
A Generic Visualization Platform for CP

Helmut Simonis1, Paul Davern1, Jacob Feldman1,
Deepak Mehta1, Luis Quesada1, and Mats Carlsson2,⋆

1 Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

2 Swedish Institute of Computer Science
SICS AB,Uppsala Science Park, SE-751 83 Uppsala, Sweden

h.simonis@4c.ucc.ie

Abstract. In this paper we describe the design and implementation of CP-VIZ,
a generic visualization platform for constraint programming. It provides multiple
views to show the search tree, and the state of constraints and variables for a post-
mortem analysis of a constraint program. Different to most previous visualization
tools, it is system independent, using a light-weight, intermediate XML format
to exchange information between solvers and the visualization tools. CP-VIZ is
available under an open-source licence, and has already been interfaced to four
different constraint systems.

1 Introduction

Visualization1 is one of the best techniques for understanding the behavior of constraint
programs, allowing us to directly observe the impact of changes by visual inspection
instead of using tedious debugging. So far, most constraint visualization tools have been
closely linked to specific solvers, making it difficult to compare alternative solvers and
to reuse development effort spent on other systems. Previous attempts [4] at generic
tools did not find widespread use largely due to the complexity of the specification
and the level of detail captured. The new, light-weight CP-VIZ system provides a sim-
ple XML based interface for solvers, and can be easily extended for new systems and
constraints. In CP-VIZ, we try to visualize the search tree and the state of variables
and (global) constraints in parallel views. The search tree shows choices, assignments
and failures, modeled on the tree display in the Oz Explorer [14] and later in CHIP [16].
Constraints and variables are shown in a 2D layout defined by the user, individual global
constraints are shown in custom visualizations similar to [17]. A new constraint can be
added to the package by simply deriving a new class with a custom drawing method.

⋆ This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886). The
support of Cisco Systems and of the Silicon Valley Community Foundation is gratefully ac-
knowledged.

1 Visualization relies heavily on the use of colors, with a potential loss of information if seen
in black&white only. An on-line version of the paper with colored diagrams can be down-
loaded from the URL http://4c.ucc.ie/˜hsimonis/cpviz.pdf. Also note that in
the electronic version you can zoom into all SVG diagrams, revealing additional information.

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 460–474, 2010.
© Springer-Verlag Berlin Heidelberg 2010

http://4c.ucc.ie/~hsimonis/cpviz.pdf

A Generic Visualization Platform for CP 461

The design of the visualization tool was driven by user-requirements, coming mainly
from the development of an ECLiPSe ELearning course.

Visualization has played a significant role in demonstrating the use of constraint
programming, and helping to develop successful applications. Systems like CHIP [6]
relied on Prolog-based coroutines to visualize the assignment of variables changing
throughout a search process. Visualizations were written as application specific tools
which were co-developed with the constraint model. This approach restricted re-use of
components and was tightly linked to a logic-programming host language. Meier [12]
was the first to abstract visualization types based on collections of variables and to
propose different views for them. The visualization of the search tree was pioneered
in the Oz Explorer [14], its interactive use tightly linked to the generalized branching
possibilities of the Oz environment. The DISCiPl project [5] produced a multitude of
results for constraint debugging and visualization, the ones most relevant for this paper
are the search tree tool for CHIP [16] and the idea of specialized visualizers for global
constraints [17]. The French OADymPPaC project [4] considered a system independent
view of visualization. But the XML-based specification for post-mortem traces was
quite complex and achieved limited acceptance, and seems no longer to be actively
maintained. The main design aim for the OADymPPaC trace format was to capture
all possible information about program execution. The visualization tools would then
extract those pieces which were of interest to them. While this allowed different tools
to work at different abstraction levels, it also required rather deep integration into each
supported CP solver to generate the trace, and led to very large trace files for even
relatively small problems. The visualization tools for Comet [7] provide an environment
for developing visualizations for constraint-based local search, which mix generic and
application specific aspects of the visualization inside the modeling language.

2 Design Aims

The design of CP-VIZ was largely driven by the development of an ECLiPSe ELearning
course [15], for which we wanted to be able to show and explain the solving of various
models for application programmers. We did not want to restrict the use of the visualizer
to ECLiPSe only, but rather tried to design a constraint system independent architecture.
This led to a number of key design decisions:

– We decided to concentrate on post-mortem analysis, which minimizes the require-
ments of interaction between the constraint solver and the visualization environ-
ment, but still provides most of the information required for analysis.

– The output of the visualization can be studied on-screen, but can also be provided as
high-quality, colored, vector based print output. Data feeds for other visualization
tools are also provided.

– The tools are solver independent, written in a general purpose language (Java) and
can be easily extended and specialized by deriving new classes from existing visu-
alization classes.

– We added invariant checking at each search node to the functionality, this allows a
solver independent validation of the results, and can highlight missing propagation
in individual constraints.

Berthe Choueiry

Berthe Choueiry

462 H. Simonis et al.

– The system is platform independent, and is provided as open source. The system
specific XML generation requires minimal effort.

At the same time, these choices restricted some functionality that is provided in other
visualization tools [14,16].

– The tool currently is not designed for interactive problem solving, controlling the
search from within the visualization by making manual decisions on how the search
should progress. To allow this in a system independent way seems quite difficult,
and would require rather deep interaction with each solver. At the same time, there
is limited evidence that such an interactive use helps application programmers in
developing strategies which solve problems automatically.

– We are not considering individual propagation steps, showing in which order
constraints are woken and how they make detailed domain restrictions. For most
application programmers, this level of abstraction is too detailed, and it is too
time consuming to follow the execution of constraint propagators through a longer
search process.

– We don’t collect and display the constraint graph. Many existing tools for display-
ing constraint graphs [9,8] seem to work only for binary constraints, and heavily
rely on graph layout algorithms, without finding usable displays for larger problem
sizes.

Which type of design choices can be improved when using visualization? Figure 1
shows the well-known example of a Sudoku puzzle expressed in constraint program-
ming, which compares three different consistency levels for the ALLDIFFERENT con-
straints in the model. The same problem is modeled using forward checking, bounds
consistency and domain consistency; the pictures show the state after the initial set-up,
before search is started. The variables are shown in form of a two-dimensional ma-
trix, each cell corresponds to a variable, which shows the current values in the domain
(small, in green) or the assigned value (large, in red). For this carefully selected, didac-
tic example, different consistency levels lead to different amounts of propagation, but
this is not universally true. In many applications the visualization can help to decide

Forward Checking Bounds Consistency Domain Consistency

Fig. 1. Sudoku: Consistency Level Comparison

A Generic Visualization Platform for CP 463

Tree Display Failure Level Failure Causes

Fig. 2. Search Tree Analysis - Different Views of Search Tree Data

Fig. 3. Invariant Checks for Cumulative Scheduling Problem

which consistency level to use in order to find the right compromise between speed,
propagation and problem solving stability.

Figure 2 shows different diagrams for visualization of the search tree. If the search
space is small, the full tree can be shown (on the left). For more complex problems,
this is no longer possible, and a more compact form, originally proposed in [14], which
abstracts failed sub-trees, can be displayed (see Figure 7 for an example). But often this
detailed analysis is not required, it suffices to have a simple quantitative analysis, as
shown in the middle part of Figure 2. It plots the number of success and failure nodes
with the depth of the search tree. The shape of the plot often is enough to understand
how well a model is able to explore the search space. On the right we show a treemap
visualization which indicates the size of the generated subtree below a top-level choice
in the search. This can help to understand more clearly if the search strategy globally is
making the right choices.

Finally, the diagrams in Figure 3 show an example where invariant checking was
used to detect nodes in the search where the constraint propagation was not sufficient.
The pictures are from a cumulative scheduling problem proposed by Robert

464 H. Simonis et al.

Nieuwenhuis [13] solved in ECLiPSe. It highlights two problems with the CUMULA-
TIVE constraint implementation of ECLiPSe, which is based on edge finding. In the
left picture, some tasks in a partial assignment are restricted sufficiently so that oblig-
atory parts (dark, in red) are generated. The sum of these obligatory parts exceeds the
resource limit, which is not detected by the propagator. Invariant checking highlights
the constraint and has also marked the problem in the search tree. On the right, a num-
ber of tasks have been assigned, and their resource profile reaches the resource limit,
but the start times of unassigned tasks are not updated properly. This not only shows
some missing propagation, but affects the search routine as well, as the heuristic for
task selection will pick the wrong tasks to be assigned next. The problem was resolved
by developing another propagator for CUMULATIVE based on obligatory parts.

3 Architecture

Figure 4 shows the basic architecture of the CP-VIZ system. The visualization is driven
by annotations in the constraint program. When run in the solver, two XML log files
(one for the search tree, the other for the constraint and variable visualization) are pro-
duced. These files are then parsed in the main CP-VIZ application, producing graphical
output as SVG, or as input for other tools (tree maps, graphs, statistics). The SVG out-
put can be displayed interactively in the CP-VIZTOOL, or can be used in multiple ways
to produce annotated or converted output for print or WEB media.

We use XML text files to link the generation of the log files to the creation of the
visualization. This should allow almost any constraint programming system to be linked
to the CP-VIZ visualization with minimal effort.

Program + Annotation

CP Solver

Search Tree Log Constraint and Variable Log

CP-VIZ

SVGTreemap Graph Statistics

Inkscape BatchBrowser CP-VIZTool

Annotated Image PDF

Fig. 4. CP-VIZ System Architecture

A Generic Visualization Platform for CP 465

Search Tree Log. The log file consists of a single tree element, which contains a se-
quence of node elements which describe the search tree. There is an initial root node,
which defines the start of the search, and try and fail nodes for successful and failed
choices. In each node we have a node id, the node id of the parent node, the name of the
variable currently assigned, the size of its domain, and the value assigned. A variant of
these types also allows to handle arbitrary choices, not based on variable assignment.
These alternatives can be useful to describe more complex branching schemes, but their
analysis is slightly more restricted. A solution node is used to mark choice nodes which
complete an assignment, i.e. to mark nodes where all constraints are satisfied. The for-
mat does not assume chronological depth first search, nodes can be added for any parent
at any time.

Constraint and Variable Log. The second log file is used to describe snapshots of con-
straints and variables. Its top element is visualization, which contains a list of visualizer
elements, describing the constraints and variables to be displayed. This is followed by a
sequence of state elements, each containing a snapshot of the execution at a given time
point. Inside each state, the visualizer state elements describe the current state of a con-
straint or collection of variables. The syntax used roughly follows the syntax used in the
global constraint catalog [3]. Constraints can be described by their named arguments,
which may contain collections of basic types or tuples, which describe structures of dis-
parate types. The basic types currently allowed are integers and finite domain variables,
integer sets and domain variables over finite sets, plus some more specialized types.

3.1 System Dependent XML Generators

For every constraint system that wishes to use the CP-VIZ environment, we need to
define an interface to generate the XML logs. Figure 5 shows such an interface for Java,
based on two classes, VisualSolver and VisualProblem. The methods for the search tree
log are contained in the VisualSolver interface, each adds or annotates a search node in
the tree.

The methods for the VisualProblem class are split into two groups. The application
programmer can use the method register() to register a constraint or a collection of
variables with the visualization. There is also a method snapshot() which triggers the
creation of a snapshot of all registered constraints and variables at a given program
point. The snapshot is created by sending a snapshot() message to each registered con-
straint. This is then responsible for saving the current state of the constraint into the
log. For this it might use the remaining methods of the VisualProblem class, which log
XML elements of different types for the constraint.

3.2 CP-VIZ

The main CP-VIZ application parses the XML log files and creates SVG output for
the user. The search tree is parsed completely before generation, while the constraint
and variable snapshots are handled one at a time. In order to see which changes have
occurred to the variables by the current search step, the tool keeps a stack of snapshots
for all parents of the current node in memory. This not only allows to see the domain

466 H. Simonis et al.

p u b l i c i n t e r f a c e V i s u a l S o l v e r ext en d s V i s u a l {
p u b l i c void addRootNode (i n t i d) ;
p u b l i c void addSuccessNode (i n t id , i n t p a r e n t I d ,

S t r i n g var iableName , i n t s i z e , i n t v a l u e) ;
p u b l i c void addSuccessNode (i n t id , i n t p a r e n t I d ,

S t r i n g var iableName , i n t s i z e , S t r i n g c h o i c e) ;
p u b l i c void a d d F a i l u r e N o d e (i n t id , i n t p a r e n t I d ,

S t r i n g var iableName , i n t s i z e , i n t v a l u e) ;
p u b l i c void a d d F a i l u r e N o d e (i n t id , i n t p a r e n t I d ,

S t r i n g var iableName , i n t s i z e , S t r i n g c h o i c e) ;
p u b l i c void l a b e l S o l u t i o n N o d e (i n t i d) ;

}

p u b l i c i n t e r f a c e V i s u a l P r o b l e m ext en d s V i s u a l {
p u b l i c void r e g i s t e r (C o n s t r a i n t c o n s t r a i n t) ;
p u b l i c void r e g i s t e r (Var v a r) ;
p u b l i c void r e g i s t e r (Var [] v a r A r r a y) ;
p u b l i c void r e g i s t e r (Var [] [] v a r M a t r i x) ;
p u b l i c void s n a p s h o t () ;

/ / f o r i m p l e m e n t o r s o n l y
p u b l i c void s t a r t T a g A r g u m e n t (S t r i n g i n d e x) ;
p u b l i c void s t a r t T a g A r g u m e n t (i n t i n d e x) ;
p u b l i c void endTagArgument () ;

p u b l i c void s t a r t T a g C o l l e c t i o n (S t r i n g i n d e x) ;
p u b l i c void s t a r t T a g C o l l e c t i o n (i n t i n d e x) ;
p u b l i c void e n d T a g C o l l e c t i o n () ;

p u b l i c void s t a r t T a g T u p l e (S t r i n g i n d e x) ;
p u b l i c void s t a r t T a g T u p l e (i n t i n d e x) ;
p u b l i c void endTagTuple () ;

void t a g V a r i a b l e (Var v a r) ;
void t a g V a r i a b l e (S t r i n g index , Var v a r) ;
void t a g V a r i a b l e (i n t index , Var v a r) ;

void t a g I n t e g e r (S t r i n g index , i n t v a l u e) ;
void t a g I n t e g e r (i n t index , i n t v a l u e) ;

}

Fig. 5. VisualSolver and VisualProblem Interface Definition

updates of the variables, but also permits to generate path based visualizations [16],
which display the evolution of a variable or some parameter through all parent nodes
from the root to the current node.

A Generic Visualization Platform for CP 467

Internally, the CP-VIZ application uses an event-based SAX-2 XML parser, so that
it can minimize which part of the XML tree it needs to keep in memory. Experiments
have shown that log files of several hundred Mb do not pose any problems.

3.3 CP-VIZ Tool

Figure 6 shows the CP-VIZTOOL, a Java application which displays the result of the
visualization on the screen. The application has a time-line at the top, where the user
can select a state of the execution for display. The tool will then display the state of
the search tree in the left main pane, and the corresponding snapshot of the constraint
and variable visualization in the right pane. The user can also step forward/backwards
through the execution, or display the complete solution process as a movie, progressing
automatically through the different snapshots.

Fig. 6. Interactive CP-VIZ Tool for Car Sequencing Problem

4 Invariant Checking

By providing snapshots of the execution at fix points only, when all constraints have
performed their consistency checking, CP-VIZ also provides data for systematic test-
ing of execution traces. We have implemented an invariant checker, which for ev-
ery snapshot calls an invariant() method for each registered constraint. This method
may return TRUE, also the default value, or one of the values INTERESTING, MISS-
ING PROPAGATION, INCONSISTENT or FALSE. Combining all invariant checks for
a snapshot, the visualizer then marks the node in the search tree accordingly and high-
lights any failed assertions in the constraint visualization. We explain the meaning of

468 H. Simonis et al.

the values for the example of a CUMULATIVE [1] constraint. The CUMULATIVE con-
straint states that the resource consumption of a collection of n tasks with start times
si geq0, fixed duration di and resource use ri must stay below the resource limit l and
within the scheduling period p. A ground solution must satisfy the equations

∀ 0 ≤ t < p :
∑

{i | si≤t<si+di}

ri ≤ l (1)

∀ 1 ≤ i ≤ n : si + di ≤ p (2)
∑

1≤i≤n

di ∗ ri ≤ l ∗ p (3)

Inequality (3) is implied by the others, but is used as it provides a good basis for de-
veloping invariants. If for a ground instance one of these equations is not satisfied, then
the invariant checker will return FALSE.

We can rewrite constraint (3) to consider upper bounds on domain variables l and p.
This produces

p ≥
⌈∑

di ∗ ri

l

⌉
(4)

If in any snapshot this invariant does not hold, then the snapshot is inconsistent, i.e.
the constraint propagator should have failed for this node. The invariant checker returns
INCONSISTENT. A weaker invariant checks the lower bound of p instead:

p ≥
⌈∑

di ∗ ri

l

⌉
(5)

If this invariant is violated, the lower bound of p has not been updated correctly, but
other values in the domain of p might satisfy the condition, so the invariant checker
returns MISSING PROPAGATION. In a similar way we can derive

∀ 0 ≤ t < p : l <
∑

{i | si≤t<si+di}

ri ⇒ INCONSISTENT (6)

∀ 0 ≤ t < p : l <
∑

{i | si≤t<si+di}

ri ⇒ MISSING PROPAGATION (7)

We are cumulating the resource use over all obligatory parts, i.e. time periods where we
know that a task will be active.

The weakest value is INTERESTING, which can be used to mark snapshots where
a constraint detects a special condition that the user is interested in. We will show its
use in section 5.3 to mark nodes where no propagation of a global method was pos-
sible. One key advantage of an invariant checker inside a system independent tool is
that the invariant code can be shared for all constraint systems that implement a given
constraint. As it is written independently from any specific propagation methods, it
avoids problems when reused, buggy code in the validation precludes detection of an
error. Finally, the invariant checks enhance chances to detect subtle differences in the
declarative meaning of a global constraint between systems.

A Generic Visualization Platform for CP 469

5 Implementation

In this section we discuss the platforms which currently have been integrated with the
CP-VIZ tool set, and note some details of the effort required to connect a new system
to the visualizer.

5.1 ECLiPSe

We have linked the finite domain ic library of the Prolog based ECLiPSe system to CP-
VIZ as part of the ECLiPSe ELearning course development. The main requirement was
to display sufficient information of the constraint propagation to the students, without
overwhelming them with unwanted detail. As custom search routines are very easy to
write in ECLiPSe, we also needed an interface which could visualize such routines with
minimal overhead. The current interface does not require hooks in the predefined search
routines or constraint implementations, but rather uses logic programming features to
express the visualization as annotations of the user programs. Visualizers for some 15
global constraints have been implemented so far, together with a series of example
programs, based on the course material.

5.2 SICStus

We are currently extending the clpfd library module of SICStus Prolog with exported
predicates producing XML files for CP-VIZ. The work is being carried out as a port of
the interface code for ECLiPSe. Like for ECLiPSe, we do not use any special hooks of
SICStus Prolog or its clpfd library module and we rely on user program annotations.
The implementation replaces the normal labeling/2 procedure, which takes a list
of domain variables, by another procedure taking a list of domain variables annotated
with information for display purposes, e.g. variable name. ECLiPSe and SICStus pro-
vide different libraries of global constraints, and so the main implementation effort lies
in implementing visualizers for the global constraints not provided by ECLiPSe. In par-
ticular, we plan to implement 2D and 3D visualizers for the generic multi-dimensional
geost constraint [2]. The XML files are currently being written with standard Prolog I/O
predicates. For efficiency, this is likely to be replaced later by specific XML I/O code.

5.3 Visualization of the Global Constraint SOFTPREC

As a case study for visualizing individual global constraints, consider the visualization
of the SOFTPREC constraint arising in the context of the feature subscription problem
for telecommunication services. A feature subscription problem is a configuration prob-
lem defined by a set of possible features, a set of hard precedence constraints, a set of
soft precedence constraints, and a function that maps each feature and each soft prece-
dence constraint to a non-zero integer weight. The objective is to maximize the value
of the subscription, which is defined to be the sum of the weights of the features and
soft precedences that are included. The soft global precedence constraint SOFTPREC

is proposed for solving the feature subscription problem in [11] and [10]. It holds if
and only if there is a strict partial order on the selected features subject to the relevant

470 H. Simonis et al.

hard precedence constraints and the selected soft (user) precedence constraints, and the
value of the subscription is within the provided bounds.

The algorithms for the pruning rules of SOFTPREC have been implemented in Choco
(http://www.emn.fr/z-info/choco-solver), which is a Java library for
constraint programming. In order to visualize the search tree and the propagation carried
out at each node of the search tree, the implementation of SOFTPREC was extended in
order to generate and save the trace in the CP-VIZ format. The implementation of this
extension was fairly simple. We had to extend two classes of Choco and override some
of their methods. While generating the required data for visualization is quite easy,
deciding what to visualize and how to visualize it required several iterations.

A distinct advantage of the visualizer is that it is easy to get a sense of the solutions.
Visualizing solutions can give more insight than just knowing the numerical value of
the solution. It can help a user in deciding whether a given solution with the optimal
value is really optimal for him/her or not. The arguments of SOFTPREC that an end-user
might be interested in visualizing are the states of the variables associated with optional
features, soft precedences, and the value of the subscription being computed. Some of
the interesting states are whether a feature (or a user precedence) is included, excluded
or undecided, or whether the current state is a result of the last choice or the previous
choices.

Figure 7 depicts the search tree (on the left, generated by a branch and bound search
algorithm) explored until the node number 38 and the states of the variables (after con-
straint propagation) at that node, when solving an instance of feature subscription with
20 features and 10 user precedences. In Figure 7 leaf-nodes of the search tree corre-
sponding to feasible solutions are shown in green (light gray), dead-ends are shown in
red (dark gray), and the current node (node number 38) is shown in blue (larger size).
Figure 7 (right) visualizes the state of the variables after reaching the fix point complet-
ing the propagation at node number 38.

The states of the features are visualized using a vector of cells (shown at the bottom
and to the right). When a feature is undecided the corresponding cell is unlabeled. If a
feature is included or excluded then the cell is labeled with either 1 or 0. The difference
between the features that are included/excluded in the current node from those that are
decided in the earlier nodes is made through the difference in the background color of
the cells. The states of the variables associated with the soft precedence constraints are
visualized through a matrix of cells. Each soft precedence constraint i ≺ j is associated
with a cell in row i and column j. If a soft precedence i ≺ j holds then the correspond-
ing cell is labeled with 1 and if it is violated then the corresponding cell is labeled with
0, and undecided soft precedence is labeled with 01. The bounds of the value of the
subscription being computed is displayed on the left bottom of Figure 7 (right).

SOFTPREC internally maintains transitivity on the hard precedence constraints. A
hard precedence constraint, i ≺ j, means that if features i and j are included then i
must precede j. From a developer’s point of view it is interesting to visualize the states
of these variables, which is done through the background colors of the cells in the ma-
trix. SOFTPREC also elicits and maintains incompatibilities between undecided features
through the states of these variables. An incompatibility between undecided features i
and j is visualized by placing a box around the cell in row i and column j. For example,

http://www.emn.fr/z-info/choco-solver

A Generic Visualization Platform for CP 471

in Figure 7 (right) the cell in the second row and fifth column is surrounded by a red
box which denotes that feature 2 and feature 5 are incompatible. This helps in seeing
patterns in the incompatibilities between pairs of features. Within SOFTPREC bounds
are computed by associating a graph with a set of incompatibilities, and computing
the violation cost of each component of the graph. The components are also visual-
ized by using different colors for the incompatibilities of different components. When
it comes to describing the pruning rules of SOFTPREC it is much easier to explain them
through visualization. Initially it was agreed to implement a static variable ordering for
SOFTPREC that chooses variables associated with soft precedences before the variables
associated with features. However, after visualizing the search tree, we discovered that
the intended variable ordering was not implemented in the right way. Another advan-
tage of visualization is that it can help in understanding the impact of the strength of
different pruning rules.

Search Tree Constraint Propagation

Fig. 7. Example of SOFTPREC Global Constraint Visualization

5.4 JSR331

The Java Specification Request (JSR) 331 (http://jcp.org/en/jsr/detail?
id=331) is a working group in the Java Community Process trying to propose an open,
standard constraint programming API for Java. As part of a reference implementation
we have considered the use of CP-VIZ as an example of a visualization extension for
the standard API. Figure 8 shows a code example for an annotated N-queens program
in the proposed standard syntax. For most classes (Problem, Solver, individual global
constraints), variants which incorporate the visualization capabilities of CP-VIZ are
provided. By creating for example a new constraint from ALLDIFFERENTVISUAL in-
stead of ALLDIFFERENT , a visualization for this constraint will be provided. Note
that not all constraints and variables need to be annotated, the user can concentrate on
only parts of the model, if required. Figure 9 shows an UML sequence diagram for the

http://jcp.org/en/jsr/detail?id=331
http://jcp.org/en/jsr/detail?id=331

472 H. Simonis et al.

p u b l i c c l a s s QueensVi sua l {
p u b l i c s t a t i c void main (S t r i n g [] a r g s) {

P r o b l e m V i s u a l problem = new P r o b l e m V i s u a l (” Queens ”) ;
i n t s i z e = 1 6 ;
problem . s t a r t V i s u a l i z a t i o n (” QueensProblem . l o g ”) ;
Var [] x = problem . v a r A r r a y (” x” , 0 , s i z e −1, s i z e) ;
Var [] x1 = new Var [s i z e] ;
Var [] x2 = new Var [s i z e] ;
f o r (i n t i = 0 ; i < s i z e ; i ++) {

x1 [i] = x [i] . add (i) ;
x2 [i] = x [i] . sub (i) ;

}
problem . r e g i s t e r (x) ;
new A l l D i f f e r e n t V i s u a l (x) . p o s t () ;
problem . s n a p s h o t () ;
new A l l D i f f e r e n t (x1) . p o s t () ;
new A l l D i f f e r e n t (x2) . p o s t () ;
S o l v e r V i s u a l s o l v e r = new S o l v e r V i s u a l (problem) ;
s o l v e r . s t a r t V i s u a l i z a t i o n (” QueensS olve r . l o g ”) ;
S o l u t i o n s o l u t i o n = s o l v e r . f i n d S o l u t i o n () ;
s o l v e r . s t o p V i s u a l i z a t i o n () ;
problem . s t o p V i s u a l i z a t i o n () ;

}
}

Fig. 8. JSR 331 Example: Visualization of N-Queens Problem

interaction of the Application, VisualProblem, VisualSolver and Constraint classes
which shows how the JSR331 implementation builds on the interface of Figure 5.

6 Future Work and Conclusions

While the current CP-VIZ system already provides many useful features for under-
standing and improving constraint programs, there are a number of features that would
improve its capabilities:

– At the moment the system can tell the user which choice led to a failure, but can not
provide a more detailed explanation. It would be helpful if we can integrate some
explanation tools which can provide automatically derived explanations of failures.

– Much of the development time for a constraint application is taken up with compar-
ing different possible design choices. We will study how to best compare search trees
and constraint and variable visualizations from multiple runs in a single display.

– The invariant checker provides a useful paradigm for concentrating effort on inter-
esting parts of the search effort, but at the moment the checks are compiled as part
of the tool itself. It might be interesting to allow users to specify checks interac-
tively, and display such search results inside the visualization.

A Generic Visualization Platform for CP 473

Fig. 9. UML Sequence Diagram - Message Flow between Application and Visualization Classes

By providing an open-source, system independent visualization platform, CP-VIZ can
help to reduce the amount of duplicated and redundant work required by system devel-
opers, while allowing specific, new features to be added without too much effort. The
current documentation and software for CP-VIZ can be found at http://4c.ucc.
ie/˜hsimonis/CPVIZ/index.htm.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling prob-
lems. Journal of Mathematical and Computer Modelling 17(7), 57–73 (1993)

2. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geometrical
constraint kernel in space and time for handling polymorphic k-dimensional objects. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer, Heidelberg (2007)

3. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog. Technical Report
T2005:08, SICS (May 2005)

4. Deransart, P.: Main results of the OADymPPaC project. In: Demoen, B., Lifschitz, V. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 456–457. Springer, Heidelberg (2004)

5. Deransart, P., Hermenegildo, M.V., Małuszyński, J.: DiSCiPl 1999. LNCS, vol. 1870.
Springer, Heidelberg (2000)

6. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F.: The con-
straint logic programming language CHIP. In: FGCS, pp. 693–702 (1988)

7. Dooms, G., Hentenryck, P.V., Michel, L.: Model-driven visualizations of constraint-based
local search. Constraints 14(3), 294–324 (2009)

http://4c.ucc.ie/~hsimonis/CPVIZ/index.htm
http://4c.ucc.ie/~hsimonis/CPVIZ/index.htm

474 H. Simonis et al.

8. Epstein, S.L., Li, X.: Cluster graphs as abstractions for constraint satisfaction problems. In:
Bulitko, V., Beck, J.C. (eds.) SARA. AAAI, Menlo Park (2009)

9. Hulubei, T.: Refutation Analysis for Constraint Satisfaction Problems. PhD thesis, University
College Cork (2007)

10. Lesaint, D., Mehta, D., O’Sullivan, B., Quesada, L., Wilson, N.: A Soft Global Precedence
Constraint. In: IJCAI 2009, Pasadena, CA, USA (2009)

11. Lesaint, D., Mehta, D., O’Sullivan, B., Quesada, L., Wilson, N.: Consistency techniques
for finding an optimal relaxation of a feature subscription. In: Proceeding of the 20th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI 2008), pp. 283–290
(2008)

12. Meier, M.: Debugging constraint programs. In: Montanari, U., Rossi, F. (eds.) CP 1995.
LNCS, vol. 976, pp. 204–221. Springer, Heidelberg (1995)

13. Nieuwenhuis, R.: A cumulative scheduling problem. Personal Communication (2008)
14. Schulte, C.: Oz Explorer: A visual constraint programming tool. In: ICLP, Leuven, Belgium,

pp. 286–300 (1997)
15. Simonis, H.: An ECLiPSe ELearning course (2009),

http://4c.ucc.ie/˜hsimonis/ELearning/index.htm
16. Simonis, H., Aggoun, A.: Search-tree visualisation. In: Deransart et al [5], pp. 191–208.
17. Simonis, H., Aggoun, A., Beldiceanu, N., Bourreau, E.: Complex constraint abstraction:

Global constraint visualisation. In: Deransart et al [5], 299–317

http://4c.ucc.ie/~hsimonis/ELearning/index.htm

	A Generic Visualization Platform for CP
	Introduction
	Design Aims
	Architecture
	System Dependent XML Generators
	CP-Viz
	CP-Viz Tool

	Invariant Checking
	Implementation
	ECLiPSe
	SICStus
	Visualization of the Global Constraint SoftPrec
	JSR331

	Future Work and Conclusions
	References

