Hnelmut Simonis~, Faul Davern~, Jacob reldman-,
Deepak Mehta', Luis Quesada®, and Mats Carlsson?*

1 Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
2 Swedish Institute of Computer Science
SICS AB,Uppsala Science Park, SE-751 83 Uppsala, Sweden
h.simonis@4c.ucc.ie

Abstract. In this paper we describe the design and implementation of CP-V
a generic visualization platform for constraint programming. It provides multi
views to show the search tree, and the state of constraints and variables for a p
mortem analysis of a constraint program. Different to most previous visualizat
tools, it is system independent, using a light-weight, intermediate XML for1
to exchange information between solvers and the visualization tools. CP-VT:
available under an open-source licence, and has already been interfaced to f
different constraint systems.

1 Introduction

Visualization' is one of the best techniques for understanding the behavior of
programs, allowing us to directly observe the impact of changes by visual

instead of using tedious debugging. So far, most constraint visualization tools
closely linked to specific solvers, making it difficult to compare alternative s:
to reuse development effort spent on other systems. Previous attempts [4]

tools did not find widespread use largely due to the complexity of the sps
and the level of detail captured. The new, light-weight CP-V1Z system provi
ple XML based interface for solvers, and can be easily extended for new sy
constraints. In CP-V1z, we try to visualize the search tree and the state of
and (global) constraints in parallel views. The search tree shows choices, as
and failures, modeled on the tree display in the Oz Explorer [14] and later in (
Constraints and variables are shown in a 2D layout defined by the user, individ
constraints are shown in custom visualizations similar to [17]. A new constre
added to the package by simply deriving a new class with a custom drawin

* This work was supported by Science Foundation Ireland (Grant Number 05/IN;
support of Cisco Systems and of the Silicon Valley Community Foundation is gr
knowledged.

! Visualization relies heavily on the use of colors, with a potential loss of informa
in black&white only. An on-line version of the paper with colored diagrams car
loaded from the URL http://4c.ucc.ie/~hsimonis/cpviz.pdf. Also
the electronic version you can zoom into all SVG diagrams, revealing additional in

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 460474, 2010.
© Springer-Verlag Berlin Heidelberg 2010

http://4c.ucc.ie/~hsimonis/cpviz.pdf

programming, and helping to develop successtul applications. Systems like
relied on Prolog-based coroutines to visualize the assignment of variables
throughout a search process. Visualizations were written as application spe
which were co-developed with the constraint model. This approach restrictec
components and was tightly linked to a logic-programming host language. 1
was the first to abstract visualization types based on collections of variab
propose different views for them. The visualization of the search tree was
in the Oz Explorer [14], its interactive use tightly linked to the generalized
possibilities of the Oz environment. The DISCiP1 project [5] produced a mi
results for constraint debugging and visualization, the ones most relevant for
are the search tree tool for CHIP [16] and the idea of specialized visualizers
constraints [17]. The French OADymPPaC project [4] considered a system in
view of visualization. But the XML-based specification for post-mortem t
quite complex and achieved limited acceptance, and seems no longer to b
maintained. The main design aim for the OADymPPaC trace format was

all possible information about program execution. The visualization tools v
extract those pieces which were of interest to them. While this allowed difft
to work at different abstraction levels, it also required rather deep integratior
supported CP solver to generate the trace, and led to very large trace file
relatively small problems. The visualization tools for Comet [7] provide an en
for developing visualizations for constraint-based local search, which mix g
application specific aspects of the visualization inside the modeling language

2 Design Aims

The design of CP-V1z was largely driven by the development of an ECLiPSe |
course [15], for which we wanted to be able to show and explain the solving
models for application programmers. We did not want to restrict the use of the
to ECLiPSe only, but rather tried to design a constraint system independent ar
This led to a number of key design decisions:

— We decided to concentrate on post-mortem analysis, which minimizes tt
ments of interaction between the constraint solver and the visualizatio:
ment, but still provides most of the information required for analysis.

— The output of the visualization can be studied on-screen, but can also be p
high-quality, colored, vector based print output. Data feeds for other vis
tools are also provided.

— The tools are solver independent, written in a general purpose language
can be easily extended and specialized by deriving new classes from exi:
alization classes.

— We added invariant checking at each search node to the functionality, thi
solver independent validation of the results, and can highlight missing pi
in individual constraints.

Berthe Choueiry

Berthe Choueiry

AL UIC SAlliC U, uUlosSo CHUICOS 105Ut 1CLcUd S0UlLLIc 1uucuuuuuLy uiac 1d> PIUVIUC
visualization tools [14,16].

— The tool currently is not designed for interactive problem solving, cont
search from within the visualization by making manual decisions on how
should progress. To allow this in a system independent way seems quit
and would require rather deep interaction with each solver. At the same t
is limited evidence that such an interactive use helps application progr:
developing strategies which solve problems automatically.

— We are not considering individual propagation steps, showing in wi
constraints are woken and how they make detailed domain restrictions.
application programmers, this level of abstraction is too detailed, anc
time consuming to follow the execution of constraint propagators throug
search process.

— We don’t collect and display the constraint graph. Many existing tools fc
ing constraint graphs [9,8] seem to work only for binary constraints, ai
rely on graph layout algorithms, without finding usable displays for large
sizes.

Which type of design choices can be improved when using visualization’
shows the well-known example of a Sudoku puzzle expressed in constraint
ming, which compares three different consistency levels for the ALLDIFFEE
straints in the model. The same problem is modeled using forward checkir
consistency and domain consistency; the pictures show the state after the init
before search is started. The variables are shown in form of a two-dimens
trix, each cell corresponds to a variable, which shows the current values in tl
(small, in green) or the assigned value (large, in red). For this carefully select
tic example, different consistency levels lead to different amounts of propag
this is not universally true. In many applications the visualization can help

Forward Checking Bounds Consistency Domain Consis!

Fig. 1. Sudoku: Consistency Level Comparison

Fig. 2. Search Tree Analysis - Different Views of Search Tree Data

Resource limit exceeded -
TTTTTTTTITTT LA R)
A
22 120 124 125 126 127 128 120 130 134 132 133 134 135 130 37 138 199 140 141 14
127 120 120 130 131 32 133 134 135 136 137 138 120 140 141 3.

bligate

T
I
i%

Fig. 3. Invariant Checks for Cumulative Scheduling Problem

which consistency level to use in order to find the right compromise betwe
propagation and problem solving stability.

Figure 2 shows different diagrams for visualization of the search tree. If
space is small, the full tree can be shown (on the left). For more complex
this is no longer possible, and a more compact form, originally proposed in [
abstracts failed sub-trees, can be displayed (see Figure 7 for an example). But
detailed analysis is not required, it suffices to have a simple quantitative ai
shown in the middle part of Figure 2. It plots the number of success and fail
with the depth of the search tree. The shape of the plot often is enough to v
how well a model is able to explore the search space. On the right we show
visualization which indicates the size of the generated subtree below a top-le
in the search. This can help to understand more clearly if the search strategy .
making the right choices.

Finally, the diagrams in Figure 3 show an example where invariant che
used to detect nodes in the search where the constraint propagation was not
The pictures are from a cumulative scheduling problem proposed b

atory parts (dark, 1n red) are generated. I'he sum of these obligatory parts e:
resource limit, which is not detected by the propagator. Invariant checking
the constraint and has also marked the problem in the search tree. On the rig
ber of tasks have been assigned, and their resource profile reaches the reso
but the start times of unassigned tasks are not updated properly. This not o
some missing propagation, but affects the search routine as well, as the he
task selection will pick the wrong tasks to be assigned next. The problem wa
by developing another propagator for CUMULATIVE based on obligatory pa:

3 Architecture

Figure 4 shows the basic architecture of the CP-V1z system. The visualizatio
by annotations in the constraint program. When run in the solver, two XM]
(one for the search tree, the other for the constraint and variable visualizatio:
duced. These files are then parsed in the main CP-V1z application, producing
output as SVG, or as input for other tools (tree maps, graphs, statistics). The
put can be displayed interactively in the CP-VI1ZTOOL, or can be used in mul
to produce annotated or converted output for print or WEB media.

We use XML text files to link the generation of the log files to the creat
visualization. This should allow almost any constraint programming system tc
to the CP-VIZ visualization with minimal effort.

Program + Annotation

!

CP Solver

—

Search Tree Log Constraint and Variable Log

\/

\ CP- VIZ
Treemap SVG

Inkscape Browser ‘ ‘ Batch ‘ CP-VIZTool

Annotated Image PDF

Fig.4. CP-Viz System Architecture

choices. In each node we have a node 1d, the node 1d of the parent node, the n:
variable currently assigned, the size of its domain, and the value assigned. A
these types also allows to handle arbitrary choices, not based on variable as
These alternatives can be useful to describe more complex branching scheme:
analysis is slightly more restricted. A solution node is used to mark choice no
complete an assignment, i.e. to mark nodes where all constraints are satisfiec
mat does not assume chronological depth first search, nodes can be added for :
at any time.

Constraint and Variable Log. The second log file is used to describe snapsh
straints and variables. Its top element is visualization, which contains a list of
elements, describing the constraints and variables to be displayed. This is foll
sequence of state elements, each containing a snapshot of the execution at a ;
point. Inside each state, the visualizer_state elements describe the current stat
straint or collection of variables. The syntax used roughly follows the syntax 1
global constraint catalog [3]. Constraints can be described by their named a
which may contain collections of basic types or tuples, which describe structu
parate types. The basic types currently allowed are integers and finite domain
integer sets and domain variables over finite sets, plus some more specializec

3.1 System Dependent XML Generators

For every constraint system that wishes to use the CP-Viz environment, w
define an interface to generate the XML logs. Figure 5 shows such an interfac
based on two classes, VisualSolver and VisualProblem. The methods for the «
log are contained in the VisualSolver interface, each adds or annotates a sear
the tree.

The methods for the VisualProblem class are split into two groups. The a
programmer can use the method register() to register a constraint or a col
variables with the visualization. There is also a method snapshot() which t1
creation of a snapshot of all registered constraints and variables at a giver
point. The snapshot is created by sending a snapshot() message to each regis
straint. This is then responsible for saving the current state of the constrai
log. For this it might use the remaining methods of the VisualProblem class,
XML elements of different types for the constraint.

3.2 CP-Viz

The main CP-VIZ application parses the XML log files and creates SVG

the user. The search tree is parsed completely before generation, while the
and variable snapshots are handled one at a time. In order to see which cha
occurred to the variables by the current search step, the tool keeps a stack of
for all parents of the current node in memory. This not only allows to see tl

] wiaaliadiatald
public
public
public

public
}

yyvaw adauudgiibibibopl iYL A AW, At paetiviit il
String variableName ,int size ,int value);
void addSuccessNode (int id, int parentld,
String variableName , int size, String choi
void addFailureNode(int id, int parentld,
String variableName ,int size, int value);
void addFailureNode(int id, int parentld,
String variableName , int size, String choi
void labelSolutionNode (int id);

public interface VisualProblem extends Visual {

public
public
public
public
public

// for
public
public
public

public
public
public

public
public
public

void register (Constraint constraint);
void register (Var var);

void register (Var[] varArray);

void register(Var[][] varMatrix);
void snapshot ();

implementors only

void startTagArgument(String index);
void startTagArgument(int index);
void endTagArgument();

void startTagCollection(String index);
void startTagCollection(int index);
void endTagCollection();

void startTagTuple(String index);
void startTagTuple(int index);
void endTagTuple ();

void tagVariable (Var var);
void tagVariable (String index, Var var);
void tagVariable (int index, Var var);

void taglnteger (String index ,int value);
void taglnteger (int index ,int value);

Fig. 5. VisualSolver and VisualProblem Interface Definition

updates of the variables, but also permits to generate path based visualizat
which display the evolution of a variable or some parameter through all pa;
from the root to the current node.

3.3 CP-Viz Tool

Figure 6 shows the CP-V1ZTOOL, a Java application which displays the re
visualization on the screen. The application has a time-line at the top, whet
can select a state of the execution for display. The tool will then display tl
the search tree in the left main pane, and the corresponding snapshot of the
and variable visualization in the right pane. The user can also step forward/l
through the execution, or display the complete solution process as a movie, p:
automatically through the different snapshots.

Fia Help
@ H WaK [npr» O
=
2 | 5] (- Zoom In. [Domox | rgnal haw
4 2l

Fig. 6. Interactive CP-V1z Tool for Car Sequencing Problem

4 Invariant Checking

By providing snapshots of the execution at fix points only, when all constr
performed their consistency checking, CP-Viz also provides data for systel
ing of execution traces. We have implemented an invariant checker, whi
ery snapshot calls an invariant() method for each registered constraint. Th
may return TRUE, also the default value, or one of the values INTERESTI]
ING_PROPAGATION, INCONSISTENT or FALSE. Combining all invariant «
a snapshot, the visualizer then marks the node in the search tree accordingly
lights any failed assertions in the constraint visualization. We explain the n

within the scheduling period p. A ground solution must satisty the equations

VOo<t<p: Z r; <1
{i| si<t<s;+d;}
Vi<i<n: s;+d;<p

Z dixr; <lxp

1<i<n

Inequality (3) is implied by the others, but is used as it provides a good ba
veloping invariants. If for a ground instance one of these equations is not sati
the invariant checker will return FALSE.

We can rewrite constraint (3) to consider upper bounds on domain variabl

This produces

If in any snapshot this invariant does not hold, then the snapshot is incons
the constraint propagator should have failed for this node. The invariant checl
INCONSISTENT. A weaker invariant checks the lower bound of p instead:

2[4

If this invariant is violated, the lower bound of p has not been updated cor
other values in the domain of p might satisfy the condition, so the invaria
returns MISSING_PROPAGATION. In a similar way we can derive

Vo<t<p: I< > r; = INCONSISTENT
{i | si<t<sitd;}

VO<t<p: I< > r; = MISSING_PROPAGATIO
{i | si<t<sit+d;}

We are cumulating the resource use over all obligatory parts, i.e. time periods
know that a task will be active.

The weakest value is INTERESTING, which can be used to mark snapst
a constraint detects a special condition that the user is interested in. We wil
use in section 5.3 to mark nodes where no propagation of a global method
sible. One key advantage of an invariant checker inside a system independ
that the invariant code can be shared for all constraint systems that impleme
constraint. As it is written independently from any specific propagation n
avoids problems when reused, buggy code in the validation precludes detec
error. Finally, the invariant checks enhance chances to detect subtle differer
declarative meaning of a global constraint between systems.

CF-VIZ tool set, and note some daetails ol the errort required to connect a n
to the visualizer.

5.1 ECLiPSe

We have linked the finite domain ic library of the Prolog based ECLiPSe syst
V1z as part of the ECLiPSe ELearning course development. The main requir
to display sufficient information of the constraint propagation to the student
overwhelming them with unwanted detail. As custom search routines are ve
write in ECLiPSe, we also needed an interface which could visualize such rot
minimal overhead. The current interface does not require hooks in the predefis
routines or constraint implementations, but rather uses logic programming 1
express the visualization as annotations of the user programs. Visualizers fo
global constraints have been implemented so far, together with a series o
programs, based on the course material.

5.2 SICStus

We are currently extending the ¢ 1p£d library module of SICStus Prolog witl
predicates producing XML files for CP-V1z. The work is being carried out a
the interface code for ECLiPSe. Like for ECLiPSe, we do not use any specia
SICStus Prolog or its c1pfd library module and we rely on user program ar
The implementation replaces the normal labeling/2 procedure, which t
of domain variables, by another procedure taking a list of domain variables
with information for display purposes, e.g. variable name. ECLiPSe and SIC
vide different libraries of global constraints, and so the main implementation
in implementing visualizers for the global constraints not provided by ECLiP
ticular, we plan to implement 2D and 3D visualizers for the generic multi-di
geost constraint [2]. The XML files are currently being written with standard]
predicates. For efficiency, this is likely to be replaced later by specific XML

5.3 Visualization of the Global Constraint SOFTPREC

As a case study for visualizing individual global constraints, consider the vis
of the SOFTPREC constraint arising in the context of the feature subscriptio
for telecommunication services. A feature subscription problem is a configure
lem defined by a set of possible features, a set of hard precedence constraini
soft precedence constraints, and a function that maps each feature and each ¢
dence constraint to a non-zero integer weight. The objective is to maximize
of the subscription, which is defined to be the sum of the weights of the fe
soft precedences that are included. The soft global precedence constraint S
is proposed for solving the feature subscription problem in [11] and [10].

and only if there is a strict partial order on the selected features subject to tt

(http://www.emn.fr/z-1nfo/choco-solver), which 1s a Java |
constraint programming. In order to visualize the search tree and the propagati
out at each node of the search tree, the implementation of SOFTPREC was e:
order to generate and save the trace in the CP-V1z format. The implementat
extension was fairly simple. We had to extend two classes of Choco and over
of their methods. While generating the required data for visualization is ¢
deciding what to visualize and how to visualize it required several iterations.

A distinct advantage of the visualizer is that it is easy to get a sense of the
Visualizing solutions can give more insight than just knowing the numeric:
the solution. It can help a user in deciding whether a given solution with t
value is really optimal for him/her or not. The arguments of SOFTPREC that a
might be interested in visualizing are the states of the variables associated wit
features, soft precedences, and the value of the subscription being computec
the interesting states are whether a feature (or a user precedence) is included
or undecided, or whether the current state is a result of the last choice or th
choices.

Figure 7 depicts the search tree (on the left, generated by a branch and bo
algorithm) explored until the node number 38 and the states of the variables
straint propagation) at that node, when solving an instance of feature subscri
20 features and 10 user precedences. In Figure 7 leaf-nodes of the search t
sponding to feasible solutions are shown in green (light gray), dead-ends are
red (dark gray), and the current node (node number 38) is shown in blue (la
Figure 7 (right) visualizes the state of the variables after reaching the fix poin
ing the propagation at node number 38.

The states of the features are visualized using a vector of cells (shown at t
and to the right). When a feature is undecided the corresponding cell is unla
feature is included or excluded then the cell is labeled with either 1 or 0. The
between the features that are included/excluded in the current node from tho
decided in the earlier nodes is made through the difference in the backgrourn
the cells. The states of the variables associated with the soft precedence cons
visualized through a matrix of cells. Each soft precedence constraint¢ < j is.
with a cell in row ¢ and column j. If a soft precedence 7 < j holds then the cc
ing cell is labeled with 1 and if it is violated then the corresponding cell is lal
0, and undecided soft precedence is labeled with 01. The bounds of the va
subscription being computed is displayed on the left bottom of Figure 7 (rigl

SOFTPREC internally maintains transitivity on the hard precedence con:
hard precedence constraint, ¢ < j, means that if features ¢ and j are inclu
must precede j. From a developer’s point of view it is interesting to visualize
of these variables, which is done through the background colors of the cells
trix. SOFTPREC also elicits and maintains incompatibilities between undecide
through the states of these variables. An incompatibility between undecided
and j is visualized by placing a box around the cell in row ¢ and column j. For

http://www.emn.fr/z-info/choco-solver

are computed by associating a graph with a set of incompatibilities, and «
the violation cost of each component of the graph. The components are al
ized by using different colors for the incompatibilities of different compone
it comes to describing the pruning rules of SOFTPREC it is much easier to ex]
through visualization. Initially it was agreed to implement a static variable or
SOFTPREC that chooses variables associated with soft precedences before the
associated with features. However, after visualizing the search tree, we disco
the intended variable ordering was not implemented in the right way. Anotl
tage of visualization is that it can help in understanding the impact of the s
different pruning rules.

Search Tree Constraint Propagation

0 1 2 3 4 5 6 7 8 9 90 41 12 13 14 15 18 17 18 19

6

‘--‘ lﬂo]'I2Ilslr~llls|5[:]6]0||uf£{1:]':i151']-:leﬂl

o [

Fig. 7. Example of SOFTPREC Global Constraint Visualization

5.4 JSR331

The Java Specification Request (JSR) 331 (http://jcp.org/en/jsr/
id=331)is a working group in the Java Community Process trying to propos
standard constraint programming API for Java. As part of a reference imple
we have considered the use of CP-Viz as an example of a visualization ext
the standard API. Figure 8 shows a code example for an annotated N-queen
in the proposed standard syntax. For most classes (Problem, Solver, individ
constraints), variants which incorporate the visualization capabilities of C]
provided. By creating for example a new constraint from ALLDIFFERENTV
stead of ALLDIFFERENT , a visualization for this constraint will be provi
that not all constraints and variables need to be annotated, the user can conc
only parts of the model, if required. Figure 9 shows an UML sequence diagr

http://jcp.org/en/jsr/detail?id=331
http://jcp.org/en/jsr/detail?id=331

4 Vil y iouual prybivaiil —/ ARy A VUi vy iouaali il NHUvYwiio
int size = 16;

problem . startVisualization (”QueensProblem.log”);
Var[] x = problem.varArray(”x”,0, size —1, size);

Var[] x1 = new Var[size];
Var[] x2 = new Var[size |;
for (int i = 0; i < size; i++) {

xI[i] = x[i].add(i);
x2[1] = x[1].sub(i);
}
problem.register (x);
new AllDifferentVisual(x).post();
problem . snapshot ();
new AllDifferent(x1).post();
new AllDifferent(x2).post();
SolverVisual solver = new SolverVisual (problem);
solver.startVisualization ("QueensSolver.log”);
Solution solution = solver.findSolution ();
solver.stopVisualization ();
problem . stopVisualization ();

Fig. 8. JSR 331 Example: Visualization of N-Queens Problem

interaction of the Application, VisualProblem, VisualSolver and Constrai
which shows how the JSR331 implementation builds on the interface of Figu

6 Future Work and Conclusions

While the current CP-V1z system already provides many useful features
standing and improving constraint programs, there are a number of features 1
improve its capabilities:

— At the moment the system can tell the user which choice led to a failure, t
provide a more detailed explanation. It would be helpful if we can integ
explanation tools which can provide automatically derived explanations ¢

— Much of the development time for a constraint application is taken up wit
ing different possible design choices. We will study how to best compare s
and constraint and variable visualizations from multiple runs in a single

— The invariant checker provides a useful paradigm for concentrating effor
esting parts of the search effort, but at the moment the checks are compi
of the tool itself. It might be interesting to allow users to specify checl
tively, and display such search results inside the visualization.

register

|
|
new |
t

register

'
snapshol

t
startTag, andTag

starl Visualization

_

___=

addNode

snapshat I
snapshal

t
startTag, endTag
t

I
stop Visualization

I
I
L
|
I
I
I
|
I
I
I
|
I
I
I
1
|
L
I findSolufion
L
I
|
I
I
I
I
|
|
I
|
I
|
I
|
I
I

closa |

L ek

L. —
g e e e e e] e

|

|

|

stopVisualization | |

|

Fig. 9. UML Sequence Diagram - Message Flow between Application and Visualizat

By providing an open-source, system independent visualization platform, CI
help to reduce the amount of duplicated and redundant work required by syst
opers, while allowing specific, new features to be added without too much ¢
current documentation and software for CP-VIZ can be found at http: / /-
ie/~hsimonis/CPVIZ/index.htm.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex sched
lems. Journal of Mathematical and Computer Modelling 17(7), 57-73 (1993)

2. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic ¢
constraint kernel in space and time for handling polymorphic k-dimensional
Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180-194. Springer, Heidelberg

3. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog. Techn
T2005:08, SICS (May 2005)

4. Deransart, P.: Main results of the OADymPPaC project. In: Demoen, B., Lifschi
ICLP 2004. LNCS, vol. 3132, pp. 456—457. Springer, Heidelberg (2004)

5. Deransart, P., Hermenegildo, M.V., Matuszynski, J.: DiSCiPl 1999. LNCS,
Springer, Heidelberg (2000)

6. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F
straint logic programming language CHIP. In: FGCS, pp. 693-702 (1988)

7. Dooms, G., Hentenryck, P.V., Michel, L.: Model-driven visualizations of const
local search. Constraints 14(3), 294-324 (2009)

http://4c.ucc.ie/~hsimonis/CPVIZ/index.htm
http://4c.ucc.ie/~hsimonis/CPVIZ/index.htm

10.

11.

12.

13.
14.

15.

16.
17.

LCOLCEC LOUIK LUV T)

Lesaint, D., Mehta, D., O’Sullivan, B., Quesada, L., Wilson, N.: A Soft Global
Constraint. In: IJCAI 2009, Pasadena, CA, USA (2009)

Lesaint, D., Mehta, D., O’Sullivan, B., Quesada, L., Wilson, N.: Consistency
for finding an optimal relaxation of a feature subscription. In: Proceeding of the
International Conference on Tools with Artificial Intelligence (ICTAI 2008), pj
(2008)

Meier, M.: Debugging constraint programs. In: Montanari, U., Rossi, F. (eds.
LNCS, vol. 976, pp. 204-221. Springer, Heidelberg (1995)

Nieuwenhuis, R.: A cumulative scheduling problem. Personal Communication (2
Schulte, C.: Oz Explorer: A visual constraint programming tool. In: ICLP, Leuves
pp- 286-300 (1997)

Simonis, H.: An ECLiPSe ELearning course (2009),
http://4c.ucc.ie/~hsimonis/ELearning/index.htm

Simonis, H., Aggoun, A.: Search-tree visualisation. In: Deransart et al [5], pp. 19
Simonis, H., Aggoun, A., Beldiceanu, N., Bourreau, E.: Complex constraint :
Global constraint visualisation. In: Deransart et al [5], 299-317

http://4c.ucc.ie/~hsimonis/ELearning/index.htm

	A Generic Visualization Platform for CP
	Introduction
	Design Aims
	Architecture
	System Dependent XML Generators
	CP-Viz
	CP-Viz Tool

	Invariant Checking
	Implementation
	ECLiPSe
	SICStus
	Visualization of the Global Constraint SoftPrec
	JSR331

	Future Work and Conclusions
	References

