been first
used by Gelernter in his geometry theorem proving program:

Subgoals . . . are r e j ec t ed . . , that appear as higher subgoals on the
[subgoal] graph (or are syntactically symmetric to some higher
subgoal). [7, p. 142]

In Gelernter's application, since all goals and subgoals are geometry theorems
requiring only a yes or no answer, both Theorem 3.1 and Corollary 3.12 apply.
As a result, all repeated subgoals can be eliminated for this particular
application. Loveland and Reddy [14] have shown that the technique of
eliminating identical subgoals can be extended to backward inference mechan-
isms that recognize and make use of "contradiction constructs".

Special cases of repeating inference were also used in building the MYCIN
system [25]. One cause of repeating subgoals in MYCIN was the use of
self-referencing rules. A self-referencing rule states that if there is already
evidence for a condition ~ and some other condition th holds, there is
additional evidence for the condition ~. These rules therefore include the
proposition ~ in both the premise and conclusion. MYClN handles a self-
referencing rule by postponing it until all other rules for concluding ~ have
been used. Then, the self-referencing rule is applied exactly once.

This strategy involves pruning all repeated applications of a rule, a much
stronger pruning strategy than is indicated by Theorem 3.3. This strategy works
for self-referencing rules because they are actually quite different from recur-
sive rules. Consider how we would translate a self-referencing rule into a
precise declarative statement. We might be inclined to write something like

where ~ p means that we have p additional evidence for the conclusion (the
actual calculus for combining certainties is unimportant). If this statement were
true, given some small amount of evidence for ~, and the fact that ~b is true, we
could use this axiom over and over again to derive greater and greater belief in
~.~1 This is not the intended meaning of the self-referencing rule. In a

11It is interesting to note that , Theorem 3.1, as stated, will not hold in the case of uncertain
reasoning. Even if ~b is a ground clause, recursion could continue to increase the belief in $.
However , from an evidential point of view we would never want to allow this, since a rguments
should not be circular.

386 D.E. SMITH ET AL.

self-referencing rule the recursive premise is a screen to prevent exploration of
~b unless there is already some evidence of ~. In other words, the recursive
premise is control knowledge about when to apply the simpler rule

Thus a logical translation of a self-referencing rule would consist of two rules;
the simple rule given above, and a control rule indicating that the above rule
should not be tried unless there is already evidence for ~. Neither of these
rules are recursive, so the theorems developed in Section 3 do not apply. This
translation also shows why MYCIN'S pruning strategy for self-referencing rules is
appropriate. Since the above rule is not recursive, it need be applied only once.

Repeating inference also occurs in MYCIN as a result of rule loops. For
example, a rule might allow a parameter B to be inferred from a parameter A,
while another rule might allow A to be inferred from B. MYCIN'S strategy in
such cases is to never use a rule more than once in a single reasoning chain.
This is equivalent to pruning all repeating subgoals. This works because, once
the context is bound, the premises and conclusions of such rules are ground
clauses. Thus, as in Gelernter's application, the powerful pruning strategy of
Corollary 3.12 applies.

More recently, Minker and Nicolas [19] have developed a special case of
Corollary 3.12 and have shown that for the class of "singular" recursive rules
all repeating subgoals will be subsumed and can therefore be eliminated.

Other approaches to controlling repeating inference have also received some
attention, although the results have been limited to special cases. Reiter [23]
and Minker and Nicolas [19] have shown conditions where it is possible to use
only forward inference on recursive collections. Automatic reformulation of
recursive collections has been explored by Chang [2] and Naqvi and Henschen
[11, 20]. They describe methods of automatically generating efficient proce-
dures for the special class of "regular" recursive collections. Minker and
Nicholas [19] have shown that this method applies to a slightly broader class of
recursive collections. Recently, Ullman [29], Van Gelder, and Naughton [21]
have obtained results for several special cases of recursive inference. In
particular, they have proposed techniques similar to those suggested in Section
4.3 for handling the special case of functional embedding. They have also
isolated classes of recursive collections where the recursion can be eliminated
by reformulating the rules involved.

The more difficult problem of divergent inference has received little atten-
tion in the literature. Fischer Black noted the problem in developing his natural
deduction system [1] but provides no solution other than depth-limited search.

Problems of recursive inference have also arisen outside of the artificial
intelligence community. Both repeating and divergent inference are constant
obstacles in the construction of PROLOG programs. Users of PROLOG become well

CONTROLLING RECURSIVE INFERENCE 387

versed in manual reformulation of rules to eliminate infinite loops. As we
illustrated, this is not always an easy task and the resulting programs can be
quite opaque.

Recently, at Stanford we have encountered repeating and divergent infer-
ence in the construction of systems for reasoning about digital circuits [8, 12,
26]. The techniques described here are being implemented in an experimental
version of the MRS system [24].

5.2.2. Program verification

There is a strong similarity between recursive inference and recursive programs
that do not terminate. In essence, an inference procedure together with a goal
and recursive collection of facts is a recursive program. Thus, it should come as
no surprise that the techniques for deciding whether a given inference path
terminates, loops, or diverges, bear a striking resemblance to the method of
well-founded sets used to prove program termination [6, 15].

But the similarities end here. In general, a recursive program that does not
terminate is of little use. It must be modified so that it does terminate. Doing
this requires some understanding of the intention behind the program. In
contrast, a recursive collection of facts has meaning, independent of the
particular inference engine being used. In this case, the inference engine must
be modified so that it will perform the proper deductions. The intent of the
inference procedure is known. Thus, the change takes the form of information
about how to prune the search space. In short, a program that does not
terminate may be incorrect in an arbitrary manner, while an inference engine
that loops (for a given goal and recursive collection) is incorrect in a very
specific way; it explores too much of the search space.

5.3. Summary and final remarks

The control of recursive inference involves demonstrating that portions of a
search space are either superfluous or redundant. When either of these
properties has been demonstrated, the offending portion of the search space
can be discarded. Although this will always be logically correct, it may not be
optimal in every case.

Proofs of redundancy and superfluity involve knowledge about the content of
the system's database, and about properties of the relations involved in the
inference, such as ordering relations on the domains, monotonicity, bounded-
ness and commutivity. This kind of information is commonly available but has
rarely been needed or used in AI systems. In contrast to the general domain-
dependent character of the control problem, the special case of repeating
inference admits control that is domain-independent. The method of suspend-
ing and reenabling repeated subgoals does not depend upon the meaning of the
symbols involved. It is not entirely clear why this fortuitous result should hold.

388 D.E. SMITH ET AL.

It is true however, that in some cases the more general domain-dependent
techniques of proof can lead to more severe pruning for repeating inference
than is possible with the syntactic method of Section 3.

Determining whether or not recursive inference will occur for a given
problem is in general undecidable. We have suggested three possible criteria
for determining when control of recursive inference should be instituted;
inference depth or complexity, repeated rule usage, and the use of recursive
collections. Combinations of these approaches also appear promising, although
the decision will almost certainly prove dependent upon the mix of problems
encountered in any particular application.

Finally, there is no a priori reason why the techniques of proving redundancy
and superfluity could not be applied to nonrecursive inference. The limiting
factor is cost. When an infinite search is avoided, a high cost is justifiable.
However, for nonrecursive inference the problem would have to be a difficult
one for expensive analysis like that of Section 4 to be cost-effective. For such
cases, complex monitoring strategies like those proposed in Section 5.1 would
be indispensable.

ACKNOWLEDGMENT

We are indebted to Narinder Singh, Glenn Kramer, and to an anonymous reviewer for bringing
interesting examples of repeating and divergent inference to our attention. Thanks also to Russ
Greiner, Jock Mackinlay, Vineet Singh, Richard Treitel and the other members of the Logic
Group at Stanford for general discussion on this subject over the last several years. Jim Bennett,
Jan Clayton and Ted Shortliffe provided information on self-referencing rules and loops in MYCIN
and EMYCIN. Jeff Finger, Pat Hayes, and Richard Waldinger provided useful pointers to related
work on program verification and Richard Treitel and Jeff Ullman provided pointers to related
work on databases and logic programming. Thanks to Jan Clayton and Jock Mackinlay for
proofreading assistance and comments on presentation.

This work was supported by ONR contrast N00014-81-K-0004.

REFERENCES

1. Black, F., A deductive question-answering system, in: M. Minsky (Ed.), Semantic Information
Processing (MIT Press, Cambridge, MA, 1968) 354-402.

2. Chang, C.L., On evaluation of queries containing derived relations in a relational database, in:
H. Gallaire, J. Minker and J.M. Nicolas (Eds.), Advances in Data Base Theory (Plenum
Press, New York, 1980) 235-260.

3. Clancey, W.J., The epistemology of a rule-based expert system, Artificial Intelligence 20 (1983)
215-251.

4. Davis, R., Meta-rules: reasoning about control, Artificial Intelligence 15 (1980) 179-222.
5. Doyle, J., A model for deliberation, action, and introspection, Artificial Intelligence Laborat-

ory Memo AI-TR-581, MIT, Cambridge, MA, 1980.
6. Floyd, R.W., Assigning meaning to programs, in: J.T. Schwartz (Ed.), Proceedings Symposium

on Applied Mathematics (American Mathematical Society, Providence, RI, 1967) 19-32.
7. Gelernter, H., Realization of a geometry-theorem proving machine, in: E. Feigenbaum and J.

Feldman (Eds.), Computers and Thought (McGraw-Hill, New York, 1963) 134-152.
8. Genesereth, M.R., The use of design descriptions in automated diagnosis, Artificial Intelli-

gence 24 (1985) 411-436.

CONTROLLING RECURSIVE INFERENCE 389

9. Genesereth, M.R. and Smith, D.E., Procedural hints in the control of reasoning, Knowledge
Systems Laboratory Rept. KSL-84-11, Stanford University, Stanford, CA, 1985.

10. Hayes, P.J., Computation and deduction, in: Proceedings Symposium on Mathematical Found-
ations of Computer Science (Czechoslovakian Academy of Sciences, Prague, 1973) 105-117.

11. Henschen, L. and Naqvi, S., Compiling queries in recursive first order databases, J. ACM 31
(1984) 47-85.

12. Kramer, G., Personal communication, 1984.
13. Lewis, H.R., Cycles of unifiability and decidability by resolution, Tech. Rept., Aiken Comput-

ation Laboratory, Harvard University, Cambridge, MA, 1975.
14. Loveland, D. and Reddy, C., Deleting repeated goals in the problem reduction format, J.

ACM 211 (1981) 646-661.
15. Manna, Z., Mathematical Theory of Computation (McGraw-Hill, New York, 1974).
16. Manna, Z. and Waldinger, R., Studies in Automatic Programming Logic (North-Holland, New

York, 1977).
17. McCarthy, J., Programs with common sense, in: M. Minsky (Ed.), Semantic Information

Processing (MIT Press, Cambridge, MA, 1968) 403-418.
18. McKay, D.P., and Shapiro, S., Using active connection graphs for reasoning with recursive

rules, in: Proceedings Seventh International Joint Conference on Artificial Intelligence, Van-
couver, BC (1981) 368-374.

19. Minker, J. and Nicolas, J., On recursive axioms in deductive databases, Information Systems
8(1) (1983) 1-13.

20. Naqvi, S.A. and Henschen, L.J., Performing inferences over recursive data bases, in:
Proceedings First National Conference on Artificial Intelligence, Stanford, CA (1980) 263-265.

21. Naughton, J., Data independent recursion in deductive databases, in: Proceedings ACM/
SIGMOD Symposium on Principles of Database Systems (ACM, New York, 1986).

22. Nilsson, N.J., Principles of Artificial Intelligence (Tioga, Palo Alto, CA, 1980).
23. Reiter, R., On structuring a first order data base, in: R. Perrault (Ed.), Proceedings Second

National Conference (Canadian Society Computational Studies of Intelligence, Toronto, Ont.,
1978) 19-21.

24. Russell, S., The compleat guide to MRS, Tech. Rept. STAN-CS-85-1080, Stanford University,
Stanford, CA, 1985.

25. Shortliffe, E.H., Details of the consultation system, in: B.G. Buchanan and E.H. Shortliffe
(Eds.), Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic
Programming Project (Addison-Wesley, Reading, MA, 1984) 78-132.

26. Singh, N., Exploiting design morphology to manage complexity, Ph.D. Thesis, Stanford
University, Stanford, CA, 1985.

27. Smith, D.E., Controlling backward inference, Knowledge Systems Laboratory Rept., Stanford
University, Stanford, CA, 1986.

28. Smith, D.E., Controlling inference, Ph.D. Thesis, Stanford University, Stanford, CA, 1985.
29. Ullman, J.D., Implementation of logical query languages for databases, ACM Trans. Database

Syst. 10(4) (1985).

Received July 1985; revised version received Apr i l 1986

